Constructible Factorization Algebras for Field Theories

Markus Zetto

Heidelberg University

Master's Thesis under the supervision of Prof. Dr. Johannes Walcher & Prof. Dr. Markus Banagl

03.02.2023

< (目) → (目)

Content

2 Classical Field Theories and the BV complex

A 10

→ Ξ → < Ξ</p>

What are Constructible Factorization Algebras?

Markus Zetto Constructible Factorization Algebras for Field Theories

< ∃ >

Local Operators

Given a topological/ conformal field theory on an *n*-manifold M, and a point $x \in M$, write A(x) for the space of local (perturbative, polynomial) operators at x.

Monodromy along Multipaths

For a set of finitely many paths that start at points (x_i) , end at (y_j) and are allowed to join together, we can parallel transport operators along such a *multipath*:

Ran Space

A mathematically precise formulation uses the Ran space Ran(M), a stratified space with

- one point for every non-empty finite subset of M,
- stratification $\operatorname{Ran}(M) o \mathbb{N}_{>0}$ via cardinality,
- topology on $\operatorname{Ran}(M)_{\leq m}$ the final topology of the map $M^{ imes m} o \operatorname{Ran}(M)_{\leq m}$

• final topology as a union of these subspaces (non-standard). Multipaths in M are paths in Ran(M) that monotonically decrease in the stratification $\mathbb{N}_{>0}$, also called *enter-paths*.

Ran Space

(日)

Category of Multipaths

We introduce an ∞ -category Exit $\operatorname{Ran}(M)^{op}$ with

- Objects the non-empty finite subsets of *M*, i.e. points of the Ran space,
- Morphisms from (x_i) to (y_j) given by enter-paths between the respective points in the Ran space,
- 2-morphisms given by homotopies that similarly decrease in the stratification,
- Higher morphisms given by higher homotopies.

Equip it with ∞ -operadic structure \sqcup .

Factorization Algebras

Let $\mathcal V$ be a (good) symmetric monoidal ∞ -category.

Definition

A locally constant factorization algebra on M is a symmetric monoidal functor $A : (Exit Ran(M)^{op})^{\sqcup} \to \mathcal{V}^{\otimes}$, associating

- to any finite set $S = \{x_1, \ldots, x_m\}$ in M an object $A(S) \in \mathcal{V}$,
- to any multipath from S to T a morphism A(S) o A(T) in \mathcal{V} ,
- in a way compatible with concatenation of multipaths, up to coherent homotopy
- such that $A(S) \cong A(x_1) \otimes A(x_2) \otimes \cdots \otimes A(x_m)$, together with higher coherences.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Manifolds with Boundary

In a boundary CFT on the upper half-plane $M = \{Im(z) \ge 0\}$, we can transport operators from the interior arbitrarily close to the boundary, but not from the boundary into the interior:

Constructible Factorization Algebras

Stratify $M \to \{1 < 2\}$, sending the interior to 2 and the boundary to 1. Then, A has monodromy along *enter-multipaths*. Define Ran(M) with a stratification respecting this.

Definition

A constructible factorization algebra on a stratified space $M \to P$ is a symmetric monoidal functor $A : (Exit Ran(M)^{op})^{\sqcup} \to \mathcal{V}^{\otimes}$.

We discuss two ways to make this more explicit.

Exodromy

Definition

A constructible sheaf on a stratified space $(M \to P)$ is a sheaf F such that the restriction $F|_{X_p}$ to each stratum is locally constant.

The term "sheaf" will always refer to ∞ -sheaves.

Theorem (Exodromy Correspondence, [Lurie, Porta-Teyssier])

For any good stratified space (M ightarrow P) and good $\infty ext{-category}$ $\mathcal{V},$

 $Sh^{cbl}(M, \mathcal{V}) \cong Fun(Exit(M), \mathcal{V})$

where Exit(M) is the category of exit-paths.

Thus, constructible factorization algebras are constructible sheaves on Ran(M) satisfying a factorization condition.

(日) (同) (王) (王)

Basic Open Subsets

Definition

We restrict $M \to P$ to be a *conically smooth stratified space*. By this, we mean that it has an atlas of basics

 $\mathbb{R}^i imes C(L) o Q^{\triangleleft}$,

where $L \rightarrow Q$ is a compact conically smooth stratified space, glued together along smooth maps.

Definition

Let $\text{Disk}_{/M}$ be the partially ordered set of open inclusions $j: D \to M$, with D a disjoint union of basic open sets. Equip $\text{Disk}_{/M}$ with the operadic structure \sqcup .

