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Abstract

Factorization algebras were developed to describe the algebraic structure on the space
of local operators in perturbative �eld theories, inherited from homotopy-theoretic in-
formation of the underlying manifold and its tangent bundle. We give a relatively self-
contained introduction to their de�nition, their construction from physical theories, and
the necessary mathematical preliminaries involving higher category theory. Thereafter,
we generalize our background spaces from manifolds to a large class of strati�ed spaces,
including for example manifolds with corners, conifolds and complex varieties. Topolog-
ical �eld theories are in this case described by constructible factorization algebras, which
we extract in several exemplary cases by considering their BV-BRST complex as a con-
structible sheaf. Finally, we generalize our approach by de�ning BV data endowed with
local (−1)-shifted symplectic structures on simplicial complexes, regular CW complexes,
PL spaces and pseudomanifolds to which we can associate such algebras.

Zusammenfassung

Faktorisierungsalgebren wurden mit dem Zweck entwickelt, die algebraische Struktur auf
dem Raum der lokalen Operatoren in perturbativen Feldtheorien zu beschreiben, welche
von den homotopietheoretischen Eigenschaften der unterliegenden Mannigfaltigkeit und
ihres Tangentialbündels abhängt. Wir geben eine Einführung in die De�nition dieser
Strukturen, ihre Konstruktion aus physikalischen Feldtheorien, sowie die notwendigen
mathematischen Vorkenntnisse insbesondere in höherer Kategorientheorie. Damit aus-
gestattet gehen wir von Mannigfaltigkeiten als Hintergründen über zu einer groÿen
Klasse an strati�zierten Räumen, welche insbesondere Mannigfaltigkeiten mit Ecken,
Kegelpunkten und komplexe Varietäten enthält. Topologische Feldtheorien werden in
diesem Fall von konstruierbaren Faktorisierungsalgebren beschrieben, welche wir an einer
Reihe von Beispielen bestimmen indem wir den BV-BRST Komplex als konstruierbare
Garbe beschreiben. Schlieÿlich verallgemeinern wir unsere Vorgehensweise und führen
BV-Theorien, ausgestattet mit lokalen (−1)-geshifteten Strukturen, auf Simplizialkom-
plexen, regulären CW-Komplexen, PL-Räumen und Pseudomannigfaltigkeiten ein aus
denen sich solche Algebren konstruieren lassen.
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Introduction

`Die Geisterwelt ist nicht verschlossen;

Dein Sinn ist zu, dein Herz ist tot!

Auf, bade, Schüler, unverdrossen

Die ird'sche Brust im Morgenrot!'

Wie alles sich zum Ganzen webt,

Eins in dem andern wirkt und lebt!

Wie Himmelskräfte auf und nieder steigen

Und sich die goldnen Eimer reichen!

Johann Wolfgang von Goethe, Faust I

The concept of factorization algebras has its origins in the study of Conformal Field
Theories. In order to improve the unsatisfactory de�nition of a vertex operator algebra,
Beilinson and Drinfel'd in [BDD04] introduced chiral algebras to axiomatically describe
the space of chiral operators on an algebraic curve. These should be regarded as pre-
cursors of (locally constant) factorization algebras, the main di�erence being that they
are de�ned as objects of algebraic geometry. In his work on extended topological �eld
theories [Lur09], Lurie sketched an analogous de�nition on topological manifolds of ar-
bitrary dimension instead of algebraic curves. We will work with this topological �avor
exclusively, but should not forget to mention that factorization algebras have had a
tremendous impact in algebra as well, in particular in Gaitsgory and Lurie's proof of a
version of the Weil Conjectures for function �elds [GL18].

A proper mathematical description of factorization algebras in the topological setting
was �nally worked out by Lurie in [HA], see Sections 5.4 and 5.5 and Appendix B. His
methods have laid the foundation for a large body of subsequent work in this direction,
and essentially established the subject of strati�ed homotopy theory which we present
in Appendix B. Finally, the usefulness of factorization algebras in physics was pointed
out in [CG16] not only for conformal, but even for arbitrary perturbative �eld theories,
opening up an entirely new world of applications.

The goals of this thesis are the following:

� Above, we have pointed out three works that have had tremendous impact on the
theory of factorization algebras. Surprisingly, their very de�nition is completely
di�erent in each of them: Beilinson-Drinfel'd view them as cosheaves on the Ran

i



Contents ii

space, Lurie uses ∞-operads and the book of Costello and Gwilliam works with
Weiss cosheaves. We try to clarify how these and other de�nitions are related,
allowing us to switch around between them if this simpli�es an argument.

� Our broad mathematical discussion of factorization algebras allows for a very
streamlined transition to the physical point of view; we can optimize parts of
the discussion in [CG16] by giving shorter and more conceptual proofs.

� We explain the de�nition of (constructible) factorization algebras on strati�ed
spaces in [AFT14a], and deduce a few structure results on them that are helpful
for subsequent applications in physics.

� Using examples of �eld theories on manifolds with boundary or corners, we point
out a connection between constructible factorization algebras, constructible sheaves
and the (extended) BV-BFV formalism [CMR14].

� We introduce a formalism for BV theories on very general classes of spaces, in-
cluding simplicial complexes and regular cell complexes where it generalizes cellular
BV-theory as in [CMR20], but also PL spaces and topological pseudomanifolds.

Since our methods involve a large volume of mathematical subjects, we have included
an Appendix A on Higher Category Theory and Appendix B on strati�ed spaces and
strati�ed homotopy theory, which we make use of extensively. We have tried to strike a
balance between giving intuitive motivations and only insightful and short proofs, but
including enough technicalities to be able to work make statements on a mathematically
precise level. In particular, all notions we use will be properly de�ned, except for a few
cases where this would be impractical (e.g. presentable ∞-categories); but some proofs
will ignore technical details like higher coherences. The main text also involves some
digressions into the realms of derived algebraic, di�erential and symplectic geometry as
well as hermitian K-theory, but those are kept at a more basic level.

In Chapter 1, we motivate the need to work in the realm of∞-categories for the remain-
der of the text. Using the example of Chern-Simons theory that we explicitly develop,
we explain a derived geometric point of view on the BV-BRST formalism and how it is
used to describe perturbative aspects of classical �eld theories. Many other examples
are included as well.

Chapter 2 begins by motivating the mathematical de�nition of factorization algebras as
a method of describing physical operators. Afterwards, we introduce the large amount
of di�erent de�nitions we have teased, and sketch the reasons why they are equivalent.
Of course, we equip the reader with many examples and helpful statements to build a
working intuition.

We combine this mathematical theory with physics in 3 by explaining how the factor-
ization algebra of classical (and, in the free case, of quantum) operators in a given �eld
theory can be deduced from the BV-BRST complex, and how it can be used to extract
information about the �eld theory.
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Finally, chapter 4 de�nes what a (constructible) factorization algebra on a conically
smooth strati�ed space is, developing basic properties and examples; and Chapter 5
motivates their application in physics in many speci�c situations. Our main claim is
that the BV-datum of a free �eld theories on a large class of spaces should consist of a
constructible ∞-sheaf with

� A stalk-wise �niteness condition,

� A local (−1)-shifted symplectic structure on the interior of strata,

� Satisfying a Poincaré-Lefschetz style duality between multiple strata.

We make this explicit for simple situations, in particular simplicial complexes, in 5.7
and 5.8.

How to read

The following diagram captures (up to a few exceptions) the dependencies between the
respective chapters. The left column contains most of the physical applications, while
the middle column is about factorization algebras as mathematical object and the right
column contains the mathematical background.

Physics Mathematics A

1 2 B

3 4

5

To understand the central concepts without most of the technical subtleties, or to obtain
a quick overview over the covered material, we recommend the following accelerated
reading path: In Chapters 1 and 2, we have used the �rst subsection to motivate, and
the last section to conclude the chapter, so reading them clari�es the main ideas. The
examples in 2.4 are also indispensable for further understanding.

In Chapter 3, the �rst two sections contain generalities on the BV formalism and free
�eld theories, and the examples in the remainder of the chapter may at �rst be skipped.
Conversely, in Chapter 4, the de�nitions are very technical while the examples in 4.4
and 4.5 are helpful to go through. Finally, after 5.1, 5.2 and the example of Topological
Quantum Mechanics in 5.3, the remaining sections in Chapter 5 are mostly independent
(although ordered by increasing complexity) and may be read in order of interest.
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What is new?

To our knowledge, the following short results can not be found in the previous literature,
although many of them might be considered folklore:

� The characterization of absolute factorization algebras as relative factorization
algebras compatibly on all manifolds 2.3.6

� An intuitive multipath picture for constructible sheaves on the Ran space in 2.5

� The construction of constructible factorization algebras from constructible sheaves
in 4.3.8

� Our reasoning that a BV datum on a strati�ed spaces should consist of a con-
structible sheaf (with extra structures) in 5.1.4

� Our self-gluing proposition for Poincaré objects in 5.2.17

� The statements 5.3.1, 5.3.4 and 5.3.5 on Topological Quantum Mechanics

� Our discussion of the scalar �eld 5.5, although as mentioned there it is motivated
by similar discussions in slightly di�erent settings

� The speculation on Hamiltonian Field Theory and boundaries of Verdier self-dual
sheaves in 5.5.7

� The calculation of the exit-path category in the case of regular CW complexes in
B.2.18

More substantially, the applications of our reasoning about BV-data and constructible
sheaves to simplicial �eld theories in 5.7 as well as the further ideas in 5.8 are completely
new (motivated by similar constructions in surgery theory and algebraic L-theory).

Finally, we have tried to streamline and improve on the discussion of many covered
subjects in the current literature; in particular many proofs were substantially changed
or completely rewritten. Since a large part of this text is about examples, some of
them are not covered anywhere else, e.g. the calculation of Hochschild Homology with
monodromy in 3.3.9 and the de�nition of Witt spaces via tangential structures in 4.2.7.

Notation and Conventions

� We denote the natural numbers including zero by N0, and excluding zero by N+

to avoid confusion.

� CW complexes are always locally �nite.

� Unless stated otherwise, we always use cohomological grading for chain complexes.
The grading increases from left to right, and the shift acts as C[1]−1 = C0.
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� We work with Grothendieck pretopologies instead of Grothendieck topologies.

� In an adjunction, the upper arrow is always the left adjoint.

� We ignore size arrows of ordinary and ∞-categories; however they all disappear if
we �x a small and a large Grothendieck universe.

� The term "∞-categories" always refers to (∞, 1)-categories; and "ordinary cate-
gories" refers to 1-categories. If they have a name that does not just consist of a
single letter, we try to distinguish them by starting with a calligraphic letter in
the �rst, but not the second case, as in Disk and Disk. We do not attempt this
for single letters as it would lead to confusions with objects in the respective cate-
gories. We similarly write 2-categories in boldface and (∞, 2)-categories boldface
with a calligraphic �rst letter.

� Our model of choice for ∞-categories are quasi-categories, as developed in [HTT].

� Higher categories are always weak, not strict.

� We try to always clarify whether we are working with ordinary categories or ∞-
categories, either explicitly or by context. When in doubt, we are usually working
in the ∞-setting.

� Unless it is clear and clutters the notation, we denote symmetric monoidal or ∞-
operadic structures on∞-categories by a superscript, as in V⊗ if ⊗ is a symmetric
monoidal product on V .

� Unlike [CG16], we only work with factorization algebras valued in sifted complete
symmetric monoidal ∞-categories instead of more general ∞-operads, and our
factorization algebras are always multiplicative (and not lax) in the sense that
A(U)⊗A(V ) ∼= A(U ⊔V ) instead of there just being a canonical morphism in one
direction.
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1. BV-BRST and Classical

Chern-Simons Theory

In this chapter, we give an introduction to the perturbative treatment of classical �eld
theories via the BV formalism, using Chern-Simons Theory as an example. The under-
lying derived geometry is introduced in an intuitive way, following [Yoob], [Cal14] and
omitting most technicalities. Finally, we foreshadow how factorization algebras enter
the picture.

1.1. Chern-Simons Theory

Let M be a connected and oriented smooth 3-manifold without boundary, and G a
compact Lie group. In what follows, we will de�ne a classical �eld theory on M with
gauge symmetry, called (classical) Chern-Simons theory with gauge group G, and �nd
its equations of motion as well as their solutions (while taking into account the gauge
symmetry). Our discussion roughly follows [Fre92] and [Kel19].

Proposition 1.1.1. If G is simply connected, then every principal G-bundle P → M is
trivializable.

Proof. Isomorphism classes of principal G-bundles are in bijective correspondence with
homotopy classes of maps into the classifying space of G,

{Principal G-bundles on M}⧸∼= ∼= [M,BG] . (1.1)

But since BG is a delooping, πnBG ∼= πn−1G and π0G = π1G = π2G = 0 for a compact
simply connected Lie group. If we model M by a 3-skeletal CW-complex, this means
that there can be no obstructions to retracting a continuous map M → BG to a point,
meaning that all principal G-bundles onM must be isomorphic to the trivial bundle.

Corollary 1.1.2. Any orientable 3-manifold is parallelizable.

Proof. We need to show that the tangent classi�er τM : M → BO(3), i.e. the map into
the classifying space BO(3) of smooth vector bundles of rank 3 classifying the tangent
bundle, can be lifted to BSpin(3):

1



1.1 Chern-Simons Theory 2

BSpin(n)

BSO(n)

M BO(n)
τM

Then, we can apply above proposition since Spin(3) is simply connected. By obstruction
theory, we need to make sure that the �rst and second Stiefel-Whitney classes vanish,
and this follows since M is an orientable 3-manifold and therefore by a general fact (a
calculation with Wu classes) admits a spin structure.

However, there is a very important gauge group we would like to consider that is not
simply connected � namely, we will later take a close look at abelian Chern-Simons-
Theory, and the only abelian Lie groups are products of R and U(1). The latter factors
are a problem, and solving it is a very subtle matter, see [Kel19] 6.1, 6.2 and the pointers
therein (however, the fact that R is not compact will be no problem for us). In this work,
we will mostly talk about perturbative aspects of Chern-Simons theory, and it will turn
out that those do only depend on the Lie algebra g of G.

Disclaimer 1.1.3. In the following, by abelian Chern-Simons theory we always mean R-
Chern-Simons theory, since it is perturbatively indistinguishable from the U(1)-theory.

Let G from now on be a simply connected Lie group and P → M therefore necessarily
trivializable. Fix a trivialization, given by a global section σ : M → P . We start by
introducing the dynamical �eld of our theory:

De�nition 1.1.4. A connection on a principal G-bundle P → M is a Lie-algebra-valued
1-form A ∈ Ω1(P, g) such that:

� For any g ∈ G, the right translation R∗
gω = adg−1 ω

� For all X ∈ g and p ∈ P , the di�erential of the map Lp : G→ P, g 7→ p · g yields
a corresponding vertical vector X̃p := dLp(X) ∈ TpP . We require ω(X̃p) = X.

De�nition 1.1.5. The adjoint vector bundle P ×G g → M associated to P is the vector
bundle obtained by taking the quotient of P × g by the group action of G de�ned by

(p,X) · g := (p · g, adgX) . (1.2)

Similarly, the adjoint principal bundle P ×G G → M is the quotient of P × G by the
action

(p, h) · g := (p · g, ghg−1) . (1.3)



1.1 Chern-Simons Theory 3

Proposition 1.1.6 ([Kel19, Lemma 2.6 and Corollary 2.1]). A g-valued n-form on a G-
principal bundle P that is invariant under right translation via G, and vanishes if one
of its entries is vertical, is the same thing as an n-form on M with values in P ×G g:

Ωn(P, g)Ghor
∼= Ωn(M,P ×G g) (1.4)

In particular, this means that the space of connections Conn(M) is an a�ne space built
from the vector space Ω1(M,P ×G g). Since P is always trivial for us, we obtain an
identi�cation Ωn(P, g)Ghor

∼= Ωn(M, g) so that a connection is completely determined by
its restriction A := σ∗ω ∈ Ω1(M, g) for σ : M → P a �xed section (= trivialization).
We will freely switch between those two points of view.

For X, Y, Z ∈ g with coe�cients X = XaTa in a basis (Ta)a=1,...,r of g, we denote by
⟨X, Y ⟩ = kabXaYb the (symmetric) Killing form on g. Also, we remind of the total
antisymmetry of the cocycle ⟨X, [Y, Z]⟩ = fabcX

aY bZc where fa
bc are the structure con-

stants. When tensoring with the exterior product, we obtain on g-valued 1-forms an
antisymmetric expression ⟨− ∧ −⟩ and a symmetric expression ⟨− ∧ [− ∧−]⟩.

De�nition 1.1.7. A connection ω on P → G induces a covariant exterior derivative

Dω = d+ [ω ∧ −] : Ωn(P, g)→ Ωn+1(P, g) . (1.5)

We identify it with the corresponding expression in a trivialization, DA = d+ [A ∧ −] :
Ωn(M,P ×G g)→ Ωn+1(M,P ×G g).

De�nition 1.1.8. The curvature FA = σ∗ΩA of the connection A is given by

ΩA = dω +
1

2
[ω ∧ ω] ∈ Ω2(P, g)G ; FA = dA+

1

2
[A ∧ A] ∈ Ω2(M,P ×G g) . (1.6)

It satis�es the Bianchi identity

DAFA = d2A+ [dA ∧ A] + [A ∧ dA] + 1

2
[A ∧ [A ∧ A]] = 0 , DωΩ = 0 . (1.7)

De�nition 1.1.9. A gauge transformation of P → M is an automorphism ϕ : P
∼=→ P

as a principal G-bundle over M . The group G(P ) of gauge transformations acts on the
space of connections Conn(P ) via A 7→ ϕ∗A.

Remark. One can identify G(P ) ∼= C∞(P,G)G ∼= Ω0(M,P ×G G) by sending, for σi :
M ⊇ Ui → P |Ui

a local trivialization of P ,

(p 7→ p · χ̂(g)) ←[ (χ̂ : P → G) 7→ gluing of (σ∗
i χ̂)i . (1.8)

Again, since P is trivial in our case, G(P ) ∼= C∞(M,G).



