L-Groups of Sheaves on Stratified Spaces

Markus Zetto

UHH Hamburg

Master's Thesis under the supervision of Markus Banagl at Heidelberg University

September 19, 2023

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Outline

2 Verdier Duality

Markus Zetto L-Groups of Sheaves on Stratified Spaces

< ∃ >

What are Higher Sheaves?

Markus Zetto L-Groups of Sheaves on Stratified Spaces

э

э

- ∢ ⊒ →

Ordinary Sheaves

Definition

Given a topological space X and a commutative ring R, a sheaf of *R*-modules on X is a functor $F : \operatorname{Open}(X)^{op} \to \operatorname{Mod}_R$ such that for $\mathfrak{U} = (U_i \subseteq U)_{i \in I}$ an open cover of $\bigcup \subseteq_{\operatorname{open}} X$, the canonical map $F(U) \to \operatorname{equ}\left(\prod_i F(U_i) \rightrightarrows \prod_{ij} F(U_i \cap U_j)\right)$

is an isomorphism. Denote their category by Sh(X; R).

Remark

Surjectivity of this map allows for gluing, while injectivity ensures uniqueness.

- 4 同 6 4 日 6 4 日 6

Čech Cohomology

This is equivalent to $F(U) = \check{H}^0(\mathfrak{U}, F)$, where $\check{C}ech$ cohomology is defined as the cohomology of the $\check{C}ech$ complex

$$\check{C}(\mathfrak{U},F) := \left(0 \to \prod_{i} F(U_{i}) \stackrel{d_{0}-d_{1}}{\longrightarrow} \prod_{ij} F(U_{ij}) \to \dots \right) = \\ = \left(\prod_{(i_{1},\dots,i_{n}) \in I^{\times n}} F(U_{i_{1},\dots,i_{n}}), \sum_{i} (-1)^{i} d_{i} \right)_{n}$$

with $U_{ij} = U_i \cap U_j$ etc.

4 3 5 4 3 5

Derived Sections

In topology, we are often interested in the sheaf cohomology $H^i(U, F)$ extending $H^0(U, F) = F(U)$ to find (co)homological invariants of a space. In other words, we work in D(Sh(X; R)), replacing F by a resolution $R\Gamma(-, F)$, its image under

 $Ch(Sh(X; R)) \rightarrow Ch(Sh(X, R))[qis^{-1}] = D(Sh(X; R))$

so $H^i(U,F) = H^i(R\Gamma(U,F)).$

But what kind of mathematical object is $R\Gamma(-, F)$: Open $(X)^{op} \rightarrow D(R)$? Not a sheaf!

Comparing Čech- and sheaf cohomology

Theorem

If the open cover (U_i) is acyclic in the sense that $R\Gamma^m(U_{i_1...i_n}, F) = 0$ for $m \neq 0$ and any tuple $i_1, ..., i_n$, then Čech cohomology with respect to (U_i) and sheaf cohomology agree, i.e. the canonical map

$$R\Gamma(X,F) \stackrel{\mathrm{qis}}{\longrightarrow} \left(\prod_i F(U_i) \to \prod_{ij} F(U_{ij}) \to \dots\right)$$

is a quasi-isomorphism. Note that H⁰ always agree.

伺 ト イ ヨ ト イ ヨ ト

Čech-to-sheaf-cohomology spectral sequence

Theorem (Čech-to-sheaf-cohomology spectral sequence)

Let X be a topological space, and $(U_i \subseteq X)$ an open cover. For a sheaf F the complex $R\Gamma(U, F)$ is quasi-isomorphic to the total complex (Čech hypercohomology) of the double complex

$$\check{C}((U_i),F)_{mn} := R\Gamma^m(U_{i_0} \cap \cdots \cap U_{i_n},F)$$

where the vertical differentials are induced by the differentials in F, and the horizontal ones are alternating sums of restriction maps as usual in the Čech complex.