Factorization Algebras and Disks

Definition

A factorization algebra on $M \rightarrow P$ is a symmetric monoidal functor

$$\mathsf{A}:\mathsf{Disk}^{\sqcup}_{/M} o \mathcal{V}^{\otimes}$$
 .

It is called *constructible* if every inclusion of isotopic basics is sent to an isomorphism by A.

Remark

This is equivalent to the definition above, since [Ayala-Francis-Tanaka]

$$\mathsf{Disk}^{\mathsf{surj}}_{/M}[(\mathfrak{I}_M)^{-1}] \simeq \mathsf{Exit}\,\mathsf{Ran}(M)^{op}$$
.

Caveat: This only yields non-unital factorization algebras.

・ 同 ト ・ ヨ ト ・ ヨ ト

Classical Field Theories and the BV complex

Markus Zetto Constructible Factorization Algebras for Field Theories

/□ ▶ ▲ 글 ▶ ▲ 글

Classical Field Theory

A classical field theory on a smooth manifold M consists of

- a space of (off-shell) field configurations $\mathcal{F}_{,}$
- an action $S: \mathcal{F} \to \mathbb{R}$.

Variation of the action dS = 0 yields the *covariant phase space*

$$X = \mathsf{dCrit}(S) = \mathsf{Graph}(dS) \times^{R}_{T^*\mathcal{F}} \mathcal{F}$$

which admits a (-1)-shifted symplectic structure. The tangent complex

$$\mathcal{E} := \mathbb{T}_{\phi} X$$

is called *BV complex* and describes perturbation theory around ϕ . The shift $\mathcal{E}[-1]$ is an L_{∞} algebra.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Linear Operators

- Observables are functions on the covariant phase space X
- Polynomial local observables are Obs^{cl} := Sym(E[∨]), equipped with the Chevalley-Eilenberg differential
- Linear local observables are in E[∨] and should satisfy monodromy along enter-paths, by exodromy they form a constructible cosheaf

Upshot: The BV-BRST complex is a constructible sheaf! This automatically implies that Obs^{cl} is a constructible factorization algebra.

Applications for Simplicial BV theories

Markus Zetto Constructible Factorization Algebras for Field Theories

向下 くヨト

Simplicial Complexes

Definition

A simplicial complex K consists of a set of vertices K_0 and a poset J_K of faces consisting of nonempty finite subsets of K_0 , such that

- for every $v \in K_0$, the set $\{v\}$ is in $\mathcal{I}_{\mathcal{K}}$,
- if $\sigma \in \mathfrak{I}_{\mathcal{K}}$ and $\tau \subseteq \sigma$, then $\tau \in \mathfrak{I}_{\mathcal{K}}$,
- the partial order relation is given by inclusion.

Fix a finite simplicial complex K, and a stable ∞ -category \mathcal{V} with duality functor $(-)^{\vee}$, for example $D^{\text{perf}}(\mathbb{R})$.

(4月) (4日) (4日)

Gluing Data

Definition

If we regard $\mathcal{I}_{\mathcal{K}}$ as an ∞ -category,

- Functors in Fun(J_K, V) will be called V-valued constructible sheaves on K,
- Functors in $\operatorname{Fun}(\mathfrak{I}_{K}^{op}, \mathcal{V})$ will be called *gluing data* on K.

Proposition

This coincides with the usual definition of a constructible ∞ -sheaf on the stratified space $|\mathcal{K}| \to \mathcal{I}_{\mathcal{K}}$:

$$Sh^{cbl}(|K|, \mathcal{V}) \simeq Fun(\mathfrak{I}_{K}, \mathcal{V})$$

Duality

Definition

To a constructible sheaf $S : \mathfrak{I}_K \to \mathcal{V}$, we can associate a gluing datum $\mathbb{G}S : \mathfrak{I}_K^{op} \to \mathcal{V}$ defined by

$$\mathbb{G}S(\sigma) := \lim_{(\tau \subseteq \sigma) \in (\mathfrak{I}_{\kappa})_{/\sigma}} S(\tau) .$$

Definition

To a gluing datum $F : \mathbb{J}_{K}^{op} \to \mathcal{V}$, we can associate a *dual* gluing datum $DF : \mathbb{J}_{K}^{op} \to \mathcal{V}$ defined by

$$\mathsf{DF}(\sigma) := \lim_{(\tau \subseteq \sigma) \in (\mathfrak{I}_{\mathcal{K}})_{/\sigma}} \mathsf{F}(\tau)^{\vee}$$

Duality

Example

If
$$K = \Delta^1$$
, then $DF(\{0\}) = F(0)^{\vee}$, $DF(\{1\}) = F(1)^{\vee}$ and
 $F(\{0\})^{\vee} \times_{F(\{0,1\})^{\vee}} F(\{1\})^{\vee}$.