1.1 Chern-Simons Theory 4

De�nition 1.1.10. Classical Chern-Simons theory of level k ∈ Z on M is a classical �eld
theory with �eld content a connection ω ∈ Conn(P ), A = σ∗ω ∈ Ω1(M, g), and action

SCS : Conn(P )→ R⧸Z

A 7→ SCS[A] :=
k

4π

�
M

σ∗
(
⟨ω ∧ dω⟩+ 1

3
⟨ω ∧ [ω ∧ ω]⟩

)
=

=
k

4π

�
M

⟨A ∧ dA⟩+ 1

3
⟨A ∧ [A ∧ A]⟩ =:

k

4π

�
M

cs(A) .

(1.9)

Gauge transformations are given by smooth G-valued functions χ ∈ G ∼= C∞(M,G),
acting on the connection via

A 7→ adχ−1 A+ χ∗θ = χ−1Aχ+ χ−1dχ . (1.10)

Here, θ is the Maurer-Cartan-form on G, and the last expression is a simpler description
in matrix Lie groups.

Proof of gauge-invariance. One obtains this expression for the gauge action by going
through the isomorphisms in 1.8. It is important to show that SCS does not depend on
the trivialization σ, and is indeed gauge invariant. The former follows from the latter,
since for a di�erent section σ′ : M → P the unique map d : M → G that translates
σ(m) · d(m) = σ′(m) for all m ∈M is a gauge transformation.

For gauge invariance, we give a quick and dirty argument and refer to [FSS15], sections
2.1 and 2.2 for a broader discussion.

We assume that M is compact and use a theorem of Rohlin which states that every
compact 3-manifold is nullbordant, so we can �nd a compact oriented 4-manifold 4 such
that ∂W = M . If A,A′ are two gauge equivalent connections on M , one can show
that they can be extended to connections Â′, Â′′ on two copies W+,W− of W . Gluing
those together along a collar, we obtain a closed oriented 4-manifold W+∪M×RW

− with
connection A′′ (the connections can be glued as well because they are gauge equivalent).
At this point, we notice that cs(A′′) is an antiderivative of the �rst Pontrjagin (= second
Chern) class, if we de�ne it via Chern-Weil theory:

d cs(A′′) = ⟨dA′′ ∧ dA′′⟩+ ⟨dA′′ ∧ [A′′ ∧ A′′]⟩ = ⟨FA′′ ∧ FA′′⟩ = p1 (1.11)

Notice that the term ⟨[A′′∧A′′]∧ [A′′∧A′′]⟩ vanishes because of the Jacobi identity in g.
This does not mean that p1 is exact, since the expression for A is only locally de�ned.
Now, we use Stokes:

SCS[A]− SCS[A
′] =

k

4π

�
∂W

(cs(A)− cs(A′)) =

=
k

4π

(�
W+

p1 −
�
W−

p1

)
=

k

4π

�
W+∪M×RW−

p1 = k · p1[W ] = 0 ∈ R⧸Z
(1.12)
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Next, we take a look at the equations of motion. Variation with respect to A yields:

0
!
=

4π

k
δS =

�
M

⟨δA ∧ dA⟩+ ⟨A ∧ dδA⟩+ ⟨δA ∧ [A ∧ A]⟩ =

=2

�
M

⟨δA ∧ FA⟩+
�
∂M

⟨δA ∧ A⟩
(1.13)

We use the total symmetry of the expression ⟨.∧ [.∧ .]⟩ in the �rst step, and partial inte-
gration in the second step (dδA = δdA by de�nition of a variation via jet prolongation).
Since the Killing form is non-degenerate and ∂M = ∅, solutions of the Euler-Lagrange
equation are precisely the �at connections on our principal bundle P .

Perturbative methods rely on deforming a given background solution A0 inside the space
of solutions. Therefore, let us write an arbitrary connection as A = A0 + α, where
FA0 = 0, and regard α ∈ Ω1(M, g) as the dynamical �eld when varying the action:

0
!
=
4π

k
δS =

�
M

⟨δα ∧ dA⟩+ ⟨A ∧ dδα⟩+ ⟨δα ∧ [A ∧ A]⟩ =

=

�
M

2⟨δα ∧ FA0⟩+ δα ∧ dα + δα ∧ ([α ∧ α] + 2[α ∧ A0]) +

�
∂M

⟨δα ∧ A⟩ =

=

�
M

2⟨δα ∧
(
DA0α +

1

2
[α ∧ α]

)
⟩

(1.14)

If we assume that α is only an in�nitesimal variation (which is the realm of perturbation
theory), the Euler-Lagrange equations are DA0α = 0. The perturbative picture also
only cares about in�nitesimal gauge transformations, parametrized by γ ∈ Lie(G) =
Lie(Ω0(M, g)) = Ω0(M, g).

For simplicity, let us assume G is a matrix group and write χ = 1− γ. Then,

A 7→ (1 + γ)A(1− γ) + (1 + γ)dγ = A+ dγ + [A, γ] (1.15)

This holds generally by a similar calculation, and for A = A0 +α with α, γ in�nitesimal
we see that the Lie algebra action Ω0(M, g)→ Ω1(M, g) is given by γ 7→ DA0γ.

De�nition 1.1.11. Perturbative Chern-Simons theory on a principal G-bundle P → M
around the �xed background solution A0 has a dynamical �eld α ∈ Ω1(M,P × g) with
equations of motion

DA0α = 0 , (1.16)

and gauge transformations parametrized by γ ∈ Ω0(M,P × g) given by

α′ = α +DA0γ . (1.17)

It seems like perturbative Chern-Simons theory is intimately related to the chain complex
(Ω•(M, g), DA0), where D

2
A0

= 0 because A0 is �at. In fact, if we introduce a source J ∈
Ω2(P, g) that enters the equations of motion DAA = J , we need to impose the Bianchi
identity DAJ = 0. The above chain complex hence contains gauge transformations in
degree 0, �elds in degree 1, and sources in degree 2. Let us investigate this further.
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1.2. Derived Geometry and the Lagrangian

Formalism

1.2.1. Constraints and Gauge Symmetries

To deepen our understanding of Chern-Simons theory, we need to take a detour and
look at general Classical Field Theories. Many subtleties arising in their Lagrangian
description are often completely overlooked in the usual treatment, and our goal will
be to give a fairly general formulation of it that includes gauge symmetries, as well as
a �eld theory analogue of Dirac's theory of constraints from classical mechanics. Our
main tool for this will be derived geometry, more precisely derived algebraic geometric
since we do not want to think about functional analytic subtleties.

A short reminder on what the issues with a more naive description even are. In classical
mechanics, given a Lagrange function L(q, q̇), we de�ne the canonical momentum pi :=
∂L(q,q̇)
∂q̇i

= pi(q, q̇). The main problem when trying to pass to a Hamiltonian description
is to invert this into q̇i(q, p), so that the Hamiltonian

H(q, p) =
∑
i

pi · q̇i(q, p)− L(q, q̇(q, p)) (1.18)

can be de�ned. By the inverse function theorem, this can only be done when the Hessian
∂2L(q,q̇)
∂q̇iq̇j

is non-degenerate. If it is not, one can remedy this by adding extra variables that
act as Lagrange multipliers, implementing the non-invertible equations as constraints.

A similar issue arises in �eld theory. Since this is our main case of interest, let us �x
some notation: On a (smooth) spacetime manifold byM , let F denote the o�-shell space
of �elds, which is for all intents and purposes given as the space of global sections of
(or connections on) some �ber bundle on M . For Klein-Gordon theory, as an example,
F = Γ(M,M ×C) = C∞(M,C). An action is a smooth function S : F → R, where the
smooth structure on F can be constructed as in [CG16] via the language of di�erentiable
vector spaces - let us not think too much about technicalities right now.

The usual description of quantum �eld theory, via the path integral formalism, uses
the propagator of our theory. This is the inverse of the (functional) Hessian δ2S[ϕ]

δϕ(x)δϕ(y)
,

where ϕ(x) should be some coordinates on F � our notation should hopefully be clear
when comparing to the Klein-Gordon case. Issues arise for example in Maxwell theory,
where the non-invertibility along the transverse direction must be accounted for in some
way (e.g. using the Gupta-Bleuler formalism). Generally, the Hessian should be non-
degenerate!

Similar issues also arise in general Yang-Mills-theory, where they are usually resolved by
the introduction of Fadeev-Popov-ghosts, or in the so called BRST-formalism. However,
this formalism can not deal with situations where gauge symmetry gives rise to a non-
integral distribution on the space of �elds because it only closes o�-shell; this happens
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for the Poisson sigma model and nonabelian BF-theory in dimensions > 3 [CMR14].
This also involves the distinction between primary and secondary constraints in Dirac's
theory, we refer to [HT92] for an extensive treatment. To take care of these cases we
will introduce the BV-BRST formalism � but let us �rst summarize our problems:

� Given a classical �eld theory, the equations of motion are given by the Hamiltonian
principle dS = 0, i.e. by extremizing the action. We note that, since S ∈ C∞(F),
we have dS ∈ Ω1(F), where d is the exterior di�erential.

� The covariant phase space X of our physical theory is the space of solutions of
this set of partial di�erential equations. In other words, it is the intersection of
the section dS of the cotangent bundle with the zero section inside T ∗F :

X = Graph(dS)×T ∗F F (1.19)

� Problems arise if the Hessian of S is degenerate on this intersection, in other words,
if this intersection is non-transverse.

There seems to be an obvious �rst step to improve our situation: Since a group of gauge
symmetries G acting on F introduces a large amount of redundancy in our description,
it would be wise to descend to the (set-theoretic) quotient F/G. But G generally can
not be expected to act freely and transitively, so this procedure destroys the smooth
structure that we need to even write down a di�erential equation. To proceed further,
we will de�ne a nicer quotient; this procedure turns out to be equivalent to the BRST
formalism. Mathematically realizing this, and the full BV-BRST formalism, requires a
small detour.

1.2.2. Derived Stacks

In fact, we will need an entirely new type of geometry. To simplify the mathematics,
we retreat to the algebraic world, looking at schemes and varieties instead of manifolds
(a di�erential geometric framework is currently work in progress, see [CS19] and [Ste]).
We follow the notes [Cal14] and [Yooa].

Non-transverse intersections are problematic in the algebraic world, as well. We calculate
the following intersection inside A2

C:

{x = 0} ∩ {x = a} = Spec

(
C[x, y]
(x)

)
×Spec(C[x,y]) Spec

(
C[x, y]
(x− a)

)
∼=

∼= Spec

(
C[x, y]
(x)

⊗C[x,y]
C[x, y]
(x− a)

)
∼= Spec

C[y]
(0− a)

∼=
{
∅, for a ̸= 0
{x = 0}, for a = 0

(1.20)

It is very puzzling how the dimension of this intersection jumps between the transverse
and non-transverse case. Similar issues arise all over intersection theory. They can be
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remedied by a simple, yet extremely surprising step that involves replacing ⊗ by the
derived functor ⊗L:

{x = 0} ∩R {x = a} = Spec

(
C[x, y]
(x)

⊗L
C[x,y]

C[x, y]
(x− a)

)
∼=

∼= Spec

((
C[x, y] ·x→ C[x, y]

)
⊗C[x,y]

C[x, y]
(x− a)

)
∼=

∼= Spec
(
C[y] ·a→ C[y]

)
qis
≃

{
Spec 0 = ∅, for a ̸= 0

Spec
(
C[y] 0→ C[y]

)
= AC[1]× AC, for a = 0

(1.21)

We have resolved C[x, y]⧸(x) as a C[x, y]-algebra via a commutative di�erential graded
algebra, its Koszul resolution. Let us for later reference also write this resolution as
C[x, y, ξ], where we introduce a variable ξ of (homological) degree −1 satisfying dξ = x.
Note that by graded symmetry, ξ2 = 0. Then, the result for a = 0 is SpecC[y, ξ],
resembling super-a�ne space A1|1

C .

We notice that the derived intersection is equipped, in this formalism, with a non-zero
entry in degree −1 that, in spirit (e.g. calculating an Euler characteristic), cancels out
the one-dimensional scheme in degree 0. To put it in pictorial terms, there is an invisible
anti-line lying over the {x = 0} line. Similar considerations lead to extremely elegant
results in intersection theory, like a re�nement of Bézout's theorem.

But what even is the spectrum of a chain complex? It can only depend on the complex
up to quasi-isomorphism, since ⊗L can not be de�ned more precisely. Also, evidently,
we shouldn't think about chain complexes, but about commutative di�erential graded
algebras in non-positive degrees (and resolve by those). Let us denote the category of
those by cdga≤0. In fact, we have to Dwyer-Kan-localize (in the sense of A.2.3) this cate-
gory at the quasi-isomorphisms, yielding an∞-category that enhances the corresponding
derived category, but again � let us not get too technical here.

Now, remember that the category of a�ne schemes Aff is just the opposite of the category
of commutative rings cRing. Similarly, let us set the category of a�ne derived schemes
dAff := cdgaop≤0. More general schemes are de�ned as abstract gluings of these a�ne
schemes, via their functor of points: A scheme is just a functor Affop = cRing → Set
that satis�es some additional conditions, in particular Zariski descent. By the universal
property of the presheaf category, such functors can be understood as abstract gluings
of a�ne parts along open inclusions, just as we wanted.

De�nition 1.2.1. A derived scheme is a functor X : dAffop = cdga≤0 → Set that satis�es
a version of Zariski (or étale) descent.

While this �xes our problems with intersections, we still need to �nd a good notion
of quotient in the category of schemes. Again, the answer to this is as abstract as it
is surprising: Instead of losing information by identifying �eld con�gurations that are
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gauge-equivalent, we should just keep them distinct, but somehow mark the fact that
there is a gauge transformation identifying them in the back of our minds. In other
words, we should not only think about individual points of phase space, but also about
(invertible) arrows that join gauge equivalent points.

Mathematically, the functor of points of phase space should not take values in sets,
but in groupoids, where the arrows in the groupoids are gauge transformations sending
the source to the target (family of) �eld con�gurations. Since we already work with ∞-
categories anyway, we might as well add 2-morphisms as gauge-of-gauge transformations,
and so on:

De�nition 1.2.2. A derived stack is a functor X : dAffop = cdga≤0 → S, where S is the
∞-category of spaces (i.e. ∞-groupoids). It should also satisfy Zariski/ étale descent,
but we will not need this in the following.

1.2.3. The Derived Covariant Phase Space

Equipped with this formalism, let us solve our transversality problem.

� In the situation above, assume that F and G are derived stacks instead of smooth
manifolds (e.g. they could be varieties) and let us write F ′ := [F/G] for the stacky
quotient of the space of (o�-shell) �eld histories by the gauge symmetries � we
won't explain what that means, but maybe the discussion of stacks above gives a
hint of an idea. Since the action is gauge invariant, we should be able to identify
S with a function on F ′.

� We replace the usual critical locus of the action by the derived critical locus, cal-
culated as a derived intersection of the graph of the section dS in the cotangent
bundle with the graph of the zero section:

X = dCrit(S) = Graph(dS)×R
T ∗F ′ F ′ . (1.22)

We call the resulting derived stack X the derived covariant phase space of our classical
�eld theory; we will often simply call it the phase space (it should not be confused with
the Hamiltonian phase space from 5.5.7).

Up to this point, we have always worked on the whole spacetime manifold M . To better
understand locality and local-to-global properties, we could do the same discussion on
an open subset U ⊆M , provided we know how to restrict F to a space of �eld histories
in U , and similarly S and G. In particular, this works if F is given by the space of global
sections of a vector bundle on M and G and S are su�ciently local � as almost always
in physics.

The same discussion as above then yields a derived covariant phase space X(U) for the
restricted classical �eld theory on U , and in good cases the association U 7→ X(U) will
be a (higher) sheaf of derived stacks.
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1.3. The BV-BRST complex

The goal of perturbation theory is to study �eld histories that are only small perturba-
tions of a �xed background �eld con�guration ϕ ∈ X. In fact, we want to make these
perturbations in�nitesimal so that we can perform a power series expansion in them �
an algebraic geometer would say we want to look at the formal neighborhood of ϕ in
X.

Technical Remark. To put this yet in other words, we want to make the global moduli
problem of solving the Euler-Lagrange equations into a formal moduli problem, studying
deformations of a �xed geometric point. This means that the functor of points X :
cdga≤0 → S should be restricted to the subcategory of di�erential graded Artin rings,
that restrict to the geometric point ϕ on the residue �eld.

This seems very di�cult to describe, but luckily, a deep result in deformation theory
comes to our rescue. While the idea can be traced back to Quillen, its modern formula-
tion stems from Lurie's [SAG]. It roughly states: Formal moduli problems are the same
thing as L∞-algebras!

Because of this statement, it is enough for perturbation theory to look at the so-called
tangent complex E := TϕX of X at the background solution ϕ, which generalizes the
tangent space of a manifold and captures information about deformation theory to all
orders (not just linear deformations!). It is also called the BV-BRST complex, or simply
BV-complex. We try to give a rough explanation on what these terms actually mean,
and refer to the excellent introduction [Ane18] for more information.

Technically, one de�nes this tangent complex as the dual of the cotangent complex, which
itself is de�ned as the non-abelian derived functor of taking Kähler di�erentials (see
A.8). In particular for an ordinary scheme, it agrees with the cotangent complex from
deformation theory. In the case of smooth varieties, the tangent complex is concentrated
in degree 0 where it agrees with the usual tangent space; meaning that it is not necessary
to keep track of higher order deformations in the smooth case so the tangent space is
really a linear approximation (as it is for manifolds).

De�nition 1.3.1. An L∞-algebra is a Z-graded vector space L equipped with multilinear
operations, called higher Lie brackets

ℓn = [−, . . . ,−] : L⊗n → L[2− n], n ∈ N≥1 . (1.23)

These should preserve the grading (in other words, ℓn is a map of degree 2 − n to L)
and satisfy, for x1, . . . , xn ∈ L with xi ∈ L|xi| homogeneous:

� Graded Antisymmetry: For all n ≥ 2,

ℓn(x1, . . . , xi, xi+1, . . . , xn) = −(−1)|xi||xi+1|ℓn(x1, . . . , xi+1, xi, . . . , xn) (1.24)
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� Graded Jacobi Identity: For all n ≥ 1,

0 =
n∑

k=1

(−1)k
∑

ϵ∈UnShuff(k,n−k)

sign(|x1|,...,|xn|)(ϵ) ℓn−k+1(ℓk(xi1 , . . . xik), xj1 , . . . , xjn−k
)

(1.25)
Here, ϵ goes through all unshu�es, which are permutations of the form(

1 2 . . . k k + 1 . . . n
i1 i2 . . . ik j1 . . . jn−k

)
, (1.26)

with i1 < . . . ik and j1 < · · · < jn−k; and sign(|x1|,...,|xn|)(ϵ) is the graded anti-
symmetric sign of this permutation, in the sense that transposing x1 and x2 ac-
quires the sign −(−1)|x1||x2|.

