
CAUCHY-COMPLETE ∞-CATEGORIES AND LAX ADDIVITIY

MARKUS ZETTO

Abstract. Additive categories can be characterized as those Ab-enriched categories that
admit finite coproducts, which automatically coincide with the respective products. This
is a particular instance of a paradigm that makes sense for any enrichment category V: A
(weighted) colimit is called absolute if it can be described by a dual limit diagram, and
following Lawvere a V-enriched category is called Cauchy-complete if it admits all absolute
colimits. Generalizing to enriched ∞-categories, I explain how a category enriched over
cocomplete ∞-categories is Cauchy-complete iff it is idempotent complete and admits lax
colimits, i.e. it is a lax semiadditive (∞, 2)-category. Up to idempotent completion, this
lets me recover Angus’ previous statement about the category of profunctors being the
free lax semiadditive (∞, 2)-category on a point, generalize it to enriched profunctors,
and explain its relation to multifusion categories.

This is an informal addendum to a talk of the same name given in the Higher Structures
seminar at the University of Hamburg. In particular parts of the results are based on ongoing
work together with David Reutter, so use at your own risk. Comments and typos are very
welcome!

1. Cocomplete categories

Fix universes ת < ת̂ < ת̂ˆ of small, large and very large sets. Denote by Ĉatcolim the
very large (locally large) category of large categories admitting small colimits, and functors
preserving small colimits. We will also refer to them as cocomplete categories and cocontinuous
functors. A notable full subcategory is the large category PrL spanned by the presentable
categories.

Lemma 1.1. For any collection of κ-small categories K, the forgetful functor CatK → Cat
from the category of categories with K-shaped colimits and functors preserving K-shaped
colimits, creates κ-filtered colimits.

Proof. Since the forgetful functor is conservative, it suffices to show that it preserves κ-filtered
colimits. Similarly to [Lur09, Proposition 5.5.7.11], show that the inclusions into the colimit
calculated in Cat already preserve K-shaped colimits. □

Observation 1.2. In particular, the forgetful functor Ĉatcolim → Ĉat creates filtered-ת
colimits. Therefore its left adjoint free cocompletion functor preserves compact-ת objects,
meaning that for any small category C the presheaf category P(C) ∈ Ĉatcolim is .compact-ת
Since the forgetful functor is conservative and small categories generate Ĉat under colimits,
we learn that Ĉatcolim is compactly-ת generated by the presheaf categories. In fact by [Ste20,
Proposition 5.1.4], a category M ∈ Ĉatcolim is compact-ת iff it is presentable!

Proposition 1.3. Given V ∈ Alg(PrL), a module M ∈ RModV(Ĉat
colim) is compact-ת iff it

is presentable, i.e. lies in the full subcategory RModV(Pr
L) =: PrV.
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Proof. The case V = S follows from Observation 1.2. Further by [Ste20, Proposition 5.1.7],
RModV(Ĉat

colim) is compactly-ת generated by the free modules P ⊗ V for P ∈ PrL (even
for V ∈ Alg(Ĉatcolim)). In particular, this implies that its compact-ת objects are precisely
the small colimits of such P⊗ V by a idM ∈ Map(M,M) = colimi Map(M,Pi ⊗ V) retract
argument. Now RModV(Pr

L) contains all of these free modules (as V is presentable), in factelaborate?

it is generated by them under geometric realizations, and it is closed under small colimits so
we are finished. □

Remark 1.4. In particular, any cocomplete M can be written as a large, filtered-ת colimit
of presentable categories in Ĉatcolim. For example PrL = colimκ Prκ is the colimit over all
regular cardinals of the categories Prκ of κ-compactly generated categories and cocontinuous
functors preserving κ-compact objects. Since PrL ⊆ Ĉatcolim is dense, there is even a
canonical such colimit diagram indexed by PrL/M for each M.