Čech-to-sheaf-cohomology spectral sequence

Higher Sheaves

Let us try to interpret the above equation as a descent condition for $R\Gamma(-, F)$:

Definition

An ∞ -sheaf with values in D(R) is a functor $\mathcal{F}: \operatorname{Open}(X)^{op} \to D(R)$ such that, for any open cover $(U_i \subseteq U)$, $\mathcal{F}(U) \stackrel{qis}{\simeq} \operatorname{tot} \left(\prod_i \mathcal{F}(U_i) \to \prod_{ij} \mathcal{F}(U_{ij}) \to \dots \right) \simeq$ $\simeq \underset{[n] \in \Delta^{op}}{\operatorname{holim}} \left(\prod_{i_1, \dots, i_n} \mathcal{F}(U_{i_1, \dots, i_n}) \right)$

Denote their ∞ -category by Sh(X; D(R)).

∞ -categories

To be precise, F should not be required to be a functor; for $U \subseteq V \subseteq W$ we should fix a chain homotopy from the composition $\rho_W^V \circ \rho_V^U : F(W) \to F(V) \to F(U)$ to ρ_W^U , as well as higher homotopies for more compositions, in a coherent way.

Definition

An ∞ -category consists of:

- objects, morphisms, 2-morphisms between morphisms, 3-morphisms between 2-morphisms, ...
- and appropriate compositions, identities, associators, ...
- such that all *n*-morphisms with n > 1 are invertible.

In other words, an ∞ -category is a category up to coherent homotopy.

- 4 同 6 4 日 6 4 日 6

∞ -categories

Example

- An ordinary category, with only identity *n*-morphisms for n > 1.
- For X a topological space, its homotopy type Sing(X) with objects points of X, morphisms paths, 2-morphisms homotopies, ...
- The ∞-category of spaces S with objects CW-complexes, morphisms continuous maps, 2-morphisms homotopies, ...
- The ∞ -category of spectra Sp,
- The derived ∞-category D(R), with objects injective chain complexes, morphisms chain maps, 2-morphisms chain homotopies, ...

The last two examples are stable ∞ -categories.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Further Examples

• Fix $(X_i)_{i \in I}$ a collection of topological spaces, with open subspaces $U_j^{(i)} \subseteq X_i$ for $i, j \in I$, and homeomorphisms $\phi_{ji} : U_j^{(i)} \stackrel{\cong}{\to} U_i^{(j)}$. Then, we may glue along them to obtain a space

$$X := \bigsqcup_{i} X_{i} X_{i} \sim \phi_{ji} X_{i}$$

provided that the cocycle condition $\phi_{kj} \circ \phi_{ji} = \phi_{ki}$ holds on triple intersections.

• Stacks in Algebraic Geometry

向下 イヨト イヨト

Theorem (Lurie)

The functor $Ch(Sh(X; R)) \rightarrow Sh(X; D(R))$ informally given by sending $F \mapsto R\Gamma(-, F)$ induces an equivalence

 $D(\operatorname{Sh}(X; R)) \simeq \operatorname{Sh}^{hyp}(X; D(R))$

with the ∞ -category of hypercomplete ∞ -sheaves on X.

Remark

For good X, e.g. CW-complexes, manifolds or Whitney stratified spaces, every sheaf is hypercomplete.

・ 同 ト ・ ヨ ト ・ ヨ ト

Schwede-Shipley

Theorem (Schwede-Shipley)

For R a ring and HR its associated (associative) ring spectrum, the derived ∞ -category

 $D(R) \simeq \mathsf{LMod}_{HR}$

is equivalent to the ∞ -category of module spectra over HR.

Corollary

If we always work with ∞ -categories, everything is automatically derived:

 $D(\operatorname{Sh}(X; R)) \simeq \operatorname{Sh}^{hyp}(X; \operatorname{LMod}_{HR}) =: \operatorname{Sh}^{hyp}(X; HR)$

- 4 同 6 4 日 6 4 日 6

Verdier Duality

Markus Zetto L-Groups of Sheaves on Stratified Spaces

æ

- 《圖》 《문》 《문》

Perfect Complexes

Definition

Given a chain complex C over a ring R, its dual complex is

 $C^{\vee} := \mathsf{RHom}(C, R)$.