Example 1.3.2.

� An L∞-algebra concentrated in degree 0 is an ordinary Lie algebra.

� An L∞-algebra where all brackets ℓn = 0 vanish for n > 1 is a chain complex,
where ℓ1 is the di�erential and ℓ21 = 0 because of the Jacobi Identity with n = 1.

� An L∞-algebra with ℓn = 0 for n > 2 is a di�erential graded Lie algebra, and if
ℓ1 = 0 a graded Lie algebra. The Leibniz rule follows from the Jacobi Identity.

� For n = 1, 2, 3, the higher Jacobi Identities can be written down as

d2 = 0 , [dx1, x2]− (−1)|x1||x2|[dx2, x1] = d[x1, x2] ,

[[x1, x2], x3]± [[x2, x3], x1]± [[x1, x3], x2] =

= [dx1, x2, x3]± [dx3, x1, x2]± [dx2, x1, x3] + d[x1, x2, x3] ,

where the ±-signs in the last expression are the graded anti-symmetric signs of the
underlying permutations (be aware that Appendix A of [CG21], as well as many
other references, contain sign errors). In particular, the usual Jacobi Identity is
satis�ed up to a cocycle (the Jacobiator), and the higher Jacobi Identities are
coherence conditions on this cocycle (the Jacobiatorator, and so on). L∞-algebras
are therefore also called homotopy Lie algebras.

De�nition 1.3.3. Given a L∞-algebra L, its Chevalley-Eilenberg algebra is the commuta-
tive di�erential graded algebra with underlying graded algebra

CE∗(L) = SymΠ(L[1]
∗) =

∞∏
n=0

((g[1]∗)⊗n)Sn (1.27)

and di�erential obtained by extending the duals ℓ∗n
n!

: L∗ → ((L∗)⊗n)Sn to graded
derivations, and summing over those. Dually, we can de�ne the homological Chevalley-
Eilenberg complex

CE∗(L) = Sym(L[1]) =
∞⊕
n=0

((g[1])⊗n)Sn (1.28)
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which can be made into a dg cocommutative coalgebra, with di�erential induced by the
sum of the ℓn

n!
extended to a coderivation.

Remark. The factors n! simplify the description of interactions in �eld theories, they
should be ignored for (dg) Lie algebras. The functor CE∗ is fully faithful, meaning that
all the higher Lie brackets can be recovered from the di�erential in this dg coalgebra.
Explicitly, if we �lter by the power of g[1] in the symmetric algebra, ℓn features as the
di�erential in the nth page of the associated spectral sequence to this �ltered chain
complex.

In the above discussion, we hinted at the fact that the tangent complex TϕX captures
the formal moduli problem of deforming ϕ inside X, so that it should correspond to an
L∞-algebra. It turns out that this is the shifted tangent complex TϕX[−1], also denoted
Tϕ[−1]X: It carries the structure of an L∞-algebra describing precisely this problem!
For intuition, compare it with the odd tangent space in supergeometry (i.e. the parity
shift of the tangent bundle). There is an intuitive argument for why this works out, that
however cannot currently be made mathematically precise yet:

We have argued that in derived geometry, compared to ordinary geometry, non-transverse
pullbacks are better behaved. In particular, it turns out that taking the tangent complex
(as a chain complex) commutes with pullbacks, i.e. T(X×ZY ) = TX×TZTY . Of course
all our pullbacks are in the sense of ∞-categories, i.e. this homotopy pullback of chain
complexes is given by a variant of the mapping cone construction. Now, we can form
the loop space ΩX := ∗×X ∗ of our derived stack at the geometric point ϕ : ∗ → X; for
an ordinary scheme, this would just be a point, but since we take homotopy pullbacks
we should rather compare this with the loop space ΩY = ∗ ×h

Y ∗ of a topological space
Y . Just as loops can be concatenated in the topological world, we may imagine that
ΩX obtains a sort of Lie-group-like structure. This implies that its tangent space at the
constant loop e = constϕ should be a homotopy-coherent version of a Lie algebra, i.e.
an L∞-algebra. We �nish by calculating

TeΩX = Te(∗ ×X ∗) = T∗ ∗ ×TϕXT∗∗ = 0×TϕX 0 = ΩTϕX = TϕX[−1] (1.29)

using how the shift in a stable ∞-category is de�ned in A.3.3.

1.3.1. Example Calculations

While our explanation makes it seem like the L∞-algebra T[−1]X would be incredibly
di�cult to calculate, it is actually quite amenable to physical intuition. We give a view
examples, letting F �nite-dimensional and S a polynomial function on it so that we can
work in the algebraic world and do not need any functional analysis. Again, we loosely
follow [Yoob].
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Example 1.3.4 (Free Field without gauge symmetries).
Let G be trivial, F = SpecR[x1, . . . , xn], and S ∈ R[x1, . . . , xn] =: R[x]. We want to
calculate the derived critical locus of S, given by the derived intersection

dCrit(S) =

{
yi =

∂S

∂xi
(x1, . . . , xn)

}
∩R {yi = 0} (1.30)

where we identify the cotangent space T ∗F in which we take the intersection with
SpecR[x1, . . . , xn, y1, . . . , yn].

Let us introduce, for any coordinate xi, a corresponding fermionic coordinate ξi of degree
−1 with dξi = yi that we can use to write down a Koszul resolution of the zero section:

R[x] =
R[x, y]

(y1, . . . , yn)

qis
≃ R[x, y, ξ] (1.31)

Using this, the derived critical locus is given by the spectrum of

O(dCrit(S)) =
R[x, y]

(yi − ∂S
∂xi

)
⊗R[x,y] R[x, y, ξ] =

=
R[x, ξ]

(dξi − ∂S
∂xi

)
.

(1.32)

In particular, H0O(dCrit(S)) = O(F)⧸
(

∂S
∂xi

) are functions on the ordinary critical locus,
also known as the Jacobi ring of S.

Let us give dCrit(S) a slightly more geometric interpretation. We can imagine R[x, ξ]
as a product An

R × An
R[1], and dividing by the above ideal means that odd and even

coordinates are related by dξi = ∂iS. Since this derived stack is a�ne, we may identify
it with its tangent complex T0X =: E , and write (viewing the ξi as a basis dual to xi):

E = (0→ F dS→ F∗[−1]→ 0) (1.33)

We see that if this intersection is smooth, meaning that the partial derivatives ∂S
∂xi

form
a regular sequence so that the homology of the Koszul complex is concentrated in degree
0, then E is also concentrated in degree 0 so there is a tangent space instead of a tangent
complex. Also, one can show that even if it is not, the higher Lie brackets ℓn for n ≤ 2
all vanish.

Example 1.3.5. We can translate above calculation for non-a�ne F . The Koszul resolu-
tion we used can be written as

O(F)
qis
≃
(
SymO(F)(TF [1]⊕ TF), d=̂ idTF

)
=
(
SymO(F)(TF [1])⊗O(F) O(T ∗

F), d
)

=
(
· · · → PV2

F ⊗O(F)O(T ∗F)[2]→ PV1
F ⊗O(F)O(T ∗F)[1]→ O(T ∗F)

) (1.34)
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The symmetric powers of the shifted tangent bundle yield polyvector �elds PVn
F :=∧

nT ∗
OF

. Continuing the calculation, one can show that tensoring with OGraph(dS)
collapses the factor O(T ∗

F), thereby changing the di�erential to the Schouten-Nijenhuis
bracket with S acting on polyvector �elds:

O(dCrit(S)) =
(
SymO(F)(TF [1]), {−, S}

)
= (PV∗

F , {−, S}) (1.35)

When calculating the tangent complex, only the O(F)-linear part of {−, S}, that stems
from the quadratic part of S at its critical points, survives � the higher-order terms turn
into the higher Lie brackets of the L∞-structure. See 3.4.1 for more.

Remark. In the di�erential geometric case, we analogously would like to de�ne

C∞(dCrit(S)) = C∞(Graph(S))⊗L
C∞(T ∗F) C

∞(F) = (PV∗(F), {−, S}) (1.36)

While this is di�cult to understand rigorously, a tentative de�nition of the polyvector
�elds involved in this wish will be given in 3.1.

Example 1.3.6 (Free �eld theory with gauge symmetry). Now, let us assume we again
have F = SpecR[x] but there is a gauge group G acting on it. Let us assume we are
interested in perturbation theory around the origin of F , then our result should not
change if we restrict our �elds to lie in a small neighborhood of 0 ∈ F , which again looks
like the linear space F , and replace our group action by its di�erential g→ F . In other
words, we have linearized the group action.

As we have discussed above, we don't want to form a set theoretic quotient with respect
to this action, but a stacky quotient. In our ∞-categorical setting this is not very
di�cult; we simply take the derived functor of the quotient. Explicitly,

O ([F/g]) = O(F)hg = RHomUg(C,O(F)) = CE∗(O(F), g) . (1.37)

In shorter words, the Chevalley-Eilenberg cochains are the derived functor of taking
the g-invariants (i.e. the homotopy invariants, which we denote using hg). Write F =
Sym(R⟨x⟩) and remember that

CE∗(M, g) := Sym(g∗[−1])⊗M (1.38)

with di�erential induced by the Lie bracket and Lie algebra action. Therefore,

O([F , g]) = Sym(g∗[−1]⊕ R⟨x⟩) = Sym(g[1]⊕F)∗ (1.39)

We obtain [F/g] = g[1] ⊕ F with di�erential induced by the Lie-algebra action. An
analogous calculation to 1.3.4 yields the following BV-BRST complex:

E = (g[1]→ F dS→ F∗[−1]→ g∗[−2]) (1.40)
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Note the symmetry of this expression, there is a canonical pairing between degrees 0 and
1, −1 and 2 that we later call the (−1)-shifted symplectic structure on the BV-BRST
complex. Of course, we have not explained yet how to understand the L∞-structure on
E , as this is only the underlying chain complex (as in the example above). We return
this issue from a physical point of view in 3.4.1, a mathematical explanations via the
homological Chevalley-Eilenberg complex can again be found in [Yoob].

Remark. Studying the result 1.40 from a physical point of view, we see that the BV-
BRST complex E of a �eld theory contains:

� In negative degrees, gauge symmetries (and if there were any, gauge-of-gauge sym-
metries),

� The di�erential d−1 is the action of the gauge symmetries,

� In degree 0, the (o�-shell) �elds,

� The equations of motion are expressed by d0,

� In degree 1, the target of the equations of motion, i.e. source �elds,

� In higher degrees, constraints on those source �elds stemming from gauge symme-
try (i.e. conservation laws).

1.4. Digression: The Moduli Space of Flat

Connections

We have seen in 1.13 that the Euler-Lagrange equations of Chern-Simons theory single
out the �at connections. However, our discussion of derived geometry teaches us that
we are not only interested in the set of solutions, but in their moduli space. We will not
give a precise de�nition of it to avoid developing derived di�erential geometry, but we
give a rough discussion how spaces from geometric representations theory like the Betti,
deRham and Dolbeault space �t into the context of derived stacks. But let us start by
classifying �at connections as a set:

Proposition 1.4.1. LetM be a smooth connected manifold with x ∈M andG a connected
Lie group, then there is a one-to-one correspondence between the following sets:{

Principal G-bundles on M
with �at connection A

}
⧸∼= ∼=

HomGrp(π1(M,x), G)⧸conjugation (1.41)

More precisely (and even if M and G are not connected), there is an equivalence of
categories that reduces to above statement by taking connected components. Let BG
be the delooping groupoid of G, and FlatG(M) be the groupoid with objects principal
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G-bundles on M together with a �at connection, and morphisms of principal bundles
(are always isomorphisms) that preserve the connection; then

FlatG(M) ≃ Fun(π≤1(M),BG) . (1.42)

This already knows abut gauge symmetries, since those are the morphisms on both
sides. It could even be generalized to arbitrary (reasonably good) topological spaces, if
we replace principal G-bundles with �at connections by G-local systems. However, like
in B.5.6, we would like to follow the spirit of higher category theory and equip this space
with homotopy coherent data; we are trying to replace π≤1M by the fundamental ∞-
groupoid Sing(M) from A.1.11. There is a roundabout way to explain this; we assume
the reader has read Appendix A (the rest of this chapter might also be skipped on a
�rst reading). In order to categorify our statement, let us �rst decategorify it:

Proposition 1.4.2. For X a topological space and S a set, there is a natural bijection

HomTop(X,Disc(S)) ∼= HomSet(π0X,S) (1.43)

where Disc(S) is S equipped with the discrete topology. This �ts into an adjoint quadru-
ple with the underlying-set functor U and the indiscrete topology coDisc:

Top Set

π0

U

coDisc

Disc

Since general topological spaces are too ill-behaved for our considerations, let us restrict
to the nicer model of simplicial sets:

Theorem 1.4.3. The functor const : Set→ sSet �ts into an adjoint quadruple:

sSet Set

π0

(−)0

cosk0

const

Here, (−)0 is the set of vertices, and cosk0 is the 0-coskeleton. Also, π0 commutes with
�nite products and Disc, cosk0 are fully faithful.

Proof. The terminal functor ∆→ ∗ has a left adjoint ∗ → ∆ sending ∗ to [0], since this
is an initial object. Above quadruple is obtained from this adjunction by left and right
Kan extending. The statement about π0 is standard.



1.4 Digression: The Moduli Space of Flat Connections 17

De�nition 1.4.4. As a presheaf category, sSet is a topos (see A.4.7) with terminal ge-
ometric morphism given by const ⊣ (−)0. We call a topos with the above properties
(a quadruple of adjunctions involving the terminal geometric morphism, such that π0
preserves �nite products) cohesive, and similarly for ∞-topoi.

Note how the uppermost adjunction is again a correspondence between maps into a
discrete simplicial set (something like local systems) and maps from the fundamental 0-
groupoid to this discrete set. If we generalize to∞-topoi, it makes sense to assume that
we obtain representations of the fundamental ∞-groupoid instead, just as we hope.

De�nition 1.4.5. Let Man be the site of smooth manifolds, with morphisms given by
smooth maps and coverings given by collections of open embeddings whose images form
a covering. A smooth ∞-groupoid is an ∞-sheaf on this site.

Example 1.4.6. Since a smooth map f ∈ C∞(M,N) is determined by its restrictions to
an open cover of M , this site is subcanonical. Hence, the Yoneda-embedding yields a
fully faithful functor from manifolds into smooth∞-groupoids. In fact, this functor can
be extended to both Fréchet manifolds and orbifolds.

Theorem 1.4.7. The ∞-topos of smooth ∞-groupoids is cohesive and hypercomplete.
Explicitly, the global sections functor and its adjoints can be written as

Disc : S → Sh(Man), K 7→ (M 7→ Map(Sing(M), K)) (1.44)
Γ : Sh(Man)→ S, X 7→ Nat(const∗, X) ∼= X(∗) (1.45)

coDisc : S → Sh(Man), K 7→

(
M 7→

∏
m∈M

K

)
(1.46)

Sh(Man) S

Π

Γ

coDisc

Disc

Proof. Combine [ADH21], 4.1.2, 4.3.9, 5.1.8, A.5.3; see 5.1.6 for a description of Π.

Corollary 1.4.8. If we view a manifold M as a smooth ∞-groupoid via the Yoneda
embedding, then Π(hM) agrees with the fundamental ∞-groupoid Sing(M), since:

Map(Π(hM), K) = Map(hM , (N 7→ Map(Sing(N),K)))
Yoneda
= Map(Sing(M), K)

De�nition 1.4.9. We call the composition ♭ := Disc ◦Γ the �at modality, or Betti space;
the composition ∫ := Disc ◦Π the shape modality and ♯ := coDisc ◦Γ the sharp modality.
Since adjunctions compose,

∫ ⊣ ♭ ⊣ ♯ . (1.47)
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De�nition 1.4.10. Let G be a group object in smooth ∞-groupoids (for example, a Lie
algebra) and BG its delooping in the topos. Then, we de�ne the space of �at ∞-
connections on a smooth ∞-groupoid X as one of the homotopy equivalent mapping
spaces

Map(X, ♭BG) ∼= Map(ΠX,ΓBG) ∼= Map(∫ X,BG) . (1.48)

In particular, for M a smooth manifold, �at ∞-connections are classi�ed by the space
of simplicial maps from Sing(M) to ΓBG. Compare [BNV13, Lemma 5.2].

This is already very good, but unfortunately, it does not fully resolve our problem.
While smooth ∞-groupoids are a nice setting to do higher stacky geometry in, it is not
a setting for derived geometry since the problem of forming well-behaved intersections is
not resolved. One would have to replace the site of manifolds by a site of either derived
manifolds or derived cartesian spaces, ie. the opposite category of cdgas of the form

· · · → A−3[3]→ A−2[2]→ A−1[1]→ C∞(Rn)→ 0→ . . . . (1.49)

In fact, a nicer (but, by a version of Dold-Kan, equivalent) candidate site are the �nitely
presented objects in the non-abelian derived category (as de�ned in A.8) Funπ(Cart,S)fp.
See [CS19] for more.

Let us, for simplicity, focus on the algebraic setting of derived stacks. Remember that
they too were de�ned as higher sheaves on the Zariski or étale site of cdgas, so they form
an ∞-topos as well.

De�nition 1.4.11. The left adjoint in the terminal geometric morphism of the topos of
derived stacks is called the Betti stack functor ♭ : S → dSt. Explicitly, ♭K is given by
shea�fying the constant functor constK : cdga≤0 → S.