Lemma 1.5. For C a small category, the functor Fun(C,−) : Ĉatcolim → Ĉatcolim preserves
filtered-ת colimits.

Proof. By Proposition 1.3 any cocomplete category is a filtered-ת colimit of presentable
categories; also any presentable category is a small colimit of presheaf categories so the
functors Map

Ĉatcolim
(P(D),−) : Ĉatcolim → S for all D ∈ Cat are jointly conservative. Since

P(D) is presentable, they also preserve filtered-ת colimits and hence jointly reflect them.
Therefore it suffices to show that for any D the functor

Map
Ĉatcolim

(P(D),Fun(C,−)) ≃ Map
Ĉatcolim

(P(D× C),−) : Ĉatcolim → Ĉatcolim

preserves filtered-ת colimits, which follows from P(D× C) being presentable. □

Lemma 1.6. Let C be a small, and M a cocomplete category. Then P(C)⊗M ≃ Fun(Cop,M).

Proof. The statement is true if M is presentable, since then P(C)⊗M ≃ Funlim(P(C)op,M) ≃
FunL(P(C),Mop) ≃ Fun(C,Mop). Using Proposition 1.3, let us write M as an filtered-ת
(large) colimit M ≃ colimi Mi with Mi ∈ PrL. Then using that ⊗ preserves large colimits in
both arguments separately,

P(C)⊗M ≃ colimi P(C)⊗Mi ≃ colimi Fun(C
op,Mi) ≃ Fun(Cop,M)

where the last equivalence follows from Lemma 1.5. □

2. Modes

Reminder 2.1. For K ⊆ L any small sets of small categories that we want to use as
shapes of colimit diagrams, [Lur09, Example 5.3.6.4] defines a L-K-cocompletion functor
PL
K : CatK → CatL that is left adjoint to the forgetful functor. Explicitly, PL

K(C) can
be constructed by taking the full subcategory of P(C) generated by L-shaped colimits,
and further restricting to those presheaves F : Cop → S that send K-colimits in C to
limits. Denote by PK : CatK ⊆ ĈatK → PrL the special case where L consists of all
small categories, in other words PK(C) := FunK-lim(Cop, S) which is presentable as its is an
accessible localization of P(C).

The functor PL
K : CatK → CatL is symmetric monoidal with respect to the tensor products

⊗K,⊗L of K- and L-cocomplete categories. Those are defined by the universal property

FunK(C⊗K D,E) ≃ FunK×K(C×D,E)
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for C,D,E ∈ CatK, where FunK×K denotes those functors that preserve K-shaped colimits in
C and D separately. Explicitly (as for the tensor product of vector spaces), we can construct
C⊗K D := PK

K×K(C×D). By [Lur17, Lemma 4.8.4.2], ⊗K preserves small colimits in both
arguments separately.

Definition 2.2. For K a collection of categories, a K-mode is a pair (A, a) of a K-cocomplete
category A ∈ CatK and a ∈ A such that the functor A ≃ A⊗K PK(∗) → A⊗A induced by a
is an equivalence. In this case, the inverse to this equivalence equips A with the structure of
a commutative algebra in CatK (algebras that arise this way, i.e. whose multiplication map
is an isomorphism, are called idempotent), and the forgetful functor ModA(Cat

K) → CatK is
fully faithful with essential image those M ∈ PrL where the map M ≃ M⊗ PK(∗) → M⊗ A
induced by a is an equivalence. Such M will be called A-modal.

If K is the collection of κ-small categories (together with, for κ = ℵ0, the idempotent
splitting diagram), we call A a κ-mode. Since the functor Pκ : Catκ-rex,ic ≃ PrLκ is an
equivalence of symmetric monoidal categories by [Lur17, Lemma 5.3.2.11], this is equivalently
an idempotent algebra of PrLκ . A presentable category A together with a ∈ A inducing
A ≃ A ⊗ A will just be called a mode. Note that A is always κ-compactly generated for
some κ, making A into a κ-mode as well. Conversely if A is a K-mode, then PK(A) is a
mode since PK : CatK → PrL is symmetric monoidal.