Proposition (from Algebraic L-Theory)

For every gluing datum $F \in \operatorname{Fun}(\mathbb{J}_{K}^{op}; \mathcal{V})$, there is a canonical biduality isomorphism $F \cong DDF$.

Corollary

We can recover S from $\mathbb{G}S$ since $S \cong (D\mathbb{G}S)^{\vee} \cong (DDS^{\vee})^{\vee} \cong S$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

For $S \in \operatorname{Fun}(\mathfrak{I}_{K}, \mathfrak{V})$ a constructible sheaf, its *global sections* are defined as $C^{*}S := \lim S(\sigma) \in \mathfrak{V}.$

$$C^*S := \lim_{\sigma \in \mathfrak{I}_K} S(\sigma) \in \mathfrak{V}$$
.

Similarly $C_*S := \operatorname{colim}_{\sigma \in \mathbb{J}_K} S(\sigma)$. They agree with the simplicial (co-)chain complexes with values in the local system S.

Definition

Similarly, for $F : \mathcal{I}_{K}^{op} \to \mathcal{V}$ a gluing datum, we define $C^{*}F$ and $C_{*}F$ by taking a limit or colimit over \mathcal{I}_{K}^{op} .

Proposition

For S a constructible sheaf, the global sections $C^*S \cong C^*\mathbb{G}S$ agree. This is generally not true for C_* .

-

Poincaré-Duality

From now on, let K be a (Whitehead) triangulation of a smooth oriented closed n-manifold.

Theorem (Poincaré Duality)

For any gluing datum $F \in \operatorname{Fun}(\mathfrak{I}_{K}^{op}, \mathfrak{V})$,

$$C^*(DF) \cong C^*(F)^{\vee}[-n]$$

Proof.

$$C^*(DF) = \lim_{\sigma \in \mathbb{J}_{K}^{op}} \lim_{\tau \subseteq \sigma} F(\tau)^{\vee} \cong \lim_{\tau \in \mathbb{J}_{K}} F(\tau)^{\vee} \stackrel{!}{\cong}$$
$$\cong \operatorname{colim}_{\sigma \in \mathbb{J}_{K}} F(\sigma)^{\vee}[-n] = C^*(F)^{\vee}[-n] .$$
write $F^{\vee} =: S$ as a constructible sheaf, then this becomes

Rewrite $F^{\vee} =: S$ as a constructible sheaf, then this be simplicial Poincaré Duality $C^*S \cong C_*S[-n]$.

Simplicial BV-theories

Definition

An *m*-dimensional Poincaré object (F, ω) in the stable ∞ -category of gluing data Fun $(\mathcal{I}_{K}, \mathcal{V})$ is an object F equipped with an isomorphism $\omega : F \xrightarrow{\cong} DF[-m]$ induced by a symmetric pairing.

Proposition

For K a triangulation of a compact oriented smooth *n*-manifold and (F, ω) an *m*-dimensional Poincaré object in Fun $(\mathcal{I}_{K}, \mathcal{V})$, the pair $(C^{*}F, C^{*}\omega)$ is an (n + m)-dimensional Poincaré object in \mathcal{V} .

Proof.

$$C^*F \cong C^*(DF[-m]) \cong (C^*F)^{\vee}[-n][-m] \cong (C^*F)^{\vee}[-n-m]$$

- 4 目 ト 4 日 ト 4 日

Definition

A (free, topological) simplicial BV theory on a finite simplicial complex K of dimension n is a (3 - n)-dimensional Poincaré object in Fun $(\mathcal{I}_{K}^{op}, \mathcal{V})$.

Remark

Equivalently, a simplicial BV theory is a constructible sheaf S equipped with an isomorphism $\mathbb{G}S \to D\mathbb{G}S[3-n] \cong S^{\vee}[3-n]$. This is different from Verdier self-duality.

Corollary

Given a simplicial BV theory $F : \mathcal{I}_{K}^{op} \to \mathcal{V}$ on a triangulation of a smooth oriented manifold, its global sections admit an isomorphism $C^*F \cong (C^*F)^{\vee}[-3]$, induced by a (-1)-shifted symplectic pairing.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Generally, our definition of a simplicial BV-theory is chosen in a way that

- On every individual top-dimensional simplex, we obtain a datum resembling an extended BV-BFV theory, and
- For a PL triangulation of a manifold with corners, we should obtain an extended BV-BFV theory on it by taking global sections of the gluing datum restricted to the closed strata.

One can view it as a middle ground between Lagrangian extended topological field theories and extended BV-BFV theories.