De�nition 1.4.12. Let G be a group object in dSt, e.g. an algebraic group, and BG
its delooping (can be de�ned in any ∞-topos). Alternatively, it is the stacky quotient
BG := [∗/G] and classi�es G-principal bundles over stacks. Then, we de�ne forM ∈ sSet
(in particular smooth manifolds) the moduli space of �at connections

LocG(M) := Hom(♭M,BG) . (1.50)

Here, Hom is the mapping stack or internal Hom, given by its functor of points

Hom(X, Y ) : (R ∈ cdga≤0) 7→ HomdSt(X × SpecR, Y ) . (1.51)

Observation 1.4.13. Following [Cal21, Example 2.19], one can calculate the tangent com-
plex of LocG(M) using the formula Tϕ[−1]Hom(X, Y ) ∼= Γ(X,ϕ∗TY ) with ϕ : X → Y a
geometric point:

Tϕ[−1]LocG(M) ∼= Γ(♭M, ϕ∗TBG) (1.52)

Since we work with derived categories, Γ automatically calculates derived sections, i.e.
sheaf cohomology. Given a suitable setting for derived di�erential geometry, this complex
calculates H∗(M,P ×G g) where P is the principal bundle classi�ed by ϕ.
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De�nition 1.4.14. Given a cdga A ∈ cdga≤0, its 0th homology group H0A is a commuta-
tive ring; let H0Ared be its reduction. One can show that this construction is compatible
with étale covers, so precomposing a derived stack X ∈ dSt with it yields a new derived
stack, its deRham shape

XdR : cdga≤0 → S , R 7→ X(H0R
red) . (1.53)

We can de�ne a moduli space of �at connections on X as the mapping stack

FlatG(X) := Hom(XdR,BG) . (1.54)

Remark. The reason for this nomenclature lies in the technology of crystals, we will not
get into that. Be aware that unlike in di�erential geometry, �at connections and local
systems are generally di�erent things in the algebraic world.

Along these lines, we can construct many moduli spaces from geometric representation
theory via derived stacks, for example the Dolbeault shape � see [PS] for more.

1.5. Conclusion and Operator Algebras

Since this chapter has involved a lot of mathematical terminology and de�nitions we
could not introduce, let us recapitulate the most important ideas from a conceptual
point of view.

� A classical �eld theory consists of the following data: A spacetime manifold M , a
space of o�-shell �eld histories F that is, for our intents and purposes, given as the
space of sections of a smooth �ber bundle on M , an action of the group of gauge
symmetries G on F , and a gauge-invariant action functional S : [F/G]→ R.

� The derived covariant phase space X is de�ned as the moduli space of solutions
to the Euler-Lagrange equations dS = 0 modulo gauge symmetry.

� The BV-BRST complex is de�ned as the tangent complex E = TϕX of the phase
space at a �xed background solution ϕ. It parametrizes perturbations, or deforma-
tions, of ϕ inside the moduli space of solutions; and E [−1] is an L∞-algebra. Using
1.3.6, we see how this complex contains gauge symmetries, �elds and sources.

� The algebra of (perturbative polynomial local) observables is de�ned as the space
of polynomial functions on this tangent space, ie. the symmetric algebra on its
dual space. Taking the higher brackets into account, this is exactly what the
Chevalley-Eilenberg algebra 1.3.3 incorporates:

Obscl(M) = CE∗(E [−1]) = (Sym E∨, dCE) (1.55)

Let us work out the example of Chern-Simons theory:
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� For M a 3-manifold, F is the space of connections on the trivial principal bundle
on M . Gauge symmetries are then given by smooth functions from M to the
gauge group G, so G = C∞(M,G). Finally, the gauge-invariant action S : F → R
is given by 1.9, where we ignore issues concerning integrability.

� Since the equations of motions merely state that F = 0, we know that X must be
the derived moduli space of �at connections on M . As is discussed in 1.4.12, this
is in the algebraic world given by the mapping stack

X = LocG(M) = Map(♭M,BG) . (1.56)

� The BV-BRST complex, following our observations after 1.1.11, should be given by
the chain complex (Ω•(M, g)[1], DA0) where A0 is the �xed background solution.
This agrees with the expression derived in 1.4.13, and the one in 1.3.6 by Poincare
duality (and ignoring functional analytic issues for now); and we will see another
way to derive it in 3.1.

� The classical observables are given by

Obscl(M) = CE∗ ((Ω•(M, g), DA0 , [−,−])) =
(
Sym

(
Ω̄∗

c(M, g)[2], DA0 , [−,−]
)
, dCE

)
where we have used that the integration pairing

�
M
(−∧−) : Ω̄n−i

c (M)⊗Ωi(M) is
perfect (the bar indicates distributional sections, we will talk about this later).

Our general calculation of 1.40 also allows us to guess the BV-BRST complexes of several
other interesting physical (and mathematical) theories. Note that, since the �elds are
usually given as the space of sections of a vector bundle, we could always replace M by
an open subset U , making E into a sheaf.

� Scalar Field: If (M, g) is a Riemannian manifold, a real scalar �eld on M has
con�guration space F = C∞(M,R), no (local) gauge symmetries and action

Sscalar[ϕ] =
1

2

�
M

ϕ(∆g +m2)ϕ . (1.57)

Its BV-BRST complex is given by

E =

(
0→ C∞(M,R) ∆g+m2

−→ C∞(M,R)[−1]→ 0

)
. (1.58)

We interpret the degree 0 elements as �elds, and the degree 1 elements as anti�elds
or possible source terms. All Lie brackets vanish.

� Abelian Chern-Simons theory: If we set g = R and take A0 = 0 as background
connection, the BV-BRST complex for Chern-Simons theory is the deRham com-
plex

E = (0→ Ω0(M)[1]
d→ Ω1(M)

d→ Ω2(M)[−1] d→ Ω3(M)[−2]→ 0) . (1.59)
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� Yang-Mills-Theory with gauge group G on an n-manifold M : Fields and gauge
transformations are the same as for Chern-Simons theory, but the action is

SYM =
1

2

�
M

⟨FA ∧ ⋆FA⟩ . (1.60)

In particular, it depends on the metric through the Hodge star operator. We can
again expand around a background solution A0, yielding

0
!
= DA ⋆ FA =DA0 ⋆ FA0 +DA0 ⋆ (dα + [A0 ∧ α]) + [α ∧ ⋆FA0 ] =

=(DA0 ⋆ DA0 + [− ∧ ⋆FA0 ])α
(1.61)

where we again write A = A0 + α with α in�nitesimal. The BV-BRST complex
hence looks like this:

E =


0 Ω0(M, g)[1] Ω1(M, g)

Ωn−1(M, g)[−1] Ωn(M, g)[−2] 0

DA0

DA0
⋆DA0

+[−∧⋆FDA0
]

DA0

 (1.62)

This is indeed a chain complex, i.e. the equations of motion are gauge invariant
and they can be modi�ed by a current J ∈ Ωn−1(M, g) i� it satis�es DA0J = 0:

(DA0 ⋆ DA0 + [− ∧ ⋆FA0 ])(DA0γ) = DA0 ⋆ [FA0 ∧ γ] + [DA0γ ∧ ⋆FA0 ] =

= −DA0 [γ ∧ ⋆FA0 ] + [DA0γ ∧ ⋆FA0 ] = −[γ ∧DA0 ⋆ FA0 ] = 0

DA0(DA0 ⋆ DA0α + [α ∧ ⋆FA0 ]) = [FA0 ∧ ⋆DA0α] + [DA0α ∧ ⋆FA0 ]− [α ∧DA0 ⋆ FA0 ] =

= − [⋆FA0 ∧DA0α] + [DA0α ∧ ⋆FA0 ] = 0

� Abelian B-Field: Similarly to Electrodynamics, where the dynamical �eld A is
a 1-form (or connection on a trivial principal U(1)-bundle), one can postulate a
theory where it is a 2-form B (or connection on a trivial bundle gerbe). Using the
�eld strength H = dB, one can also mimic its action:

SB[B] =

�
M

H ∧ ⋆H (1.63)

This yields the Euler-Lagrange equations dH = 0, the theory is obviously invariant
under transformations B 7→ B + dχ, with χ ∈ Ω1(M). However, the gauge group
is not Ω1(M), since the 1-forms χ and χ+ dζ for ζ ∈ Ω0(M) yield the same gauge
transformation � we call ζ a gauge-of-gauge transformation.

We can see that gauge transformations do not form a group, but a groupoid; mean-
ing that the stacky quotient [F/G] will have a functor of points taking values in
2-groupoids: The points of [F/G] are �eld histories, morphisms between two of
them are gauge transformations that send one to the other, and 2-morphisms are
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gauge-of-gauge transformations between the respective morphisms. In our calcu-
lation 1.3.4, this means that we have to add another component to the complex
representing (the tangent space of) the stacky quotient, yielding the BV-BRST
complex:

E =


0 Ω0(M)[2] Ω1(M)[1] Ω2(M)

Ωn−2(M)[−1] Ωn−1(M)[−2] Ωn(M)[−3] 0

d d

d⋆d

d d


� Associative Algebras: Not only phase spaces of physical theories have an associated
tangent complex; every moduli problem can be restricted to its formal moduli
problem around a �xed solution. For example, deformations of k-algebra structures
around a �xed algebra A are parametrized by the Hochschild complex

E = (HC•(A)[1], dHH ,Gerstenhaber bracket, 0, . . . ) (1.64)

We have already seen this in 1.3.4; the complex A ⊗ A ⊗ A → A ⊗ A → A → 0
obtains an L∞ algebra structure with the natural di�erential induced by the algebra
multiplication, the Gerstenhaber bracket and vanishing higher Lie brackets.

� Poisson Structures: As studied by Kontsevich in [Kon03], deformations of Poisson
structures on a manifold M correspond to the L∞-algebra

E = (PV∗(M)[1], d = 0, Schouten-Nijenhuis bracket, 0, . . . ) . (1.65)

� Flat Holomorphic Connections with gauge group G on a complex manifold N
have a similar deformation L∞-algebra as Chern-Simons theory (i.e. �at smooth
connections):

E =
(
Ω0,•(N, g), ∂̄, [−,−], 0, . . .

)
(1.66)

� Complex Structures on a complex manifold N :

E =
(
Ω0,•(N, T 1,0

N ), ∂̄, vector �eld commutator, 0, . . .
)

(1.67)



2. Factorization Algebras on

Manifolds

2.1. Motivation: Local Operators in Perturbative

QFTs

In this chapter, we pose ourselves the problem of understanding the algebraic structure
that local (polynomial) operators in Lagrangian �eld theories posses. This structure,
as we will see, crucially depends on the topology of the underlying spacetime manifold
M , while further retaining the homotopy-theoretic subtleties we had encountered with
the sheaf of L∞-algebras locally describing the derived covariant phase space � the BV-
BRST complex. We �x a small number of fundamental insights, or axioms, we naturally
have about perturbative �eld theories to narrow down (in a slightly ad hoc way) the
kind of objects we want to obtain.

Goal: Find a functor A : Open(M)→ V that associates to each open subset of the space-
time manifold a space of local operators on it. Here, V should be the symmetric monoidal
∞-category of chain complexes (with the usual tensor product) or some functional ana-
lytic re�nement of it, like chain complexes of Costello's convenient/ di�erentiable vector
spaces in [CG16] (see 3.1 for more on those).

Observation 2.1.1. This functor (of ∞-categories) must be covariant, since an operator
localized inside an open set U can always be regarded as an operator localized inside a
larger open set V ⊇ U ; we say that A is a precosheaf on M with values in V . Compare
to the space of �elds F , the covariant phase space X or the BV-complex E , which are
sheaves on M � since operators are something we can apply to states/ �eld histories, i.e.
related to distributions, such a change of variance makes sense.

Observation 2.1.2. As known from usual quantum mechanics, we would expect the oper-
ators on disjoint open sets to be independent of each other (just like for non-interacting
systems), so for U ∩V = ∅ we expect the factorization axiom A(U ⊔V ) ∼= A(U)⊗A(V )
to hold.

One might object that this independence of observables at �rst glance seems to only be a
reasonable assumption for causally independent open sets, however our statement is more
low-level than causal independence since we are only talking about which observables can

23
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be measured at all in some spacetime region, not how these measurements commute. The
relationship between algebras of observables and causality is explored in perturbative
Algebraic Quantum Field Theory (pAQFT), but the connection to the factorization
algebra machinery is subtle and has only began to be understood, see [GR17].

Observation 2.1.3. Since we only want to describe perturbative QFT, what we are �nally
interested in is calculating many-point-functions, i.e. the expectation value of a �nite
product of operators, each localized at a single point. We do not expect to see anything
more, for example (non-perturbative) line or area operators (but we can talk about their
perturbative expressions via path-ordered exponentials). Therefore one might assume
that, if we specify, for any �nite set of points x0, . . . , xr ∈ M , the space A(U) for some
open neighborhood x0, . . . , xr ∈ U ⊂M of all the points (and, additionally, assume that
the set of such U is closed under intersections), then we can glue these to �nd A(M).
This looks very much like a cosheaf condition � but unlike for example the BV-BRST
complex E , the space of operators is not a (co-)sheaf or homotopy (co-)sheaf!

Warning. Let F : Open(M) → VectR be an ordinary sheaf of vector spaces over M .
Then, for U, V ⊆M disjoint open subsets,

F(U ⊔V ) = {compatible sections over U and V } = lim
∗⊔∗

F |{U,V } = F (U)⊕F (V ) . (2.1)

However, if we pointwise form the symmetric algebra, this doesn't hold any more:

Sym(F(U ⊔ V )) = Sym(F(U)⊕F(V )) = Sym(F(U))⊗ Sym(F(V )) (2.2)

Similarly for Chevalley-Eilenberg algebras, that we use to construct the observables
Obscl as explained in 1.5, since their underlying vector space is given by the symmetric
algebra. In fact, the factorization axiom tells us that the value of A on a disjoint union
must always be given by a tensor product, and not a direct sum. Therefore, we need a
modi�ed cosheaf condition.

De�nition 2.1.4. A collection of inclusions (or open embeddings) {Ui ↪→M}i∈I is called
a Weiss cover of M if, for any S ⊆M �nite, there is an iS ∈ I such that S ⊂ UiS .

Proposition 2.1.5. Weiss covers form a Grothendieck pretopology (see A.4.2) on the
category Open(M), making it into a subcanonical site. We call ∞-(co-)sheaves on this
site Weiss (co-)sheaves.

Remark. In the following, when we talk about (co-)sheaves we always mean homotopy
or ∞-(co-)sheaves as de�ned in A.4. As a reminder, a V-valued cosheaf on a site C is a
Vop-valued sheaf on C.
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Proof. Clearly, {U ⊆ U} is a Weiss covering for all U ⊆ X open, and transitivity of
Weiss covers as well as stability under intersections is also trivial to check. Subcanonicity
is slightly more subtle; for {Ui ⊆ U} a Weiss cover and W ∈ Open(M) we want

colim
i

HomOpen(X) (Ui,W ) ∼= HomOpen(X) (U,W ) (2.3)

Note that this is a 1-categorical colimit, and it is empty i� any of the morphism spaces
inside it is empty, since the colimit cone then would include a morphism into the empty
set. Since both sides can have cardinality 0 or 1 only, we are �nished.

Remark. Using A.5, we can spell out what it means for A : Open(M)→ V to be a Weiss
cosheaf: For any Weiss cover {Ui → U}, we want

A(U) ∼= colim
∆

 ∐
i

A(Ui)
∐
i,j

A(Ui ∩ Uj) · · ·

 . (2.4)

where the colimit cone is given by the natural maps induced by functoriality of A. Note
that this should be an ∞-colimit, for example in V = Ch(C) it can be written as the
totalization of a �ech complex as carried out later in 3.2.1.

Observation 2.1.6. Finally, for a topological �eld theory, we expect no dependence on
the metric or length scales, so for U ⊆ V two disks in M , i.e. both homeomorphic to
Rn, we want the natural map A(U)

∼=→ A(V ) to be an isomorphism. We say that A is
locally constant.

De�nition 2.1.7. A factorization algebra on a topological manifold Mn is a factorizable
Weiss cosheaf on M , this means it is a functor A : Open(M) → V satisfying above
factorization property and descent for Weiss covers.

Similarly, a locally constant factorization algebra is a locally constant factorizable
Weiss cosheaf on M . Denote the respective categories by coSh⊗(MWeiss,V) and
coSh⊗,lc(MWeiss,V).

Remark. This construction will later describe operators in arbitrary classical or quantum
�eld theories, specializing to the locally constant case for topological, but also free or
conformal �eld theories.

2.2. Absolute and Relative Factorization Algebras

From this point on, we assume that the reader is familiar with Appendix A on higher
category theory since we will use it to de�ne factorization algebras following [AF20],
[Mat13] and [HA]. We will see that they come in two �avors: Relative and absolute.
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This re�ects the two perspectives on �eld theories used by physicists � either a �eld
theory can be de�ned on a �xed spacetime manifold, or it can be applied analogously to
a whole class of manifolds, potentially of a �xed dimension or equipped with some extra
structure like an orientation.

De�nition 2.2.1. Let Mfdn be the category of topological manifolds with open embed-
dings as morphisms. We denote by Charts(n) the full subcategory spanned by the single
object Rn, and by Disk(n) the full subcategory spanned by �nite disjoint unions of Rn.

De�nition 2.2.2. LetMfdn be the ∞-category of topological manifolds with morphism
spaces given by

MapMfdn
(M,N) := Sing Emb(M,N) . (2.5)

Here, we equip the set of open embeddings Emb(M,N) with the compact-open topology.
This determines an ∞-category since we can apply the homotopy coherent nerve A.2.7
to this Kan-enriched category.

We again �x two full subcategories of it: Charts(n) is spanned by the single object
Rn ∈Mfdn, and Disk(n) is spanned by �nite disjoint unions of Rn (including ∅).

Warning. Unfortunately, the terminology for these categories is not consistent in the
literature; for example our Disk is sometimes denoted Disj. Also, the notation Disk(n)
is aimed to connect with Disk(B) which we later de�ne on strati�ed spaces.

Remark. The category Charts(n) is also called BTop(n), since the morphism space of
this one-object ∞-category is homotopy equivalent to a topological group:

MapCharts(n)(Rn,Rn) = Emb(Rn,Rn) ≃ Homeo(Rn) =: Top(n) (2.6)

The middle equality is a result by Kister and Mazur, see [HA, 5.4.1.5] for a proof. It
roughly states that every embedding of Rn into itself can be deformed into a homeo-
morphism. This space is fairly important in the theory of topological manifolds, since
the geometric realization |BTop(n)| is a classifying space for topological microbundles.
The unfamiliar reader can take this as the de�nition of a microbundle, these serve as
a re�nement of vector bundles to the context of topological (instead of smooth) man-
ifolds. For example, we will see in 2.2.7 that every topological manifold has a tangent
microbundle (but no tangent vector bundle, unless it can be smoothened).