Proposition 2.3. For (A, a) a K-mode and M a cocomplete category, the following are
equivalent:

(1) M regarded as a K-complete category is A-modal,
(2) M is PK(A)-modal,
(3) PK(M) regarded as a K-complete category is A-modal,
(4) PK(M) is PK(A)-modal.

Proof. Since PK : ĈatK → Ĉatcolim is symmetric monoidal, (1) implies (4). Also if we knew
that (1) was equivalent to (2), then (3) ⇔ (4) would follow by replacing M with PK(M).

For (2) ⇒ (1), note that if M admits a PK(A)-module structure classified by a colimit-
preserving monoidal functor PK(A) → Endcolim(M), then the restriction A → Endcolim(M) ⊆
EndK-colim exhibits M as an A-module in CatK.

We finish by proving (4) ⇒ (2). Note that PK(A)⊗M is a full subcategory of PK(A)⊗
PK(M), namely the former consists of those presheaves in P(A×M) that send K-shaped
colimits in A as well as colimits in M to limits in S, while for the latter this only needs
to hold for K-shaped colimits in A and M respectively. But by assumption, the map
PK(M) ≃ S⊗PK(M) → PK(A)⊗PK(M) induced by a ∈ A is an isomorphism, so the latter
is generated under colimits by elements of the form Ha ⊗Hm with m ∈ M. Since these
are contained in PK(A) ⊗ M, the full inclusion must be an equivalence exhibiting M as
PK(A)-modal. □

Proposition 2.4. The category of spectra Sp is an idempotent algebra in the symmetric
monoidal category Ĉatcolim of cocomplete categories (equipped with the tensor product of
cocomplete categories). Its category of modules ModSp(Ĉat

colim) ⊆ Ĉatcolim consists precisely
of the cocomplete stable categories.

Proof. Recall e.g. from [CDH+20, Construction 5.1.1] that the category Spfin of finite spectra can do without this refer-
ence(which can be defined as the compact objects in Sp) is an ℵ0-mode, and a category C

admitting finite colimits is stable iff it is Spfin-modal. By Proposition 2.3 a cocomplete
category M is hence modal for Sp = Pℵ0

(Spfin) = Ind(Spfin) iff it is stable. □
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Remark 2.5. This does not immediately follow from [Lur17, Example 4.8.1.23] which tells
us that Sp is the mode classifying presentable stable categories: While this does imply that
Sp is an idempotent algebra in Ĉatcolim, it is tricky to classify the Sp-modal objects.

Proposition 2.6. The category CMonm(S) of m-commutative monoids in S is an idempotent
algebra in Ĉatcolim. Its category of modules ModCMonm(S)(Ĉat

colim) ⊆ Ĉatcolim consists
precisely of the cocomplete m-semiadditive categories.

Proof. Recall from [Har16, Proposition 5.6] that a category C admitting colimits over the
small class Km of m-finite spaces is m-semiadditive iff it is tensored over the category
Sm of spans of m-finite spaces, which is a Km-mode. We obtain an idempotent algebra
CMonm(S) := PKm(Sm) = FunKm-lim(Sm,op, S) in PrL and consequently Ĉatcolim. By
Proposition 2.3, modules over it are precisely the Sm-modal, i.e. m-semiadditive cocomplete
categories. □

Proposition 2.7. The category of spectra Spcn is an idempotent algebra in Ĉatcolim. Its
category of modules ModSpcn(Ĉatcolim) ⊆ Ĉatcolim consists precisely of the cocomplete
additive categories.