Definition

The ∞ -category of finitely presented chain complexes $D^{\text{fp}}(R)$ is the smallest full subcategory of D(R) containing R, which is closed under shifts, direct sums and mapping cones.

The ∞ -category of *perfect chain complexes* $D^{\text{perf}}(R)$ is the smallest full subcategory which is also closed under direct summands.

Perfect Complexes

Definition

For R a ring spectrum, we can similarly define $\mathsf{LMod}_R^{\mathrm{fp}}$ and $\mathsf{LMod}_R^{\mathrm{perf}} \subseteq \mathsf{LMod}_R$. Obviously, these notions agree for Eilenberg-MacLane spectra.

Proposition

For P a perfect module spectrum, P^{\vee} is also perfect and $P^{\vee\vee} \cong P$. Similarly in the finitely presented case.

From now on, R is always a ring spectrum.

周 ト イ ヨ ト イ ヨ

Compactly supported sections

Let X be a locally compact Hausdorff space, and $\mathcal V$ a stable $\infty\text{-category.}$

Definition

Given an ∞ -sheaf \mathcal{F} , its *compactly supported sections* on an open set U are defined as

$$\mathfrak{F}_{c}(U) := \operatorname*{colim}_{K \subseteq U ext{ cpt}} \operatorname{fib}\left(\mathfrak{F}(U)
ightarrow \mathfrak{F}(U-K)
ight)$$

where fib is the (functorial) mapping cocone. The functor $U \mapsto \mathcal{F}_c(U)$ is an ∞ -cosheaf, i.e. a sheaf valued in \mathcal{V}^{op} .

- 母 ト - ヨ ト - ヨ ト

Sheaf-Cosheaf Duality

Theorem (Lurie)

For X a locally compact Hausdorff space and \mathcal{V} a stable ∞ -category with limits and colimits, the functor $(-)_c$ induces a contravariant equivalence

$$\operatorname{Sh}(X; \mathcal{V})^{op} \simeq \operatorname{Sh}(X; \mathcal{V}^{op})$$

with inverse $(-)_c$ defined in \mathcal{V}^{op} .

Six Functors

We apply this to $\mathcal{V} = \mathsf{LMod}_R$, for R a ring spectrum.

Definition

The Verdier duality functor \mathbb{D} : $Sh(X; R)^{op} \to Sh(X; R)$ is given by

 $\mathbb{D}\mathcal{F}(U) := (\mathcal{F}_c(U))^{\vee}$

so automatically $\mathbb{D}^{op} \dashv \mathbb{D}$.

Warning

This is not an equivalence anymore!

(4 同) (ヨ) (ヨ)

э

Six Functors

Definition

For $f : X \rightarrow Y$ a map of locally compact Hausdorff spaces, exceptional direct and inverse image along f are defined as

$$egin{aligned} f_! &:= (-)_c \circ f_* \circ (-)_c \cong \mathbb{D} \circ f_* \circ \mathbb{D} \ f^! &:= (-)_c \circ f^* \circ (-)_c \cong \mathbb{D} \circ f^* \circ \mathbb{D} \end{aligned}$$

By construction, $f_{!} \dashv f^{!}$.

Remark

For $t: X \to *$ define the *dualizing complex* $\omega_X = t^! R$, then we can rewrite $\mathbb{D}\mathcal{F} = \underline{\mathrm{Hom}}(\mathcal{F}, \omega_X)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Verdier Biduality

Theorem

For X locally compact Hausdorff, the Verdier duality functor restricts to a contravariant autoequivalence

 $\mathbb{D}: \operatorname{Sh}_{\operatorname{perf}}^{hyp}(X;R)^{op} \to \operatorname{Sh}_{\operatorname{perf}}^{hyp}(X;R)$

of hypersheaves with perfect (or alternatively finitely presented) stalks $x^* \mathfrak{F}$ and costalks $x^! F$, with $\mathbb{D}^2 = \mathsf{Id}$.

Proof.