De�nition 2.2.3. We can equip the ordinary categories Mfdn and Disk(n) with symmet-
ric monoidal structures, where the product is given by disjoint union. Similarly for
the ∞-categories Mfdn and Disk(n). Let us denote the corresponding ∞-operads by
Mfd⊔

n ,Disk(n)
⊔,Mfd⊔

n ,Disk(n)⊔.

http://www.math.ias.edu/~lurie/papers/HA.pdf#theorem.5.4.1.5
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This does not work for Charts(n) and Charts(n), since their objects are not closed un-
der forming disjoint unions. However, ⊔ still induces operadic structures on them:
Charts(n)⊔ is an ordinary operad with a single object Rn and k-ary multimorphisms

MulCharts(n)(Rn, . . . ,Rn;Rn) = HomMfdn(Rn × {1, . . . , k},Rn) ∈ Set . (2.7)

Analogously, Charts(n) is the underlying ∞-category of an ∞-operad Charts(n)⊔, with
a single object Rn and multimorphisms with k sources given by

MulCharts(n)(Rn, . . . ,Rn;Rn) = Sing Emb(Rn × {1, . . . , k},Rn) ∈ S . (2.8)

Warning. Beware that ⊔ is not the coproduct in these categories; in fact, not a single
coproduct exists in any of them (except for coproducts with ∅ since this is the initial
object).

These operads will be useful for de�ning absolute factorization algebras; in the relative
case over a �xed topological n-manifold M we need the following variants:

De�nition 2.2.4. Denote by Open(M) the poset of open subsets ofM , regarded as a thin
category; by Charts(M) the full subcategory spanned by those that are homeomorphic
to Rn (let us call those disks or balls); and by Disk(M) the full subcategory on �nite
(possibly empty) disjoint unions of disks.

Remark ([HA, 5.4.5.8]). Charts(M) is equivalent to the slice category Charts(n)/M , via
the functor that sends an embedding j : Rn ↪→M in the slice category to the disk j(Rn).
This is clearly essentially surjective, and since both categories are posets ordered by
inclusion, it is also fully faithful: Note for j′ : Rn ↪→M another embedding, morphisms
from j to j′ in Charts(n)/M are commutative diagrams

Rn Rn

M

j

k

j′

where k is uniquely determined as (j′)−1 ◦ j, as j′ is a homeomorphism onto its image,
which contains the image of j. Similarly, Disk(M) ≃ Disk(n)/M , and Open(M) ≃
(Mfdn)/M so we don't need a new name for this.

De�nition 2.2.5. Again, these can be made into ∞-categories. The easiest way to do
this is to follow the last remark and use the slice categories Mfd/M := (Mfdn)/M ,
Charts/M := Charts(n)×Mfdn

Mfd/M and Disk /M := Disk(n)×Mfdn
Mfd/M .

Objects of these slice categories are clearly open embeddings of n-manifolds, Rn and
disjoint unions of Rn into M , respectively. Also, for embeddings j : N ↪→ M and
j′ : N ′ ↪→ M , morphisms between them in Mfd/M are open embeddings k : N ↪→ N ′

making the triangle

http://www.math.ias.edu/~lurie/papers/HA.pdf#theorem.5.4.5.8
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N N ′

M

j

k

j′

commute up to a speci�ed isotopy from j to j′ ◦ k.

Remark. Charts/M is equivalent to the full subcategory Charts(M) of Mfd/M spanned
by the subsets of M that are homeomorphic to Rn, via the functor sending an open
embedding j : Rn ↪→ M to its image j(Rn) ⊆ M . This is clearly essentially surjective,
and it is fully faithful since we can compute the mapping spaces in the categoryMfd/M

containing both as full subcategories, whose objects are related via homeomorphisms.
Now, note that pre- and postcomposing with isomorphisms in an ∞-category induces
homotopy equivalences on mapping spaces. Alternatively, one could show that our map
Charts/M → Charts(M) is a coCartesian �bration with contractible �bers, thus a trivial
�bration.

A similar result Disk /M ≃ Disk(M) also holds, so we can identify disks overM and disks
in M without problems. This is very helpful for our intuition as Charts(M) is much
smaller than Charts/M since we only look at inclusions, not all embeddings. However, in
the strati�ed case, it turns out to be the wrong de�nition as explained in 4.1.

Theorem 2.2.6 ([HA, 5.4.5.2]). The ∞-category Charts/M of charts in M is homotopy
equivalent to Sing(M).

Remark. Intuitively, every chart j : Rn ↪→ M can be contracted to the point j(0),
which makes isotopies between charts into paths, and so on. We will further discuss this
striking result and its applications in 4.2, but let us already tease an important one:

De�nition 2.2.7. The projection out of the slice theory

Sing(M) ≃ Charts(n)/M → Charts(n) ≃ BTop(n) (2.9)

is called the tangent classi�er τM of M , and the microbundle classi�ed by this map
the tangent microbundle. It turns out that if we regard the orthogonal group O(n) as
a subgroup of the topological group Homeo(Rn), then factoring τM through BO(n) ⊆
BTop(n) is equivalent to choosing a smooth structure on M by smoothing theory, and
the resulting map Sing(M)→ BO(n), or rather the adjoint mapM → |BO(n)|, classi�es
the tangent vector bundle of M as in B.5.7. See 4.2 for more.

De�nition 2.2.8. Since a disjoint union can only be formed for disjoint subsets, this oper-
ation induces a partial symmetric monoidal structure in the relative case. As discussed
in A.7.6, we can express this via operadic structures on the above categories:

http://www.math.ias.edu/~lurie/papers/HA.pdf#theorem.5.4.5.2
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� Open(M)⊔ with multimorphism spaces either empty or single points:

MulOpen(M)(U1, U2, . . . , Um;U) =

{
{ι :

∐
i Ui ↪→ U}, if (Ui) disjoint subsets of U

∅, otherwise

� Disk(M)⊔,Charts(M)⊔ can be de�ned analogously.

� Mfd/M , Charts/M and Disk /M are also the underlying categories of ∞-operads,
however those are more tricky to de�ne. The multimorphism spaces in Charts⊔/M
and Disk⊔

/M will agree with those we construct for Mfd⊔
/M , if we embed them as

full subcategories. It therefore su�ces to de�ne, for open embeddings ji : Ni ↪→M
and j : N ↪→M , the multimorphism space MulMfd/M

(j1, . . . , jm; j) as

Sing Emb(N1 ⊔ · · · ⊔Nm;N)×∏
i Sing Emb(Ni,N)

∏
i

MapMfd/M
(ji, j) .

Here, the disjoint union N1⊔ . . . Nm is taken as topological manifolds independent
ofM ; the images of the ji do not have to be disjoint. This looks very intimidating,
but is actually fairly easy to understand: A multimorphisms from the embeddings
ji to j consists of, for any i, an embedding ki : Ni ↪→ N and an isotopy from ji to
j ◦ ki, such that the images of all the ki in N are disjoint. We will discuss in 4.1.8
why this is actually an ∞-operad, using the abstract construction A.7.14.

In the following, let V⊗ be a sifted complete (see A.8.9) symmetric monoidal∞-category.
This means that its underlying∞-category has all sifted colimits, and ⊗ preserves them
(in each argument, or equivalently, in V ⊗ V).

De�nition 2.2.9. An absolute factorization algebra with values in V⊗ is a symmetric
monoidal functor A : Disk(n)⊔ → V⊗.

Similarly, a relative factorization algebra with values in V⊗ is a symmetric monoidal
functor A : Disk(M)⊔ → V⊗. Denote the respective∞-categories of symmetric monoidal
functors by FA(V) and FA(M ;V).

Remark. In the rest of this text, we will mostly work with relative factorization algebras,
still we feel like the absolute case is fairly underappreciated.

De�nition 2.2.10. A relative factorization algebra A : Disk(M)⊔ → V⊗ is called locally
constant if for any disk inclusion D ⊆ D′ with D,D′ ∈ Charts(M), its image under A
is an isomorphism A(D)

∼=→ A(D′).
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Remark. In particular, a relative factorization algebra is locally constant i� the under-
lying functor Disk(M) → V factors through the localization Disk(M)[J −1

M ], where JM

is the class of morphisms that are (disjoint unions of) disk inclusions. We denote the
full subcategory on them by FAlc(M ;V).

Theorem 2.2.11 ([AFT14a, 2.22]). The canonical map Disk(M) ≃ Disk/M → Disk /M

induces an equivalence of categories Disk(M)[J −1
M ] ≃ Disk /M . Since JM is compatible

with the operadic structure, this induces an operadic structure on Disk /M , which agrees
with the one de�ned above.

De�nition 2.2.12. An absolute factorization algebra A : Disk(n)⊔ → V⊗ is called locally
constant if it factors through Disk(n)⊔ → Disk(n)⊔. Take care as Disk(n)⊔ is not sym-
metric monoidal, but only a possess a weak symmetric monoidal structure in the sense
of A.7.14. As explained there, this allows us to still de�ne symmetric monoidal functors
as maps of operads preserving ⊔.

Conjecture 2.2.13. Equivalently, an absolute factorization algebra is locally constant i�
it inverts disk inclusions.

Proposition 2.2.14 ( [Mat13, after 2.7 and 2.18]). The inclusions Charts(n)⊔ ↪→ Disk(n)⊔

and Charts(M)⊔ ↪→ Disk(M)⊔ induce equivalent descriptions for factorization algebras:

FA(V) := Fun⊗(Disk(n)⊔,V⊗) ≃ AlgCharts(n)⊔(V⊗)

FA(M ;V) := Fun⊗(Disk(M)⊔,V⊗) ≃ AlgCharts(M)⊔(V⊗)

FAlc(V) := Fun⊗(Disk(n)⊔,V⊗) ≃ AlgCharts(n)⊔(V⊗)

FAlc(M ;V) := Fun⊗(Disk⊔
/M ,V⊗) ≃ AlgCharts⊔/M (V⊗)

Here, AlgCharts(n)⊔(V⊗) denotes the ∞-category of maps of ∞-operads.

Proof Sketch. The �rst two and the second two statements are similar, let us therefore
look at the �rst. We need to show that a symmetric monoidal functor A : Disk(n)⊔ → V⊗

is determined by its restriction to Charts(n)⊔ ⊆ Disk(n)⊔, which is a map of operads
since this inclusion preserves the operadic structure. However, any object of Disk(n) is
a disjoint union of disks D1 ⊔D2 ⊔ · · · ⊔Dm ⊆ M , so the value of A on it is the tensor
product of the values A(Di). The values of A on morphisms and higher simplices are
determined by the restriction to Charts(n) as well, and this kind of extension works for
any algebra on Charts(n), but proving this rigorously would require too much operad
theory we have not developed. We say that Disk(n)⊔ is the symmetric monoidal envelope
of Charts(n)⊔, this is however wrong overM since Disk(M)⊔ is not symmetric monoidal.

The second two statements are slightly more di�cult, consider e.g. the operad Charts⊔/M .
Remember that multimorphisms from (ji : Di ↪→ M) to j : D ↪→ M are embeddings
ki : Di ↪→ D with disjoint images and isotopies from ji to j ◦ ki. On the other side,
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morphisms in Disk⊔
/M from J :

⊔
Di ↪→ M to j : D → M , to which those should

correspond, are given by an embedding K :
⊔
Di ↪→ D together with a single isotopy

from J to j ◦K. While giving K and ki is equivalent, there are many more (families of)
isotopies in the �rst case. Still, it turns out that up to homotopy, this is no problem �
see the reference.

2.3. Weiss Cosheaves

Why is the de�nition of factorization algebras as disk algebras equivalent to the �rst
de�nition we gave via Weiss descent?

De�nition 2.3.1. Remember that we had equipped the categoryOpen(M) with a Grothen-
dieck pretopology, where covers were given by Weiss covers, in 2.1.5. Similarly, we can
de�ne a Grothendieck pretopology onMfdn, where a family (Ui ⊆ V ) of open embeddings
of V is a covering i� the (Ui) form a Weiss cover of V .

De�nition 2.3.2. A cosheaf F ∈ coSh(M,V) := Sh(M,Vop) is called factorizable i� the
underlying functor Open(M)→ V is symmetric monoidal with respect to disjoint union
of open subsets. Denote the full subcategory of factorizable cosheaves by coSh⊗(M,V).

Theorem 2.3.3. The canonical inclusionsDisk(n)⊔ ↪→ Mfd⊔
n andDisk(M)⊔ ↪→ Open(M)⊔

induce equivalences of categories

FA(V) := coSh⊗(Mfdn,Weiss,V) ≃ Fun⊗(Disk(n)⊔,V⊗) , (2.10)
FA(M ;V) := coSh⊗(Open(M)Weiss,V) ≃ Fun⊗(Disk(M)⊔,V⊗) . (2.11)

Proof. Precomposing with the canonical inclusions does induce maps from the left to the
right, since they are symmetric monoidal. Their inverses are given by left Kan extension
along these inclusions. Showing this in the absolute case can be reduced to the relative
case using the characterization of absolute factorization algebras we prove below.

The relative case will be discussed in the more general strati�ed case in 4.3.5. In par-
ticular, the relevant Kan extensions exist since, as we will see, all involved colimits can
be co�nally replaced by sifted colimits.

Remark. In the relative case locally constant factorization algebras on M correspond
under this equivalence precisely to locally constant Weiss cosheaves (i.e. those that send
disk inclusions to isomorphisms). In the absolute case, a similar characterization would
require our conjecture 2.2.13 to hold.

Proposition 2.3.4. A functor A : Disk(n)→ V is an absolute factorization algebra i� the
restrictions A|M : Disk(M)→ V are relative factorization algebras, for any manifold M .
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Proof. We need to show that A is symmetric monoidal i� all A|M are. The only if
direction is clear, since the slice projection Disk(M) ≃ Disk(n)/M ↪→ Disk(n) is sym-
metric monoidal. For the if direction, we only show that for D,D′ ∈ Disk(n) we have
A(D ⊔ D′) ∼= A(D) ⊗ A(D′); while being symmetric monoidal also involves preserving
the higher coherence conditions in a symmetric monoidal ∞-category (compare A.7.9),
let us avoid these technicalities. Since we know that A|D⊔D′ is symmetric monoidal, we
are �nished.

Proposition 2.3.5. A functor A : Mfd→ V is a Weiss cosheaf i� for any manifold M , its
restriction A|M : Open(M)→ V is one.

Proof. We can apply A.4.13 since the inclusion Open(M) → Mfdn preserves pull-
backs and covering families; in particular it is a morphism of sites (and even satis�es
the covering-lifting property). Therefore, precomposition A 7→ A|M preserves Weiss
(co-)sheaves and shea��cation. For the converse direction, if A : Mfd → V is a func-
tor such that A|M are cosheaves for all M , then denote by s : A → Ash the unit
from A into its shea��cation. Since restriction preserves shea��cation, s|M is the unit
A|M → (A|M)sh, which is an isomorphism. Hence, s must already be an isomorphism,
since if it was not there had to be a manifold M with s(M) : A(M) → Ash(M) not an
isomorphism.

Remark. In particular, we see from the proof that isomorphisms of Weiss cosheaves on
Mfd can be recognized on the family of restrictions to allM ; in other words the functors
(FA(M ;V)→ FA(V))M∈Mfdn are jointly conservative.

Corollary 2.3.6. Let A : Mfdn → V be a functor. Then it is an absolute factorization
algebra, using the equivalence of 2.3.3, i� for any topological manifoldM , the restriction
A|M : Open(M)⊔ → V is a relative factorization algebra on M .

Proof. Follows immediately from the last two propositions.

Conjecture 2.3.7. A factorization algebra A : Diskn → V is locally constant, i.e. factors
through Diskn, i� the restrictions A|M are locally constant for everyM ∈ Mfdn. Proving
this would require a characterization of Diskn as a localization of Diskn (if possible,
including local structures as in 4.2).
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2.4. Examples

2.4.1. Little Cubes Operads

After going through all the hassle of actually de�ning factorization algebras, examples
are de�nitely in order. We will start with the simplest ones, letting V⊗ still be a sifted
complete symmetric monoidal ∞-category:

Example 2.4.1. On M = ∅, there is only one factorization algebra, given by A :
Open(∅)→ V sending ∅ 7→ 1V .

Example 2.4.2. A factorization algebra A on M = {∗} is determined by its value on
the open set M ⊆ M , which can be arbitrary, and a morphism A(∅) = 1V → A(M).
Therefore, FA(∗,V) ≃ V∗ = AlgE0

(V), the category of pointed objects in V . Here, E0 is
the operad we de�ne in A.6.2 and A.6.5.

For non-trivial manifolds, the category of factorization algebras is usually too big to
explicitly describe, similar to the category of sheaves. We therefore restrict to locally
constant ones.

Example 2.4.3. A locally constant factorization algebra A on R associates to every open
subset U ⊆ R an element in V . Let us assume that D and D′ are disks in R (in other
words, possibly non-bounded open intervals), then we can embed them into the larger
disk D′′ = R. Since A is locally constant, it sends disk inclusions to isomorphisms, so
we can identify A0 := A(R) ∼= A(D) ∼= A(D′). Further, if we assume that D and D′ are
disjoint, the factorization property tells us that A(D ⊔D′) ∼= A(D)⊗ A(D′).

We know that a factorization algebra is determined by its restriction A : Disk(M)→ V ,
and the above tells us completely how this restriction acts on objects. However, we
are not �nished, since as a functor A should also associate a value to any morphism
in Disk(M). These in particular contain inclusions of multiple disks into one, like the
following:

)(( )( )D D'D''

An inclusion of three disks into one can be factored as two subsequent inclusions of two
disks into one, so we for now disregard inclusions of more than two disks. This leaves
the unit A(∅) ∼= 1V → A0

∼= A(D) and the diagram above, yielding a morphism

A(D ⊔D′) ∼= A(D)⊗ A(D′)→ A(D′′) (2.12)

that we identify via the above isomorphisms as a multiplication map A0 ⊗ A0 → A0.
It is associative because both compositions of disk inclusions below should agree (up
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to isomorphism) with the inclusion of three disks into one; but it does not have to be
commutative, since we can not deform D and D′ via a sequence of disk inclusions to
exchange their ordering along the real axis, without making them non-disjoint. It is
impossible for intervals in R to continuously be moved past each other.