Proof. Let Z := SymE∞
({x, y}) be the free commutative algebra in S generated by two

points, and define the shearing map σ : Z → Z as the unique algebra map extending
{x, y} → π0Z mapping x to x and y to x + y. By the proof of [Lur18, Theorem C.4.1.1]
a cocomplete semiadditive categery M is additive if and only if for any cocontinuous map
H : CAlg(S) → M, which is uniquely specified by an object h ∈ M using Proposition 2.6,
the image of the shearing map H(σ) is an isomorphism. But CAlg(S) is presentable, so if
we write M as a filtered-ת colimit over presentable additive categories Mi (which we can
do by Proposition 1.3) then H must factor through one of the Mi, where it sends σ to an
isomorphism. □

Remark 2.8. Alternatively, we could of course also prove this using our mode technology.
Generally if A is any mode and κ-compactly generated, then Aκ-cpt is a κ-mode. From
Proposition 2.3, we learn that a cocomplete category M is modal over A = Pκ(A

κ-cpt) iff
regarded as a κ-cocomplete category it is Aκ-cpt-modal. A similar argument would also work
if we replace the class of κ-small categories by any sound doctrine in the sense of [Rez21].

Proposition 2.9. The category of n-truncated spaces S≤n is an idempotent algebra in
Ĉatcolim. Its category of modules ModS≤n

(Ĉatcolim) ⊆ Ĉatcolim consists precisely of the
cocomplete (n, 1)-categories.

Proof. It is an idempotent algebra in PrL classifying presentable (n, 1)-categories by [Lur17,
Example 4.8.1.22]. Let us write a general cocomplete category M as a filtered-ת colimit
colimi Mi, then we may calculate

S≤n ⊗M ≃ colimi S≤n ⊗Mi ≃ colimi τ≤nMi .

Now, note that the truncation functor τ≤n : Ĉat → Ĉat(n,1) is left adjoint to the inclusion and
preserves κ-compact objects for any κ, in particular compact-ת objects (i.e. small categories).
Hence, the composition τ≤n : Ĉat → Ĉat with its right adjoint preserves τ -filtered colimits,
so by Observation 1.2 the restriction τ≤n : Ĉatcolim → Ĉat does so as well and we are finished
since we recover τ≤nM. □
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Proposition 2.10. The category of pointed spaces S∗ is an idempotent algebra in Ĉatcolim.
Its category of modules ModS∗(Ĉat

colim) ⊆ Ĉatcolim consists precisely of the pointed cocom-
plete categories, i.e. those admitting a zero object.

Proof. Recall from [Lur17, Example 4.8.1.21] that S∗ is an idempotent algebra in PrL

classifying pointed presentable categories. Also for any κ, a κ-cocomplete category C is
pointed iff Indκ(C) is pointed, i.e. S∗-tensored. Using the equivalence between κ-compactly
generated and κ-cocomplete categories, we deduce that C is pointed iff it is tensored
over the κ-mode S

κ-cpt
∗ . Hence by Proposition 2.3, a cocomplete category is modal over

Indκ(S
κ-cpt
∗ ) ≃ S∗ iff it is S

κ-cpt
∗ -modal regarded as a κ-cocomplete category, i.e. pointed. □

3. Lax V-additive categories

Lemma 3.1. Let V ∈ AlgE2
(PrL), fix an E2-algebra a ∈ AlgE2

(V), and denote by F :
V → LModa(V) : U the free-forgetful adjunction. We can regard any LModa(V)-tensored
category M ∈ PrLModa(V) as a V-tensored category MV with the same underlying category, by
restricting scalars along F . An object m ∈ M is tiny with respect to the LModa(V)-tensoring
iff it is tiny with respect to the V-tensoring on MV.

Proof. By definition, m⊗− := m⊗ F (−) : V → M in MV, so passing to adjoints

HomMV
(m,−) ≃ U ◦HomM(m,−) .