Well-defined, since $x^* \mathbb{D} \mathcal{F} = (\mathbb{D} x^* \mathbb{D} \mathcal{F})^{\vee} = (x^! \mathcal{F})^{\vee}$ and similarly for $x^!$; also as a right adjoint \mathbb{D} preserves hypercompleteness. Equivalence, since $x^* \mathbb{D} \mathbb{D} \mathcal{F} = (x^! \mathbb{D} \mathcal{F})^{\vee} = (x^* \mathcal{F})^{\vee \vee} = x^* \mathcal{F}$, so by hypercompleteness the canonical map is an isomorphism.

L-Groups of Sheaves

Markus Zetto L-Groups of Sheaves on Stratified Spaces

э

э

Motivation

Poincaré Duality can be rephrased as $\mathbb{D}\mathbb{R} \cong \mathbb{R}[n]$, i.e. the constant sheaf \mathbb{R} on an oriented manifold M^n is Verdier self-dual:

$$C_c^{-*}(M)^{\vee} = \underline{\mathbb{R}}_c(M)^{\vee} = \underline{\mathbb{D}}\underline{\mathbb{R}}(M) = \underline{\mathbb{R}}[n](M) = C^{n+*}(M)$$

This is no longer true for stratified manifolds. Are there other interesting Verdier self-dual sheaves?

伺 ト イヨト イヨト

L-groups of Sheaves

Definition

Given $\mathfrak{F} \in Sh_{perf}^{hyp}(X; R)$, we define its spectrum of

• n-dimensional symmetric forms as

$$\Omega^{s}(\mathfrak{F}) := \operatorname{map}(\mathfrak{F} \wedge \mathfrak{F}, \omega_{X}[-n])^{hS_{2}}$$

• n-dimensional quadratic forms as

 $\Omega^q(\mathfrak{F}) := \operatorname{map}(\mathfrak{F} \wedge \mathfrak{F}, \omega_X[-n])_{hS_2}$

Both induce a morphism $F \to \mathbb{D}F[-n]$, and are said to exhibit F as *Verdier self-dual* if this is an isomorphism.

・ 同 ト ・ ヨ ト ・ ヨ ト

L-groups of Sheaves

Both Ω^s, Ω^q make $\operatorname{Sh}_{perf}^{hyp}(X; R)$ into a Poincaré ∞ -category ¹, allowing us to define:

Definition

The *n*-th quadratic L-group of $\operatorname{Sh}_{perf}^{hyp}(X; R)$ is the quotient $L_n^q(\operatorname{Sh}_{\mathrm{fp}}^{hyp}(X; R)) := \frac{\begin{cases} \operatorname{pairs} (\mathcal{F}, q) \text{ of an } \infty \text{-sheaf and an } n\text{-dim.} \\ \operatorname{quadr. form exhibiting it as Verdier self-dual} \end{cases}}{\{\operatorname{pairs that admit a } Lagrangian \mathcal{L} \to \mathcal{F}\}}$

Similarly in the perfect case, and for symmetric forms. These are the homotopy groups of the symmetric and quadratic L-spectra:

 $\mathbb{L}^{q}(\operatorname{Sh}_{\mathrm{fp}}^{hyp}(X;R))$ $\mathbb{L}^{s}(\operatorname{Sh}_{\mathrm{fp}}^{hyp}(X;R))$

¹[Calmès, Dotto, Harpaz, Hebestreit, Land, Moi, Nardin, Nikolaus, Steimle] ១.៤៤

Constructible Sheaves

Definition

Let $(X \to P)$ be a stratified space. An ∞ -sheaf $\mathcal{F} \in Sh(X; R)$ is called *constructible* if its restrictions to all strata $\mathcal{F}|_{X_p}$ are locally constant.

For this to be a good definition, we need further conditions on X. For simplicity, assume it is Whitney-stratified.

Proposition (Volpe)

If $(X \to P)$ is Whitney-stratified, an ∞ -sheaf has perfect (f.p.) stalks iff it has perfect (f.p.) costalks.