( ) ( ) ( )( )

( ) ( ) ( )( )

( )

( )

However, the identi�cation A(D) ∼= A(D′) above as well as the argument for associativity
contain non-canonical isomorphisms. They again satisfy higher coherence conditions,
induced by inclusions of multiple disks into one, and trying to understand those by hand
can get very unwieldy. This is resolved by the following

Proposition 2.4.4. Factorization algebras on R with values in V⊗ are the same thing as
associative algebra objects in V⊗:

FAlc(R,V) ≃ AlgE1
(V) (2.13)

Proof. It su�ces to show that the ∞-operads E⊗
1 and Charts⊔/R are equivalent. E⊗

1 only
has a single object, and the underlying ∞-category Charts/R ≃ Sing(R) by 2.2.6 is con-
tractible, so it su�ces to show that there is a functor between them inducing homotopy
equivalences on the multimorphism spaces. Those are given by the space of rectilinear
embeddings [−1, 1]×{1, . . . , k} → [−1, 1] for E⊗

1 ; and for Charts⊔/R multimorphisms from
(ji : R ↪→ R) to j : R→ R are embeddings {1, . . . , k} × R→ R together with isotopies
from their components ki, postcomposed with j, to ji. Both spaces can be deformation
retracted on the values of the respective embeddings at 0, since R is contractible. Also,
the space of possible choices of isotopies in the second case is contractible for the same
reason. So, they are both homotopy equivalent to Emb({1, . . . , k},R) =: Confk(R), in
a way that is compatible with composition. The functor Charts⊔/R → E⊗

1 that sends
all objects to the singe one in E1, and induces this chain of homotopy equivalences on
mapping spaces, is therefore an equivalence.

Example 2.4.5. IfM = R2, the same argumentation shows that a locally constant factor-
ization algebra is completely determined by its value on a disk D ⊆ R2, and A0 := A(D)
obtains an algebra structure. Now, however, we can move two disks D,D′ in R2 around
each other; there is no ordering on R2 distinguishing A(D) ⊗ A(D′) → A(R2) and
A(D′)⊗ A(D)→ A(R2) like in R.

This means that A0 must be a commutative algebra, up to homotopy, since the compo-
sition of disk inclusions we use to exchange the positions of two disks again induces an
isomorphism that is a priori not controllable. More speci�cally, moving the disk D com-
pletely around the disk D′ to its original position via a series of disks inclusions yields
a generally non-trivial isomorphism we de�nitely have to keep track of, a braiding.
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Abstractly, the same argument as in the above proposition can be used to show that
locally constant factorization algebras on R2 are the same thing as E2-algebras. We have
studied these objects in A.7.7, where we have seen that e.g. for V⊗ the (Duskin nerve of
the) (2, 1)-category of ordinary categories, E2-algebras are braided monoidal categories
� their braiding is induced precisely via the above considerations. For V⊗ = Ch(R)
we obtained dg-algebras with commutative multiplication up to cocycles, where the
mentioned braiding is connected to the R-matrix of the Tannaka-dual quasitriangular
Hopf algebra. One can show that E2-algebras in Ch(R) are very close to the de�nition
of vertex operator algebras in conformal �eld theories, see [CG16, Chapter 5].

Example 2.4.6. For M = Rn, an analogous argument shows that Charts⊔/Rn ≃ E⊗
n . In

particular,
FAlc(Rn,V) ≃ AlgEn

(V) . (2.14)

This means that the algebra object A0 := A(Rn) becomes more and more commutative
as n is increased, as we would expect since it becomes easier to move disks around each
other in high dimensions.

Remark. Locally constant factorization algebras with values in an ordinary categories
V0 are less interesting, since for n ≤ 2 they are all just commutative algebra objects,
AlgE2

(V0) ≃ · · · ≃ AlgE∞(V0) as discussed in A.7.7. In this case, the arguments above are
precisely the same reasons for which given a pointed topological space X, the homotopy
group π0(X) is a pointed set, π1(X) is a group and πn(X) for n ≥ 2 is an abelian group.
Generally, if V is an m-category, we reach complete symmetry for n = m + 1, but this
is not the case for Ch(R) or D(R).

Notation 2.4.7. Because of this result, we will generally also denote Charts⊔/M by E⊗
M .

2.4.2. Hochschild Homology and Variants

Next, let us take a look at a locally constant factorization algebra A : Open(S1) → V
over a circle S1.

For U,U ′ ⊆ S1 two disjoint disks, we can embed them into a third, bigger disk V , such
that the disk inclusions induce isomorphisms A0 := A(U) ∼= A(V ) ∼= A(U ′). Therefore,
A again takes on the same value on every disk, so that we only need to take a look at the
structure maps to obtain a complete understanding of it. As for factorization algebras
on R, the inclusion U ⊔ U ′ ⊆ V induces a multiplication map A0 ⊗ A0 → A0, and the
inclusion ∅ ⊆ U induces a unit 1V = A(∅)→ A0. But this is not everything.

Instead of identifying A(U) ∼= A(U ′) via V , we could have used V ′. This yield a diagram
of isomorphisms:
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A(V )

A(U) A(U ′)

A(V ′)

∼=∼=

∼= ∼=

The composition around this square yields an automorphism µ : A(U)
∼=→ A(U), and

generally this will not just be the identity. In other words, the process of moving a disk
around the circle induces a monodromy automorphism on A0. This is actually the only
di�erence to the case of R:

Proposition 2.4.8. Locally constant factorization algebras on the circle S1 with values in
V are the same thing as associative algebra objects in V equipped with an automorphism.

We are, however, not �nished. While we now understand the value of A on a disk, and
(because of the factorization axiom) on disjoint unions of disks, there is one open subset
of S1 that cannot be written as such a disjoint union: What are the global sections
A(S1)?

De�nition 2.4.9. For M a topological manifold and A ∈ FA(M ;V), we call the global
sections �

M

A := A(M) = colim
D∈Disk(M)

A(D) (2.15)

the factorization homology of A. Similarly, for absolute A′ ∈ FA(V), its factorization
homology

�
M
A is the value of the associated Weiss cosheaf Mfdn → V on M , calculated

via the same colimit.
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Remark. The formula 2.15 is a special case of Weiss descent; it computes the value of
the Left Kan extension that induces the equivalence in 4.3.5 on M .

This should be compared with the de�nition of sheaf cohomology as a derived functor of
taking global sections. Another common name for this construction is topological chiral
homology, we will see in a moment why. But �rst, why call it homology at all?

De�nition 2.4.10. Given a topological manifold M , a collar-gluing of M is a continuous
map f : M → [0, 1] such that the restriction f | : f−1((0, 1)) → (0, 1) is a �ber bundle
with �ber a topological manifold M0. For M ′ := f−1[0, 1) and M ′′ := f−1(0, 1], which,
being open subsets of M , are topological manifolds themselves, we write

M =M ′ ∪M0×R M
′′ . (2.16)

De�nition 2.4.11 (Eilenberg-Steenrod Axioms for (factorization) homology theories on
manifolds, [AF15, 3.15]). A functor A : Mfdn → V is called a homology theory on
n-manifolds if

� it is symmetric monoidal,

� it preserves sequential colimits, and

� it is excisive: For any collar-gluing M ∼= M ′ ∪M0×R M
′′, the canonical inclusion

maps induce an isomorphism

A(M) ∼= A(M ′)⊗A(M0) A(M
′′) . (2.17)

Denote the full subcategory on homology theories by H(Mfdn,V) ⊆ Fun(Mfdn,V).
Similarly, for a �xed topological n-manifold M , we can de�ne a category H(M,V) ⊆
Fun⊗((Mfdn)/M ,V) on those functors that are symmetric monoidal, compatible with
collar gluings over M , and preserve sequential colimits (unions) of submanifolds in M

Remark. A colimit is sequential if it is parametrized over N. We can omit the respective
axiom if we restrict e.g. to �nitary manifolds, i.e. manifolds that admit a �nite open
cover (Ui)i∈I such that for each S ⊆ I, the intersection

⋂
i∈S Ui is either empty, or

homeomorphic to Rn.

Remark. In the excision axiom, we use the relative tensor product of a right- and a left
module over the algebra object A(M0), which is de�ned via the two-sided bar construc-
tion. These right- and left module structures are induced from the characterization of
factorization algebras over [0, 1] in 4.4.5, since we can pushforward A along the collar
gluing f : M → [0, 1] via f∗A(U) := A(f−1(U)). This reader not familiar with the
bar construction can take the referenced discussion as a de�nition of the relative tensor
product; in the case of S1 it will be obvious what to do.
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Theorem 2.4.12 ([AFT14a, 2.43]). Given a locally constant factorization algebra A :
Disk(n)⊔ → V⊗, we can calculate its factorization homology

�
M
A ∈ V for every manifold

M , yielding the associated Weiss cosheaf Mfd⊔
n → V⊗. This induces equivalences of

categories
FAlc(V) ≃ H(Mfdn,V)

FAlc(M,V) ≃ H(M,V)

between factorization algebras and manifold homology theories, both in the absolute
and relative case.

Proof Idea. This essentially relies on the fact that any topological manifold can be writ-
ten as a union of �nitary topological manifolds, and the latter always possess a han-
dlebody decomposition (which is a special case of a collar gluing). An exception is
dimension 4, where some trickery using a smoothing is necessary.

Example 2.4.13 ([AF20, 3.31]). Write M = S1 as a collar gluing for two copies of M ′ =
M ′′ = R along S0×R. Identify A ∈ FAlc(S1,V) with an associative algebra A0 equipped
with a monodromy automorphism µ : A → A as above. If µ = 0, its factorization
homology can be calculated using the excision axiom as

A(S1) = A(R)⊗A(S0×R) A(R) = A0 ⊗Aop
0 ⊗A0

A0 =: HH(A0) . (2.18)

Since the bar construction used to calculate the relative tensor product is simply the
Hochschild complex, for V⊗ = Ch(R)⊗ this yields usual Hochschild Homology, while for
V⊗ = D(R)⊗

L
one obtains Shukla Homology. For non-vanishing µ, we must de�ne A0

by evaluating A on a disk on either the left or right side of this gluing, so that the
module structure of A0 on the other side must be precomposed with µ. Denote by µA0

the bimodule over Aop
0 ⊗A0 with underlying object A0 and this µ-twisted module action.

Then,
A(S1) = A0 ⊗Aop

0 ⊗A0

µA0 =: HH(A0,
µA0) . (2.19)

See 3.3.9 for an exemplary calculation from physics.

Next, we state two results that allow for the characterization of locally constant factor-
ization algebras on a large class of manifolds.

Proposition 2.4.14 ([HA, 5.4.5.4]). Given topological n-manifoldsM,N , restricting along
the canonical inclusions M,N ↪→M ⊔N induces equivalences

FAlc(M ⊔N ;V) ≃ FAlc(M ;V)× FAlc(N ;V) ,
FA(M ⊔N ;V) ≃ FA(M ;V)× FA(N ;V) .

(2.20)

If we use the notation EM := Charts/M , one can even write EM⊔N = EM ⨿ EN as a
coproduct of ∞-operads.

http://www.math.ias.edu/~lurie/papers/HA.pdf#theorem.5.4.5.4
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Proof. Notice thatDisk(M⊔N) ∼= Disk(M)×Disk(N) andDisk /M⊔N ∼= Disk /M ×Disk /N ,
since a disjoint union of disks inside M ⊔ N consists by some disks in M , and some in
N . Therefore, we can de�ne an inverse to precomposition with Disk(M),Disk(N) ↪→
Disk(M ⊔N), sending a pair of factorization algebras A, B to the symmetric monoidal
functor

Disk(M ⊔N) ≃ Disk(M)×Disk(N)→ V ; (U, V ) 7→ A(U)⊗B(V ) (2.21)

and similarly in the locally constant case.

Theorem 2.4.15 ([HA, 5.4.5.5]). Given topological manifolds Mm, Nn, the projections
out of the product induce an equivalence of ∞-operads EM ⊗EN ≃ EM×N . This means
that

FAlc(M ×N ;V) ≃ FAlc(M ; FAlc(N ;V)) . (2.22)

Remark. This is a generalization of Dunn additivity A.7.8.

Proposition 2.4.16 ([Gin13, Lemma 11]). Let M be a topological n-manifold and V⊔ be
an ∞-category admitting �nite coproducts, equipped with the coCartesian symmetric
monoidal structure from A.7.10 (i.e. coproduct as multiplication). Then, a factorization
algebra in FA(M ;V) is the same thing as a V-valued cosheaf onM . It is locally constant
i� the corresponding cosheaf is locally constant. Also, factorization homology agrees with
cosheaf cohomology.

Proof. Since everyWeiss cover is in particular an open cover, every cosheaf F : Open(M)→
V is a Weiss cosheaf. Also, for U, V disjoint,

F (U ⊔ V ) = colim
∆

(
∐
U,V

F → 0) = F (U)⨿ F (V ) (2.23)

making F symmetric monoidal (let us ignore higher coherences).

Conversely, for A : Open(M) → V a factorizable Weiss cosheaf, let us check that it
is also a cosheaf. Using that M is Hausdor�, we can re�ne any basis of its topology
to a factorizing basis B, meaning that for any �nite set S ⊆ M , any neighborhood
of S contains pairwise disjoint open subsets (Us)s∈S ∈ B such that s ∈ Us. Now, let
U = (Ui ⊆ U) be a cover of U ⊆ X open such that without loss of generality, U is closed
under intersections. We need to show that

A(U) ∼= colim
Ui∈U

A(Ui) . (2.24)

Denote by PBUi
the set of disjoint unions of elements in B that are contained in Ui,

and by PBU the set of disjoint unions of elements in PBUi
for possibly distinct i. By

de�nition, PBUi
are Weiss covers; and the isomorphism

colim
B∈PBU

A(B) ∼= colim
Ui∈U

colim
Bi∈PBUi

A(Bi) (2.25)

http://www.math.ias.edu/~lurie/papers/HA.pdf#theorem.5.4.5.5
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follows from the factorization property of A. We are �nished when we show that PBU

is a Weiss cover, but this is clear since U is a cover, B a factorizing basis and we take
disjoint unions.

Now, the fact that factorization homology and cosheaf cohomology agree is automatic,
since the latter is given by the global section functor (in the ∞-setting, we do not need
to derive) which is calculated by the same �ech nerve as the factorization homology.
Also, by B.3.7, a cosheaf is locally constant i� it sends disk inclusions to isomorphisms,
which again is the same condition as for factorization algebras.

Remark. While the proof in the reference is a lot shorter, we feel like it omits some
important details.

Example 2.4.17. A locally constant factorization algebra on the torus S1×S1 is, by Dunn
additivity, the same thing as an algebra with automorphism in the category of algebras
with automorphisms in V , which is just an E2-algebra with two distinct automorphisms.
Similarly, a locally constant factorization algebra on the cylinder R×S1 is an E2-algebra
with automorphism.

Example 2.4.18. A locally constant factorization algebra on S2 is more di�cult to de-
scribe: If we cut out the north and south pole, we obtain a cylinder, restricting to which
we should obtain an E2-algebra with automorphism. Adding back the pole caps amounts
to giving two distinct paths from this automorphism to the identity, in the space of all
automorphism (note that adding only one pole would give R2, just as a single path would
allow us to identify our automorphism with the identity). One way to make this precise
is the following theorem.

Theorem 2.4.19 ([HA, 5.4.5.2]). Given a topological manifold M of dimension n, the
∞-operad EM is the colimit over Sing(M) ≃ Charts(M) of the diagram sending each
point to En, with values on paths and higher simplices induced by transport using disk
inclusions:

EM ≃ colim
Sing(M)

En

FAlc(M ;V) ≃ lim
Sing(M)

FAlc(Rn;V) ≃ lim
Sing(M)

AlgEn
(V)

(2.26)

Remark. Notice how the latter statement follows immediately from the �rst, since map-
ping spaces in the ∞-category Op∞ that the colimit is taken in are given by spaces of
algebra objects (i.e. maps of ∞-operads).

Finally, let us think about absolute factorization algebras:

� Disk(−1) only consists of the empty set and empty morphism, so there is only
a single (−1)-dimensional absolute factorization algebra, namely A(∅) = 1V . We
regard ∅ as a manifold of any dimension.

http://www.math.ias.edu/~lurie/papers/HA.pdf#theorem.5.4.5.2
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� Disk(0) consists of (possibly empty) disjoint unions of points, so using the fac-
torization axiom, 0-dimensional absolute factorization algebras are just pointed
objects in V , i.e. Disk(0)⊔ ≃ E⊗

0 .

� Disk(1) consists of disjoint unions of R, with multimorphisms given by embeddings
R×{1, . . . , k} ↪→ R. As explained before, we can deformation retract the space of
such embeddings such that up to homotopy, it only depends on the ordering of the
open intervals corresponding to the summands of R, and also their orientations!
Therefore, a 1-dimensional absolute factorization algebra is determined by an as-
sociative algebra A together with an involution i : A ∼= Aop (since changing the
orientation of an embedding changes the order of multiplications when composing).

� One can de�ne 1-dimensional absolute factorization algebras for only oriented, or
framed, manifolds. In this case, Disk or(1)⊔ ≃ Disk fr(1)⊔ ≃ E⊗

1 as the involution
disappears. See 4.2 for more.

� Generally, by [HA, 5.4.2.9], one can obtain Disk(n)⊔ as a colimit over a diagram
of operads parametrized by BTop(n) that sends the unique object to En, to be a
precise Disk(n)⊔ = (En)hBTop(n) is given by taking homotopy coinvariants in Op∞.
Thus, an n-dimensional absolute factorization algebra is a homotopy invariant in
AlgEn

(V)hBTop(n), i.e. an En-algebra equipped with one automorphism for each
homeomorphism from Rn to itself, with the caveat that (like in a semi-direct prod-
uct), this automorphism interacts with the En-structure. For example for n = 1,
we have Top(1) ≃ Z2 and we obtain the statement above.

� If we restrict to absolute factorization algebras on oriented manifolds, we should
only consider orientation-preserving homeomorphisms in the previous statement;
and for smooth manifolds we should only take homotopy invariants under O(n).
Similarly for other kinds of restrictions; we introduce a general machinery in 4.2).
If we restrict to framed manifolds, Disk fr(n)⊔ ≃ E⊗

n .

2.5. Digression: Exodromy in the Ran space

Since they encode observables of perturbative quantum �eld theories, factorization al-
gebras must have a very close relationship to Feynman Diagrams and Operator Product
Expansions. We give a short discussion of one particular way to see this that also sheds
light on how these mathematical structures were originally discovered. Since we do not
further use the following results and precise statements are highly technical, this section
can be skipped on �rst reading. We assume familiarity with both Appendices.