Since U is conservative, and preserves colimits by [Lur17, Corollary 4.2.3.5] as V is presentably
monoidal, it creates colimits. Similarly it creates V-tensorings since it preserves them, so we
are finished. □

Lemma 3.2. For F : V → LModa(V) : U as before, let C be a LModa(V)-enriched category
and U!C ∈ Cat(V) its change-of-enrichment. Then PV(U!C) ∈ PrV is the restriction of scalars
of PLModa(V)(C) ∈ PrLModa(V) along F . and the Yoneda functors

agree

Proof. Since U is a V-linear colimit-preserving functor, i.e. a map in PrV, we know by [RZ24b,
...] that PV(U!C) ≃ U∗PLModa(V)(C) is the extension of scalars along U . But since U is right
adjoint to F , we obtain the desired result. □

Corollary 3.3. For V ∈ AlgE2
(PrL) and a an E2-algebra in it, a LModa(V)-enriched category

C is Cauchy-complete iff its underlying V-category U!C is Cauchy-complete.

Proof. An enriched category is Cauchy-complete iff any tiny presheaf over it is representable,
so combine Lemma 3.1 and Lemma 3.2. □

Remark 3.4. For V ∈ Alg(PrL) presentably monoidal, a V-enriched category C is called
Cauchy-complete iff any tiny presheaf in PV(C) is representable, i.e. the canonical inclusion
C ⊆ PV(C)

tiny is an equivalence. Equivalently, C must admit all absolute weighted colimits.

Example 3.5. If a is an algebra in V, then the tiny objects in LModa(V) ∈ PrV are
precisely the dualizable objects. This is because by definition, a left a-module m admits
a dual if there is a right a-module m∨ such that m ⊗ − : V ⇆ LModa(V) : m

∨ ⊗a − are
adjoint. But then by definition HomLModa(V)(m,−) ≃ m∨ ⊗a −, so this preserves colimits
and tensoring. Conversely we can write any module n as a bar construction a⊗a m, so if m
is tiny HomLModa(V)(m,n) ≃ HomLModa(V)(m, a)⊗a n =: m∨ ⊗a n.
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Reminder 3.6. Let us call a category enriched over the large-presentable category Ĉatcolim a
locally cocomplete 2-category, and a Ĉatcolim-enriched functor locally cocontinuous. Explicitly,
Ĉat(Ĉatcolim) ⊆ Ĉat(∞,2) is the subcategory spanned by those large 2-categories whose
morphism categories admit small colimits and whose composition preserves them, together
with 2-functors that on morphism-categories preserve small colimits.

From lax matrix calculus, we know that any locally cocontinuous functor preserves lax
colimits over small categories, i.e. those are absolute. Conversely, in WIP David and me
show that a Ĉatcolim-enriched category is Cauchy-complete, i.e. admits all absolute colimits,
iff it is idempotent complete and admits all lax colimits over small categories.

Definition 3.7. For V ∈ AlgE2
(Ĉatcolim), we define the category of lax V-additive (∞, 2)-

categories as Cat+(RModV(Ĉat
colim)). Explicitly by Corollary 3.3, it consists of (∞, 2)-

categories that are locally cocomplete, locally tensored over V in a way that is compatible
with composition and local colimits, and admits lax colimits and idempotent splittings.

Example 3.8. Let us note several cases of interest:
• A lax S-additive (∞, 2)-category is a locally cocomplete (∞, 2)-category with lax

colimits and idempotent splittings, also known as an i.c. lax semiadditive (∞, 2)-
category.

• A lax Set-additive (∞, 2)-category is an i.c. locally cocomplete (2, 2)-category with
lax colimits, so we call it an i.c. lax semiadditive (2, 2)-category.

• A lax Sp-additive (∞, 2)-category is an i.c. lax semiadditive (∞, 2)-category that is
locally tensored over Sp, which by Proposition 2.4 means that it is locally stable.
Hence, we recover lax additive (∞, 2)-categories.

• A lax Ab-additive (∞, 2)-category using Proposition 2.7 is a lax semiadditive (2, 2)-
category that is locally additive.