A (1) < A (2) < A (2) </p>

Theorem

Any simplicial BV-theory $F : \mathfrak{I}_{K}^{op} \to D^{perf}(\mathbb{R})$ on an n-dimensional finite simplicial complex K defines a constructible factorization algebra $\mathbb{O}bs^{cl} := \operatorname{Sym} \mathcal{E}^{\vee}$ of classical observables on $|K| \to \mathfrak{I}_{K}$, where \mathcal{E} is the constructible sheaf on |K| associated to F.

Proof.

We know that \mathcal{E}^{\vee} is a constructible cosheaf, which is the same thing as a constructible factorization algebra $\mathcal{D}isk^{\sqcup}_{/|K|} \to D^{\mathsf{perf}}(\mathbb{R})^{\oplus}$. Now, use the fact that the functor Sym : $D(\mathbb{R})^{\oplus} \to D(\mathbb{R})^{\otimes}$ is symmetric monoidal and preserves sifted colimits.

- 4 同 6 4 日 6 4 日 6

Definition

For any gluing datum $F : \mathcal{I}_{K}^{op} \to \mathcal{V}$, the datum hyp $(F) := F \oplus DF$ is a Poincaré-object in a canonical way, since

$$D(F \oplus DF) \cong DF \oplus D^2F \cong F \oplus DF$$
.

We call it the *hyperbolic Poincaré-object* associated to F. Similarly, we define the *n-dimensional Poincaré-object* associated to F as

$$\operatorname{hyp}^{[n]}(F) := F \oplus DF[-n]$$
.

Construction

For $A : \mathfrak{I}_K \to \mathcal{V}$, let *abelian BF-theory* on K with values in A be the simplicial BV theory defined by

$$F_{BF} := \operatorname{hyp}^{[3-n]}(\mathbb{G}A) = \mathbb{G}A \oplus D\mathbb{G}A[-3+n]$$
.

The global section BV-complex is given by

$$C^* F_{BF} = C^* \mathbb{G}A \oplus C^* D \mathbb{G}A[-3+n] \cong C^* A \oplus C^* A^{\vee}[-3+n] \cong$$
$$\cong C^*_{simp}(K,A) \oplus C^{simp}_{*+n-3}(K,A)^{\vee}$$

because $C^*A^{\vee} = \lim A^{\vee} = (\operatorname{colim} A)^{\vee} = (C_*A)^{\vee}$.

Example

Concretely, A can arise as composition of a G-local system $\omega : \mathfrak{I}_{K} \to BG$ on K and a representation $\rho : BG \to \mathcal{V}$.

> < 同> < 回> < 回>

Construction

For K of dimension 3 and g an \mathbb{R} -vector space with non-degenerate inner product exhibing $\mathfrak{g} \cong \mathfrak{g}^{\vee}$, define *abelian Chern-Simons theory* with values in g as the simplicial BV theory

$$S = \underline{\mathfrak{g}[0]} : \mathfrak{I}_{\mathcal{K}} \to D^{\mathsf{perf}}(\mathbb{R}) \,, \; \sigma \mapsto \mathfrak{g}[0] \;.$$

To see that this is self-dual of dimension 0 = 3 - 3, evaluate

$$\mathbb{F}_{\mathfrak{g}}[\underline{0}](\sigma) = \lim_{\tau \subseteq \sigma} \mathfrak{g}[0] \cong C^*_{\mathsf{simp}}(\sigma, \mathfrak{g}) \cong \mathfrak{g}[0] \cong \mathfrak{g}[0]^{\vee}$$

The global section BV complex is $C^*\mathfrak{g}[0] = C^*_{simp}(\mathcal{K},\mathfrak{g}).$

Similarly, one can write down (classical) simplicial BV theories for

- Higher-dimensional abelian Chern-Simons theory
- Topological Quantum Mechanics
- Non-abelian Chern-Simons theory

Generally, the hope is that any AKSZ theory or Lagrangian extended field theory

```
Z : \mathsf{Bord}_d \to \mathsf{Lagr}_d
```

has an associated simplicial BV theory for each triangulation of a manifold with corners, constructed by

• Evaluating Z on the associated chain of composable d-morphisms in Bord_d, obtaining a system of Lagrangian correspondences of derived Artin stacks

• Taking the tangent complex at a common geometric point ϕ Simplicial Field Theories connect the cutting-and-gluing locality of extended field theories and the locality of sheaves.

くロト く得ト くヨト くヨト

Outlook

Above methods also allow the definition of BV data on

- Regular cell complexes
- PL spaces
- Manifolds with corners
- Topological pseudomanifolds with corners

The last two cases are harder since we should not use exodromy. It is also possible to introduce boundary conditions or polarizations.