The main idea is very straightforward and follows the lines of B.5.5: Given a locally
constant sheaf F on a topological space X, and a continuous path p : [0, 1] → X, we
obtained a monodromy map between the stalks Fp(0) → Fp(1). In fact, F is uniquely

http://www.math.ias.edu/~lurie/papers/HA.pdf#theorem.5.4.2.9
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determined by its monodromy for any homotopy class of path between any two points,
as explained in the proof of B.5.5.

So locally constant sheaves admit monodromy along paths, but what kind of monodromy
do locally constant factorization algebras admit? If our intuition about a close relation-
ship to operator products is right, we should replace individual paths by �nite sets of
paths that start and end at a �nite set of points, respectively, and are allowed to join
together but not to split (mimicking a �nite product of vertex operators, whose insertion
points can be moved around inside the manifold and joined together, yielding an OPE).
We call such complexes of paths multipaths, since their joining resembles the composition
of multimorphisms in a multicategory (see A.6.1).

Figure 2.1.: Multipath from {x1, . . . , x5} to {y1, y2} in T 2

x2
x3

x1

x4 x5

y1

y2

The �rst step in proving that locally constant factorization algebras satisfy monodromy
along multipaths is to �nd a nice mathematical description of the latter.

De�nition 2.5.1. For X a topological space, we de�ne the Ran space Ran(X) as the set
of nonempty �nite subsets of X.

For subsets A,B ⊆ Ran(X) we de�ne A⋆B := {S ∪ T |S ∈ A, T ∈ B} ⊆ Ran(X). Also,
for (Ui)i=1,...,n subsets of X, we de�ne the subset Ran({Ui}) := Ran(U1)⋆ · · ·⋆Ran(Un) ⊆
Ran(X). Then, a topology of Ran(X) is induced by taking sets of the form Ran({Ui})
as a basis, where the Ui are pairwise disjoint open subsets of X.

Also, Ran(X) admits a natural N>0-strati�cation by cardinality of the �nite subsets. We
call the strata Ran(X)n =: Confn(X) the con�guration spaces of n (indistinguishable)
points in X. They carry the induced topology from X×n, as one can show.

Proposition 2.5.2. ForM a topological manifold, Ran(M) is paracompact and Hausdor�,
since for a �xed metric d on M it obtains a metric

d(S, T ) := max{sup
x∈S

inf
y∈T

d(x, y), sup
x∈T

inf
y∈S

d(x, y)} . (2.27)



2.5 Digression: Exodromy in the Ran space 43

As shown in [CL21], it is even a C0-strati�ed space in the sense of B.1.9. While the closed
strata Ran(M)≤n are of �nite covering dimension, the whole space Ran(M) generally is
not, and ∞-sheaves on it therefore don't have to be hypercomplete (see A.5.9).

De�nition 2.5.3. We de�ne a modi�ed Ran space as a colimit in the category of topo-
logical spaces (hence, carrying the �nal topology):

Ran(M)<ω := colim
n∈N

Ran(M)≤n (2.28)

This space has the same set of points as Ran(M), and is N>0-strati�ed in the same way.
Generally, it however has a di�erent topology and is not conically strati�ed, in particular
not C0-strati�ed by [Lej21, 2.14].

Proposition 2.5.4 ([Lej21, 3.3]). The exit path categories of Ran(M) and Ran(M)<ω are
equivalent and given by a colimit over closed strata:

SingN>0 Ran(M) = SingN>0 Ran(M)<ω = colim
n∈N

Sing{1<···<n}Ran(M)≤n (2.29)

This already solves our problem: The opposite ∞-category of enter-paths
SingN>0 Ran(M)op contains as objects �nite subsets of M , and as morphisms paths in
Ran(M) that start in a higher cardinality stratum and stay in it, until they �nally end
in a lower cardinality stratum. Put in di�erent words, we start with n distinct points
that move around inM without colliding, until at the �nal time some of their paths join
together to yield m ≤ n distinct points; see the �gure for an impressionistic illustration.
We have constructed an ∞-category of multipaths!

Figure 2.2.: Multipath and depiction of the associated concatenation of enter paths in
the Ran space

x1

x2

x3
x4

y1

M

x1

x2

x3
x4

M

y1

Ran (M)2Ran (M)4 Ran (M)3

Warning. As we de�ne exit paths in B.2, they are only allowed to start in one stratum
and live the rest of their life in a single, di�erent stratum � however in the diagram, we
let exit paths pass through multiple strata. It turns out that this does not matter as it
yields equivalent categories in our case (every path going through multiple strata can be
slightly deformed so it only visits the beginning, and the lowest, stratum), but it should
still be noted.
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But what does it mean to satisfy monodromy with respect to multipaths? In analogy
with B.5.6 and B.5.11, we would expect that a locally constant factorization algebra
with values in V yields a functor SingN>0 Ran(M)op → V . As a short digression, let us
characterize such functors via the exodromy correspondence. For V a presentable stable
or compactly generated ∞-category, B.5.11 tells us

Shhypcbl(Ran(M);V) ≃ Shcbl(Ran(M)<ω;V) ≃ Fun
(
SingN>0 Ran(M),V

)
(2.30)

where we have to work with constructible hypersheaves since the strati�cation poset N>0

does not satisfy the ascending chain condition. We can restrict to constructible sheaves
on Ran(M)<ω by the treatment of N-strati�ed spaces in [Lej21]; in analogy to section
4.3 therein.

Relating this result to our previous characterizations of factorization algebras requires
the following at �rst glance miraculous statement:

Proposition 2.5.5 ([AFT14a, 2.20]). Let M be connected and Disk surj,≤i(M) denote the
subcategory of Disk(M) on �nite disjoint unions of ≤ i disks in M , together with mor-
phisms that are surjective on connected components. Then,

Sing{1,...,i}Ran(M)op≤i ≃ Disk
surj,≤i(M) (2.31)

Using 2.5.4 and the observation that Disk surj(M) is the union over the above full sub-
categories, we can conclude

SingN>0 Ran(M)op ≃ Disk surj(M) (2.32)

Remark. Compare this statement with 2.2.6.

Corollary 2.5.6. Every locally constant factorization algebra yields a monodromy repre-
sentation on multipaths via the composition

FAlc(M,V) ≃ Fun⊗(Disk(M),V)→ Fun⊗(Disk(M),V) ≃ Fun⊗(Disk(M),V) ≃
≃ Fun

(
SingN>0 Ran(M),Vop

)
≃ coShcbl(Ran(M)<ω)

(2.33)

Remark. This map is not an equivalence of categories, like for locally constant sheaves:

� We go from symmetric monoidal functors to arbitrary functors, which forgets
the factorization axiom. This can be remedied by restricting to factorizable con-
structible hypersheaves on the Ran space; those that are symmetric monoidal with
respect to the ⋆ operation above.

� We restrict from Disk(M) to Disk(M)surj, forgetting about the situation where
an empty disjoint union of disks is embedded into a disk. This yields a map
A(∅) = 1V → A(D) acting as an unit object in A. Therefore, the monodromy
equivalence we derived only holds for non-unital factorization algebras.

There does not seem to be an extension of the equivalence to the unital case yet, although
there are a few ideas on how to do it in [CL21] and [HA, 5.5.4.12].

http://www.math.ias.edu/~lurie/papers/HA.pdf#theorem.5.5.4.12
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2.6. Equivalent Perspectives on Factorization

Algebras

Let us conclude this chapter by summarizing the equivalent characterizations of (relative)
factorization algebras we have obtained. Let M be a topological manifold.

Theorem 2.6.1. A factorization algebra onM with values in a sifted complete∞-category
(V ,⊗) is equivalently given by:

� A factorizable Weiss cosheaf on M

� A symmetric monoidal functor (Disk(M),⊔)→ (V ,⊗)

FA(M,V) = coSh⊗(MWeiss,V) ≃ Fun⊗(Disk(M)⊔,V⊗)

Theorem 2.6.2. A locally constant factorization algebra on M with values in a sifted
complete ∞-category (V ,⊗) is equivalently given by:

� A locally constant factorizable Weiss cosheaf on M

� A symmetric monoidal functor (Disk(M),⊔) → (V ,⊗) that sends disk inclusions
to isomorphisms

� A symmetric monoidal functor Disk(M) → V , where Disk(M) = EM is the little
cubes operad on M

� A homology theory in H(M,V), see 2.4.11.

We have seen (but will not further use) that this induces:

� A factorizable constructible hypersheaf on Ran(M)

� A factorizable constructible sheaf on Ran(M)<ω

FAlc(M,V) = coSh⊗,lc(MWeiss,V) = Fun⊗,lc(Disk(M)⊔,V⊗) = Fun⊗(Disk(M)⊔,V⊗)

Technical Remark. Another equivalent de�nition of factorization algebras, that is even
more conceptual as the above, arises from Goodwillie-Weiss-Calculus. Given a functor
Mfdn → S (one can also allow fairly general∞-categories, see [HA, Chapter 6]), this for-
malism allows to construct an associated Taylor-Expansion, i.e. a unique decomposition
into so called n-excisive functors that behave in some sense like monomials. Absolute
factorization algebras are precisely the analytic functors (those that agree with their
Taylor expansion) satisfying a factorization property, see [dBW12, Theorem 5.2].



3. Abelian Chern-Simons Theory

and other Physical Examples

The methods of the last chapter will now be put to use to describe �eld theories on
manifolds without boundary. After explaining a new way to think about the BV for-
malism that relies on the path integral and therefore makes sense for quantum (and not
only classical) �eld theories, we construct the corresponding factorization algebras for
general free �eld theories, in particular the free scalar �eld and Chern-Simons theory
among many other examples. We loosely follow the discussion in [CG16, Chapter 4].

3.1. Homological Path Integral

Let us begin by giving a di�erent point of view on the BV-BRST formalism that will
be helpful to make contact with more standard concepts in (quantum) �eld theories,
especially when we later look at factorization algebras of quantum observables.

One of the main purposes of a quantum �eld theory is to assign, to any observable O[ϕ]
depending on the �eld con�guration ϕ, an expectation value. For example, take a look
at the scalar �eld ϕ ∈ C∞(M) on a smooth manifoldM with Riemannian metric g, with
action

SKG[ϕ] =

�
M

1

2
ϕ(∆g +m2)ϕ volg (3.1)

where ∆g is the Laplace operator, and volg the volume form associated to g; and m2 ∈ R
is the mass of ϕ. Then, the expectation value of O[ϕ] is determined by the path integral

⟨O⟩S =

�
DϕO[ϕ] · e−S⧸ℏ�

Dϕe−
S⧸ℏ

, (3.2)

where the denominator may be set to 1 by adding a suitable constant to S. In other
words, the path integral determines a linear map ⟨−⟩S : {observables} → R. Up to the
arbitrary normalization factor, this map is uniquely determined by its kernel via the
homomorphism theorem. Since there is no mathematically rigorous way to de�ne the
path integral yet, this observation opens up a di�erent way to proceed:

� Elaborate what exactly is meant by the term observable in this context. On the
one hand, ⟨−⟩S should a priori be de�ned on all o�-shell observables; but we should
pose restrictions to make a mathematical discussion of this map actually feasible.

46
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� Find a large subspace of the space observables (if possible of codimension 1) where
⟨−⟩S vanishes.

Let us start with the �rst point. An o�-shell observable for the scalar �eld on an open
subset U ⊆ M is, by de�nition, a function on the space of �eld histories F = C∞(U).
We restrict ourselves to polynomial functions (one could also use power series) in the
�eld ϕ, since we only want to work perturbatively in the end anyway. As a �rst step,
linear o�-shell observables are just continuous linear functionals on F :

F∨ = C∞(U)∨ := Homcnt(C
∞(U),R) = C̄∞

c (U) (3.3)

Here F∨ is the strong dual of a topological vector space (the space of continuous linear
forms), and C̄∞

c (U) are the compactly supported distributions on U . The most straight-
forward way to obtain polynomial observables would be to form the symmetric algebra,
but this operation uses the tensor product and we must remember that we are working
with topological vector spaces, so we need to complete it:

P (F) :=
∞⊕
i=0

C∞
c (U i)Si =

∞⊕
i=0

(C∞
c (U)⊗̂ . . . ⊗̂C∞

c (U))Si (3.4)

is the space of polynomial observables that we will consider, where we went back from
distributional to smooth sections for convenience; we will explain this in 3.1.15. The
subscript Si means taking coinvariants with respect to the action of the symmetric group
(taking invariants yields an isomorphic result) and ⊗̂ is the (completed) tensor product of
convenient vector spaces that contains the algebraic tensor product as a dense subspace
� see [CG16] and the references therein for more. In particular, a homogeneous element
O ∈ C∞

c (U i)Si acts on ϕ as

O[ϕ] =

�
U

O(x1, x2, . . . , xi) · ϕ(x1)ϕ(x2) . . . ϕ(xi) volg(x1) . . . volg(xn) . (3.5)

We will not care much for functional analytic subtleties, we only need, for vector bundles
E,F the equality

Γ(U,E)⊗̂Γ(U, F ) = Γ(U,E ⊠ F ) (3.6)

where E ⊠ F is the exterior tensor product bundle pr∗1E ⊗ pr∗2 F → M ×M . We have
used this identity for the case of trivial bundles above. Note that it is not the de�nition
of ⊗̂ since this operation is de�ned in more general situations than sections of vector
bundles, but a very nice result. We also need:

Proposition 3.1.1 ([CG16, Appendix B]). The category of convenient vector spaces CVS
is a full subcategory of locally convex topological vector spaces and continuous linear
maps that has several good properties: It is abelian (but not Grothendieck abelian!), pos-
sesses a symmetric tensor product ⊗̂ and an associated internal Hom. Finally, it admits
all colimits and ⊗̂, being a left adjoint, preserves colimits separately in its arguments.
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Both CVS and the category of locally convex topological vector spaces can be fully
faithfully embedded into another category DVS of di�erentiable vector spaces. They are
de�ned as vector-space-valued sheaves on the site of smooth manifolds Man from 1.4.5
that are modules over the algebra object C∞ : Manop → VecR and possess some kind of
a �at connection.

This category is Grothendieck abelian, possesses an internal Hom and a notion of multi-
morphisms (i.e. it is a colored operad), and the embedding CVS ↪→ DVS is additive, pre-
serves kernels, multimorphism spaces (remember that symmetric monoidal categories can
be regarded as operads) and internal Homs; but not cokernels and quasi-isomorphisms.

Corollary 3.1.2. The ∞-category of chain complexes Ch(CVS) and its derived cate-
gory D(CVS), as de�ned in A.3.14, are stable, sifted complete symmetric monoidal
∞-categories; and Ch(DVS) as well as D(DVS) are stable ∞-categories underlying re-
spective ∞-operads. In fact, D(DVS) is even presentable.

Proof Sketch. Stability follows by construction, the symmetric monoidal structure is
induced from ⊗̂ (which does not need to be derived since it can be shown to preserve
kernels), and still preserves colimits separately in its arguments since the internal Hom
induces a right adjoint to it. To conclude, D(DVS) is presentable by [HA, 1.3.5.13] as
DVS is Grothendieck abelian.

Warning. As is made clear by this statement, we can not have everything � either we
work with a category that is not presentable, or with a di�erent category that has no
symmetric monoidal structure. In particular, our de�nition of factorization algebras
does not extend to values in di�erentiable vector spaces � we will ignore this and similar
problems, since most of them can be �xed by switching around between CVS and DVS
since the former is a full subcategory of the latter (be aware that only homotopy equiv-
alences are preserved under this operation though, not general quasi-isomorphisms) or
hoping that an even better setting will be found in the future.

Example 3.1.3. For E any vector bundle on M and U ⊆M open, the spaces

E(U), Ē(U) := E(U)⊗C∞(M) C̄
∞(M)

Ec(U), Ēc(U) := Ec(U)⊗C∞(M) C̄
∞(M)

of (compactly supported and/or distributional) sections are convenient, and hence also
di�erentiable, vector spaces.

After this digression, let us return to our second point. We can regard the path integral�
DϕO[ϕ]e−

S⧸ℏ as an integral of O with respect to the modi�ed "measure" e−S⧸ℏDϕ, so
we have immediate access to a large space where ⟨−⟩S must vanish � total derivatives.

http://www.math.ias.edu/~lurie/papers/HA.pdf#theorem.1.3.5.13
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Example 3.1.4. Let us, for a moment, assume that F is an n-dimensional vector space. If
we denote by Vect(F) the space of vector �elds on it, by Ω•(F) the space of di�erential
forms, and by vol′F = exp(−S/ℏ)dx1 . . . dxn the modi�ed volume form on F , then a
function on F is a total derivative i� it is in the image of the divergence map DivS,
de�ned via the commuting diagram

Ωn−1(F) Ωn(F)

Vect(F) Ω0(F)

d

DivS

∼= ∼=

where the vertical isomorphisms are induced by contracting with the non-vanishing top-
form vol′F . Explicitly, it can be written in coordinates as

DivS

(∑
i

vi
∂

∂xi

)
= −

∑
i

vi
∂S

ℏ∂xi
+
∑
i

∂vi
∂xi

. (3.7)

For a total derivative,
�
F
DivS(v) vol

′
F =

�
F
d(ιv vol

′
F) = 0 (3.8)

Extending this to the in�nite-dimensional case amounts to �rst �xing a space of poly-
nomial vector �elds. A generating system for them is determined by the set of possible
directions in F ; since this is a vector space we identify each direction with a ϕ ∈ F and
write it as ∂

∂ϕ
. It acts on above homogeneous observable O as

∂

∂ϕ
O(x1, . . . , xn) =

∑
j

�
U

ϕ(xj)O(x1, . . . , xi) volg(xj) (3.9)

A general vector �eld is then an element of

Vect(F) := P (F)⊗̂C∞
c (U) =

∞⊕
i=0

C∞
c (U i+1)Si (3.10)

where coinvariants act on the �rst n factors, and can be approximated by linear combi-
nations of ∂

∂ϕ
where ϕ has compact support to ensure that our divergence operator

DivS

(
O ⊗ ∂

∂ϕ

)
:= −O · (∆ +m2)ϕ+

∂

∂ϕ
O (3.11)

(extended linearly and continuously to non-homogeneous elements of P (F) and the
completed tensor product) is a map DivS : Vect(F)→ P (F).
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De�nition 3.1.5. For any open U ⊆M , denote by

H0Obsq(U) := P (F)
imDivS

(3.12)

the zeroth cohomology of the space of quantum observables of the scalar �eld. We have
seen that the map ⟨−⟩S should factor as H0Obsq(U)→ R.