• Similarly for S≤m, S≤m,∗, Sp≤m we obtain locally semiadditive (m+ 2, 2)-categories
(that are locally pointed/ additive).

• One should consider lax PrLst-additive (∞, 2)-categories as lax additive (∞, 3)-categories.
This is because they are enriched over ModPrLst

(Ĉatcolim) which is the Indת-completion
of the category Pr2st of presentable stable 2-categories introduced in [Ste20]; just like
ModSp(Ĉat

colim) is the Indת-completion of PrLst in the lax additive case. This further
suggests calling lax Prnst-additive (∞, 2)-categories lax additive (∞, n+ 2)-categories.

Observation 3.9. Any lax V-additive (∞, 2)-category is automatically 2-idempotent com-
plete (which is a priori a stronger condition). This is because any cocomplete category
is idempotent complete, so the forgetful functor LModV(Ĉat

colim) → Ĉatcolim → Ĉat fac-
tors through Ĉatidem. Since all of these functors are right adjoints of monoidal func-
tors, change-of-enrichment along them preserves Cauchy-completeness, in particular if
C ∈ Cat+(LModV(Ĉat

colim)) then the underlying Ĉatidem-enriched category is Cauchy-
complete, i.e. 2-idempotent complete.

4. Universal Property of Profunctors

Definition 4.1. Denote by ProfV the full sub-2-category of PrV spanned by the tiny-
generated categories, i.e. those of the form PV(C) for C a small V-enriched category. We call
it the 2-category of V-enriched profunctors.

Example 4.2. For V = S, this agrees with Haugseng’s Morita 2-category ProfHS of profunctors
in [Hau15]: Consider the corepresentable 2-presheaf HomProfH

S
(∗,−) : ProfHS → Cat. It sends

6



a small category C to P(C), and a profunctor P : C × Dop → S to the postcomposition
P ◦ − : P(C) → P(D). It is immediate to see that this construction factors through PrL,
where it is fully faithful as it induces the equivalence Fun(C×Dop, S) ≃ FunL(P(C),P(D))
on morphism categories. Also, its essential image consists of precisely the presheaf categories,
as claimed. more general proof?

Observation 4.3. The 2-category ProfV does not admit all (conical) colimits, in fact its
underlying 1-category is not even idempotent complete since regarded as a full subcategory of
PrV, it is not closed under retracts: For V = S a counterexample is given in [Har], for V = Sp
there is a large supply of compactly assembled stable categories that are not compactly
generated, e.g. consult [Efi24]. However, PrV is idempotent complete, so the idempotent
completion P̂rof icV can be identified with the full subcategory of PrV spanned by the retracts
of tiny-generated categories.

Proposition 4.4. Given V ∈ Alg(PrL), a module M ∈ RModV(Ĉat
colim) is dualizable iff it

is the retract of a tiny-generated category.

Proof. This statement is known to hold in RModV(Pr
L) by [Ram24, Theorem 1.47], so it

suffices to show that any dualizable M is automatically presentable. By Proposition 1.3 is
suffices to show that M is ,compact-ת which follows from

Map
RModV(Ĉatcolim)

(M,−) ≃ Map
Ĉatcolim

(S,Hom
RModV(Ĉatcolim)

(M,−)) ≃ Map
Ĉatcolim

(S,M∨⊗V−)

sine M∨⊗V− preserves all colimits, and S ∈ Ĉatcolim is compact-ת since it is presentable. □

Theorem 4.5. The idempotent completion of the (∞, 2)-category ProfV of V-enriched
profunctors is both the free i.c. lax semiadditive category on the delooping BV, and it is the
free lax V-additive category on the point. By this we mean that for C i.c. lax semiadditive
and D i.c. lax V-additive:

Funloc.coc.(P̂rof icV,C) ≃ Funloc.coc.(BV,C)

FunRModV(Ĉatcolim)(P̂rof icV,D) ≃ FunRModV(Ĉatcolim)(BV,D) ≃ Fun(∗,D) ≃ D

Proof. Note that BV is the free RModV(Ĉat
colim)-enriched category on the point, since V

is the image of ∗ under the left adjoint to the forgetful functor RModV(Ĉat
colim) → Cat.