- 4 同 ト 4 目 ト 4 目 ト

L-Groups of constructible sheaves

Proposition

For $(X \to P)$ Whitney-stratified, constructible sheaves with a complicated finiteness condition form a Poincaré ∞ -category as well, so we may define $\mathbb{L}^q(\operatorname{Sh}^{cbl}(X; R)^{(fp)})$ and $\mathbb{L}^s(\operatorname{Sh}^{cbl}(X; R)^{(fp)})$

Proposition (Lurie)

If M is a connected smooth manifold with the trivial stratification, then $\operatorname{Sh}^{lc}(X; R) \simeq \operatorname{LMod}_{\Omega X \wedge R}$ so by the *algebraic* π - π -*theorem*,

$$\mathbb{L}^{q}(\operatorname{Sh}^{cbl}(X; R)^{(fp)}) \cong \mathbb{L}^{q}((\pi_{0} R)[\pi_{1} M])$$

which is the obstruction appearing in the surgery exact sequence.

伺 ト イ ヨ ト イ ヨ ト

Surgery-type exact sequence

There is an exact sequence of spectra

 $\mathbb{L}^{q}(\operatorname{Sh}_{fp}^{\perp cbl}(X; R)) \to \mathbb{L}^{q}(\operatorname{Sh}_{fp}(X; R)) \to \mathbb{L}^{q}(\operatorname{Sh}^{cbl}(X; R)^{(fp)}) .$

If X is a PL space, the middle spectrum is equivalent to $\mathbb{L}^q(R) \wedge X$, so the second is an *assembly map* and the sequence is closely related to the *surgery exact sequence*. This is probably wrong in the topological case.

伺下 イヨト イヨト

Decomposition into Strata

For X a 2-strata space, we have a fiber sequence

$$\mathbb{L}^{q}(\operatorname{Sh}^{cbl}(X_{-};R)^{(fp)}) \to \mathbb{L}^{q}(\operatorname{Sh}^{cbl}(X;R)^{(fp)}) \to \mathbb{L}^{q}(\operatorname{Sh}^{cbl}(X_{+};R)^{(fp)})$$

inducing a long exact sequence of L-groups. In the case of more strata, we can successively apply this decomposition. Similarly in the PL case.

3 1 4 3

Relations to other work

- For R = Hk with k a field of char(k) ≠ 2, this agrees with a construction by [Schürmann, Woolf].
- Suppose that X only contains strata of even codimension (or more generally, is a Witt space) and R = HQ. Then the intersection homology sheaf IC_{X;Q} is Verdier self-dual, as exhibited by the intersection paring, and hence defines a class in L_n(Sh^{cbl}(X;Q)^(fp)).
- In this situation, by the results in their paper our groups agree with the *Witt groups of perverse sheaves*. The decomposition sequence splits in this case.
- Our decomposition and surgery sequence are reminiscent of Browder-Quinn L-groups.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outlook

Markus Zetto L-Groups of Sheaves on Stratified Spaces

< ロ > < 回 > < 回 > < 回 > < 回 >

L-Groups of classical field theories

 Any perturbative Lagrangian classical field theory on a (pseudo-)manifold *M* has an associated *BV-complex*. It admits a (-1)-shifted symplectic structure, and thus defines a class

 $[\mathcal{E}] \in L^s_3(\mathfrak{Sh}(M; \operatorname{Mod}_{C^{\infty}})) .$

- For topological field theories, this sheaf is locally constant/ constructible
- If M has a boundary/ corners, the BV-complex of a TFT is a constructible ∞-sheaf, but not longer Verdier self-dual. A mixture of Verdier- and Poincaré-Lefschetz-duality has to be introduced.

L-Groups of classical field theories

Example

For classical Chern-Simons theory, ignoring functional analysis, we obtain the visible symmetric signature. This works in any dimension d, but [\mathcal{E}] will be in L_d^s . For BF-theories, the L-class is trivial.

Informally, $[\mathcal{E}] \in L_3^s$ measures how for our theory is from being a boundary theory. A different story with similar result is WIP by [Reutter, Johnson-Freyd]; they develop a surgery sequence for extended TFTs, involving a Quantum Witt group.

A (1) < A (2) < A (2) </p>