Hence, it suffices to show that ProfV is the Cauchy-completion of BV both regarded as a
RModV(Ĉat

colim)-enriched category and as a Ĉatcolim-enriched category. However in both
settings, its enriched presheaf category is given by RModV(Ĉat

colim), and the tiny objects
agree with the dualizable objects by Example 3.5. Hence we are finished after combining
Proposition 4.4 with Observation 4.3. □

Corollary 4.6. The (∞, 2)-category Prof of profunctors is the free lax semiadditive category
on BS, or on the point.

Proof. Up to idempotent completion this is immediate from the above theorem. For the
full statement, use Angus’ results that Prof admits all lax colimits, and generated under lax
colimits by the point. □

Proposition 4.7. The idempotent completion of the (∞, 2)-category Profex of stable
categories and exact profunctors (in other words, the category of compactly assembled stable
categories and colimit-preserving functors) is the free i.c. lax additive category on the point,
and the free i.c. lax semiadditive category on BSp.
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Proof. Combine Theorem 4.5 with the observation that the category of Sp-enriched profunc-
tors is equivalent to its full subcategory on (i.c.) stable categories since any Sp-enriched
category is equivalent to its Cauchy-completion, which lies in there. Also, Sp-enriched
functors between stable categories are the same thing as exact functors. □

Remark 4.8. A variation of Angus’ proof suggests that this is still true without idempotent
completing: Any stable category can be written as the lax colimit in Profex over itself, and
this full subcategory of PrLst is closed under lax colimits.

Warning 4.9. It is unclear whether ProfV is the free lax V-additive category on the point
(or equivalently the free lax semiadditive category on BV) for any V. The issue is that
using lax colimits over small categories, we can a priori only generate V-enriched categories
that are freely generated by categories. More general V-categories could be generated using
Eilenberg-Moore objects, but those can to our knowledge only be written as partially lax
colimits/ lax colimits over lax functors.

5. Lax additivity and higher presentable categories

There are several notions of 2-categories that, in some aspects, appear similar to (pre-
sentable) stable categories:

• The category of 2-i.c. finitely lax additive 2-categories Cat2+(Sp), which explicitly
consists of 2-i.c. locally stable 2-categories that admit lax colimits over [1],

• The category Cat+(ModSp(Ĉat
colim)) = Cat+(Ĉat

colim,st) of i.c. lax additive 2-categories,
• The category PrCatst,ic of presentably Catst,ic-tensored categories,
• The category Pr2st := ModPrLst

(Ĉatcolim)ת-cpt of presentable stable 2-categories.

All of them can be extended to general V ∈ Alg(PrL) instead of Sp: Using that Cat+(V) is
presentable, we can construct the following 3-categories:

Cat2+(V), Cat+(ModV(Ĉat
colim)), ModCat+(V)(Pr

L), Pr2V := ModModV(PrL)(Ĉat
colim)ת-cpt

In order to translate between them, one can use the following commutative diagram of
symmetric monoidal 3-functors, where iL respectively denotes the subcategory spanned by
left adjoint 1-morphisms:

Cat2+(V) PriLCat+(V) Pr2,iLV

Cat(ModV(Ĉat
colim)) Mod

ModV(Ĉatcolim)
(P̂r)iL

Cat+(ModV(Ĉat
colim))

PCat+(V)

(PV)!

(PV)∗

Înd

P
ModV(Ĉatcolim)

(̂−)
ModV(Ĉatcolim) P

ModV(Ĉatcolim)

Any arrow in this diagram, (possibly) except for (PV)∗ is faithful, in fact the hooked arrows
are even fully faithful. All but the two vertical morphisms admit a right adjoint.
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