We have thus restricted our problem of understanding the expectation value from all
o�-shell observables to a usually small factor space. However, we cannot be satis�ed yet
since Vect(F) that enters this quotient is again a big space. There are many vector �elds
v for which DivS v = 0 identically, and it would be nice to factor those out when �nding
functions that are total derivatives � in order to do this, we want to extend the divergence
operator to a di�erential in a chain complex, so that its value vanishes in particular on
all cocycles (and our hope is that the homology groups of this chain complex are small).
This is de�nitely possible for �nite-dimensional F � the commutative diagram

Ω0(F) . . . Ω0(F) Ωn−1(F) Ωn(F)

PVn(F) . . . PV2(F) PV1(F) PV0(F)

d d d d

DivS

∼=

DivS

∼=
DivS

∼=

DivS

∼= ∼=

de�nes divergence operators on arbitrary polyvector �elds PVn(F) := Γ(U,
∧

nTF),
where the vertical isomorphisms are again contractions with the modi�ed volume form.
This also works in the functional analytic case if, using completed versions of the sym-
metric and antisymmetric tensor product obtained by taking coinvariants with respect
to the evident action, we de�ne:

PVn(F) := SymC∞
c (U)⊗̂

∧
nC∞

c (M) :=
∞⊕
i=0

C∞
c (U i+n)Si×Sn (3.13)

De�nition 3.1.6. The divergence complex, or algebra of quantum observables, of the scalar
�eld is the chain complex of convenient (or di�erentiable) vector spaces

Obsq(U) := (PV∗(F)[ℏ], ℏDivS) =

=

(
. . . PV2(F)[ℏ] PV1(F)[ℏ] PV0(F)[ℏ]ℏDivS ℏDivS ℏDivS

)
.

(3.14)

where DivS is extended to polyvector �elds as a derivation, in particular it can still be
written using the same formula as above. We have also shifted from viewing ℏ as a
number to a formal parameter. If we set ℏ → 0, the di�erential becomes −ℏDivS →
∆+m2 acting solely on the antisymmetric tensor product in the de�nition of PVn(F).
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To be precise, this is the Schouten-Nijenhuis bracket {−, S} with the action. We obtain
the algebra of (molli�ed, see below) classical observables :

Obsclmd(U) :=
(
PV∗(F),∆+m2

)
=

=

(
. . . PV2(F) PV1(F) PV0(F)∆+m2 ∆+m2 ∆+m2

)
.

(3.15)

Observation 3.1.7. We can write the complex of polyvector �elds as the symmetric al-
gebra (with respect to the completed tensor product) of a chain complex:

Obsclmd(U) =
(
SymC∞

c (U)⊗̂
∧∗C∞

c (U),∆+m2
)
=

=Sym
(
0→ C∞

c (U)[1]
∆+m2

−→ C∞
c (U)→ 0

)
=: Sym(E !c)

(3.16)

Similarly, the divergence complex is the Chevalley-Eilenberg (see 1.3.3) algebra of a
di�erential graded Lie algebra

Obsq(U) =
(
SymC∞

c (U)⊗̂
∧∗C∞

c (U)⊗̂R[ℏ],DivS
)
=

=CE∗

(
0→ C∞

c (U)[1]
∆+m2

−→ C∞
c (U)⊕ ℏR→ 0

)
= CE∗(E !c ⊕ ℏR)

(3.17)

where, in order to yield an appropriate extra term in the Chevalley-Eilenberg di�erential,
the Lie bracket on E ! ⊕ ℏR is de�ned as the degree 1 integration pairing

⟨α, β⟩ := ℏ
�
U

αβ (3.18)

where α, β ∈ C∞
c (U), one in degree −1 and one in degree 0, landing in the summand

ℏR. In other words, we perform a central extension of the (trivial) Lie algebra E !c.

Warning. When we had de�ned the homological Chevalley-Eilenberg complex CE∗, it
involved not only taking the symmetric algebra but also shifting by 1. We ignore this
shift in the formula above, and all following formulae to not clutter the notation, trusting
the reader to remember that not the BV-BRST complex itself carries a L∞-structure
that we will use in a moment, but E [−1].

The classical observables almost agree with the de�nition in 1.5, where we had set
Obscl(U) := Sym(E(U)∨) with E the BV-BRST complex

E(U) :=
(
0→ C∞(U)

∆+m2

−→ C∞(U)[−1]→ 0
)
. (3.19)

Notice E !c(U) ∼= Ec(U)[1] in this scalar �eld case � we will later see that this is due to
the (−1)-shifted symplectic structure on covariant phase space. While E(U)∨ = Ēc(U)
involves taking distributional sections of this complex, it turns out that this yields a
homotopy equivalent complex, which is far from trivial:
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De�nition 3.1.8. For E,F →M vector bundles of rank n,m with local �ber coordinates
(ei, f i) and sheaves of sections E ,F , a di�erential operator D : E → F is an R-linear
map of sheaves D : E → F that can, in local coordinates (xi) on M , be written as

D

(∑
i

si(x)e
i

)
(x) =

∑
j

∑
α∈Nn

dijα
∂|α|

(∂x1)α1 . . . (∂xn)αn
, (3.20)

and the maximal |α| =
∑
αj such that an dijα ̸≡ 0 exists is called the degree of D.

Technical Remark. In other words, a di�erential operator is a map of vector bundles
J∞E → F and a di�erential operator of degree ≤ d is a map JdE → F , where JdE is
the jet bundle with local basis the formal derivatives of order ≤ d of a local basis of E,
and the in�nite jet bundle J∞E = colim

d
JdE.

De�nition 3.1.9. The principal symbol of a di�erential operatorD of order d is the section
of the bundle Symd(TX)⊗E∨ ⊗ F →M , where E∨ denotes the dual bundle, that is in
local coordinates determined by (dijα )i=1,...,n; j=1,...,m

α∈Nm; |α|=d
.

De�nition 3.1.10. For D as above, let π : T ∗M → M be the cotangent bundle, and
identify the principal symbol of D with a map of vector bundles σD : π∗E → π∗F ,
locally a polynomial homogeneous of total degree d in the �ber coordinates of T ∗M .
We say that D is elliptic if restricted to T ∗M\M , the map σD : π∗E| → π∗F | is an
isomorphism.

Example 3.1.11. On a Riemannian manifold, the Laplace operator is elliptic � however
not the d'Alembert operator on a Lorentzian manifold of dimension ≥ 2.

De�nition 3.1.12. A di�erential complex on a manifold M is a bounded chain complex
E = (Ei, Di) of vector bundles on M , where the di�erentials are di�erential operators
(in coordinates, C∞(M)-linear combinations of �nite products of partial derivatives, as
above). It is called elliptic if the associated complex (π∗Ei|, σDi

) on T ∗M\M is exact.

Theorem 3.1.13 (Formal Hodge Theorem, see [CG16, A.6.4]).
If E = (Ei, D) is an elliptic complex on a closed manifold M , then its homology groups
H i(E) are �nite dimensional.

Example 3.1.14. All BV-BRST complexes of classical �eld theories we have considered
are elliptic complexes. In particular, the deRham and Dolbeault complexes are elliptic.

Theorem 3.1.15 (Atiyah-Bott 67; Tarkhanov 87 in the non-compact case).
Let E = (Ei, D) be an elliptic complex on M and U ⊆ M open, then the inclusion
E(U) ↪→ Ē(U) of its sections into distributional sections is a homotopy equivalence.
Similarly for compactly supported sections, Ec(U) ↪→ Ēc(U) is a homotopy equivalence.
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De�nition 3.1.16. For E = (E∗, D) a chain complex of vector bundles, let E! := E∨ ⊗
DensM be the Verdier dual complex with (E!)i := (E−i)∨⊗DensM and formally adjoint
di�erential operators as di�erentials. Here, E∨ denotes the dual vector bundle and
DensM the sheaf of densities (i.e. canonical sheaf) of M � we will often ignore this
factor, as on an orientable manifold it is trivial anyway. In particular, if E denotes the
sheaf (in convenient vector spaces) of sections of E, then E !c = Γc(−, E∨⊗DensM) is the
sheaf of compactly supported sections of E!.

Corollary 3.1.17. For the scalar �eld, because

E !c(U) ≃ Ē !c(U) =
(
0→ C̄∞

c (U)
∆+m2

−→ C̄∞
c (U)→ 0

)
(3.21)

is the continuous dual E∨ of the complex of topological vector spaces E , the subalgebra
of smoothened, or molli�ed observables is homotopy equivalent to the full algebra of
observables:

Obsclmd = Sym E !c ≃ Sym E∨ = Obscl . (3.22)

3.2. Factorization Algebras from Field Theories

Let us consider the case of more general �eld theories. The BV-BRST complex E(U) of a
classical �eld theory on an open subset U of the spacetime manifoldM is an L∞-algebra,
and (given that our theory is suitably local) our claim was that the map U 7→ E(U)
further is a sheaf onM . In all physically interesting cases, the underlying chain complex
of E(U) can be written as the sheaf of sections of a complex of vector bundles, where the
di�erentials are di�erential operators. Formalizing our claim amounts to the following
theorem:

Theorem 3.2.1 ([CG16, 6.5.2]). For (Ei, Di) a di�erential complex on a manifold M , the
functor

� E : Open(M)op → Ch(DVS) mapping U 7→ Γ(U,E) is a sheaf,

� E : Open(M)op → Ch(DVS) mapping U 7→ Γ(U,E) is an ∞-sheaf (remember that
we also just call those sheaves, which should not lead to confusions since the target
is a true ∞-category here),

� Ec : Open(M)→ Ch(DVS) mapping U 7→ Γc(U,E) is a cosheaf,

� Ec : Open(M)→ Ch(DVS) mapping U 7→ Γc(U,E) is an ∞-cosheaf.

Similarly for distributional sections of E . Also, since all spaces involved are sections
of vector bundles, they lie in the full subcategory CVS ⊆ DVS, so we could use both
settings interchangeably.
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Proof. The case of sheaves and cosheaves is standard, using partitions of unity. We
follow Costello in considering the case of ∞-cosheaves, as it is the most complicated
one. Let U ⊆ M be open, and U = (Ui ⊆ U)i∈I an open cover of it � we want to show
that

Ec(U) ∼= colim
∆op

 ∐
i

Ec(Ui)
∐
i,j

Ec(Ui ∩ Uj) · · ·

 . (3.23)

It is a standard fact that the (homotopy) colimit over such a simplicial diagram is the
total complex of the associated bicomplex (via the Dold-Kan correspondence). Spelling
this out, we claim that the canonical map

Ec → Č∗(U, Ec) (3.24)

into the �ech complex of the precosheaf Ec is a homotopy equivalence. For simplicity, we
assume that Ec is concentrated in degree 0; the general case can be Left-Kan-extended
from this or alternatively, we can apply the following construction column-wise in a
double complex and use a staircase-argument.

Explicitly, the (−r)-th component of the �ech complex is then given by⊕
i=(i0,...,ir)

Ec(Ui0 ∩ · · · ∩ Uir) (3.25)

while all positive components vanish, with di�erential of ν = (νi) ∈ Č−r(U, Ec) given by

(dν)(j0,...,jr−1) =
r∑

m=0

(−1)j
∑
k∈I

ν(j0,...,jm−1,k,jm,...,jr−1) . (3.26)

To show that this is homotopy equivalent to Ec(U), we can augment it by the natural
map from above, putting Ec(U) in degree 1, and give a contracting homotopy of the
resulting augmented �ech complex Č∗

aug(U, Ec). For (λi) a partition of unity subordinate
to the cover (Ui), a possible choice is the degree (−1) map

K : Č∗
aug(U, Ec)→ Č∗

aug(U, Ec)[1] (3.27)

that sends (ν∅) ∈ Ec(U) in degree 1 to (Kν)i = ρiν∅, and νi in degree r to
(Kν)(j0,...,jr+1) := ρj0ν(j1,...,jr+1). Then, ((dK +Kd)ν)i can be written out as

∑
k∈I

ρkνi + ρi0

(
r+1∑
m=1

∑
k∈I

(−1)mν(i1,...,im−1,k,im,...,ir) +
r∑

m=0

∑
k∈I

(−1)mν(i1,...,im,k,im+1,...,ir)

)

where the terms in the bracket cancel, leaving
(∑

k∈I ρk
)
νi = νi.

Remark. The same proof also shows that E and Ec are (co)sheaves in the derived ∞-
category D(DVS). This is conceptually more useful, since the BV complex arises out
of derived geometric derivations, and should therefore only be well-de�ned up to quasi-
isomorphism.
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Using this knowledge, let us construct factorization algebras for free �eld theories.

Theorem 3.2.2 ([CG16, 6.5.3]). Let (Ei, Di) be a di�erential complex on a manifold M .
Then, the functor

Sym(Ec) : U 7→ SymΓc(U,E) (3.28)

where Sym is taken with respect to ⊗̂, is a factorization algebra on M , both when
regarded as a functor from opens into the 1-category Ch(DVS) and into the∞-category
Ch(DVS) or D(DVS). Similarly for the functor Sym(Ēc) using distributional sections.

Proof. We use a di�erent proof than Costello, making use of the abstract theory we
have developed in chapter 2. Since we know that Ec is a cosheaf, we can use 2.4.16 and
reformulate this as saying that Ec is a factorization algebra with values in Ch(DVS)⊕.
Further, the functor

Sym : Ch(DVS)⊕ → Ch(DVS)⊗̂ (3.29)

is symmetric monoidal and preserves sifted colimits, as we will see in the proof of 3.2.6.
This means �rst of all that the composition

Disk(M)⊔
Ec−→ Ch(DVS)⊕ Sym−→ Ch(DVS)⊗̂ (3.30)

is symmetric monoidal, and therefore a factorization algebra. Also, the value of it on a
speci�c open subset can be written via the left Kan extension of this functor to Open(M),
and by 4.3.4 this involves only sifted colimits. Therefore,

Lan
Open(M)
Disk(M) Sym ◦Ec = Sym ◦LanOpen(M)

Disk(M) Ec = Sym ◦Ec (3.31)

since Ec was a factorization algebra.

Proposition 3.2.3. If the cosheaf Ec is locally constant, then the factorization algebra
Sym(Ec) is so as well.

Proof. If Ec is locally constant, then for a disk inclusion D ⊆ D′, the induced map
Ec(D)→ Ec(D′) is an isomorphism by B.3.7. Therefore, Sym(Ec(D))→ Sym(Ec(D′)) is
an isomorphism as well.

Now, we will sketch how this generalizes to �eld theories that are not free, and to the
quantum BV-BRST complexes of free �eld theories.

De�nition 3.2.4 ([CG21, 3.1.3.1]). A local L∞-algebra on a smooth manifold is a di�er-
ential complex L = (Li, Di) together with polydi�erential (i.e. multilinear, factor-wise
di�erential) operators

ℓn : L⊗n → L (3.32)

for n ≥ 2 that are of degree 2 − n respectively, graded antisymmetric, and equip the
sections L(U) with the structure of L∞-algebras for all opens U . Here, we identify the
di�erential D on L with a bracket ℓ1.
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Proposition 3.2.5. Given a local L∞ algebra L, the sheaf of sections of the underlying
di�erential complex (which we also denote by L) is both a sheaf and an ∞-sheaf of
L∞-algebras. Similarly for distributional and compactly supported sections (the latter
are a cosheaf).

The case of (co-)sheaves is not di�cult to prove using what we have already seen in 3.2.1,
however the case of ∞-(co)sheaves involves �rst of all de�ning an ∞-category of L∞-
algebras. We will not go into details since we later mostly restrict ourselves to the free
case, however there is a model structure on the ordinary category of L∞-algebras that
is Quillen-equivalent to a model structure on the ordinary category of dg Lie-algebras
(so for homotopy theorists, both constructions are essentially the same thing) which is
combinatorial. Therefore, the homotopy category can be equipped with the structure of
a presentable ∞-category (see the end of A.2). Checking the ∞-sheaf property then is
similar to the above.

Theorem 3.2.6 ([CG16, 6.6.1]). Given a local L∞-algebra L on a manifold M , the ho-
mological Chevalley-Eilenberg complex

CE∗(Lc) : U 7→ CE∗(Lc(U)) (3.33)

is a factorization algebra, and similarly for CE∗(L̄c).

Remark. In principle, we should be interested in the Chevalley-Eilenberg algebra of L,
however the dualization in its explicit formula must be replaced by the strong dual.
Then, up to completing the symmetric algebra, CE∗(L̄c) ∼= CE∗(L) and CE∗(Lc) is a
molli�ed version of it.

Proof Sketch. The proof is analogous to the free case, all we have to show is that the
functor CE∗ from L∞-algebras of di�erentiable vector spaces to Ch(DVS) is symmetric
monoidal with respect to direct sum and ⊗̂, and preserves sifted colimits. The �rst claim
is due to the fact that for V,W ∈ DVS,

Sym(V ⊕W ) ∼= Sym(V )⊗̂ Sym(W ) (3.34)

for the same reason that this equality holds for the usual tensor product, namely that ⊗̂
preserves colimits in both variables, in particular direct sums (alternatively, one could
use equation 3.6 since we only work with di�erential vector spaces of sections). This
can be extended to chain complexes, and can be seen to be compatible with the higher
brackets. The second claim also follows similarly to the case of ordinary vector spaces,
see the proofs of [SAG, 13.2.4.1] and [SAG, 13.2.5.5].

Alternatively, Costello uses a spectral sequence argument that relies on the Eilenberg-
Moore comparison theorem: Given suitable conditions on the abelian category we are
working in, if a map f of complete �ltered chain complexes induces an isomorphism on
some page of the associated spectral sequences, then it is a quasi-isomorphism.

http://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf#theorem.13.2.4.1
http://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf#theorem.13.2.5.5


3.2 Factorization Algebras from Field Theories 57

This can be applied to the �ltration F≤nCE∗(Lc) := Sym≤n Lc. The �rst page of the
associated spectral sequence (depending on the convention we use for numbering the
pages) is the associated graded object to this complex, which agrees with CE∗(Lc) as a
bigraded di�erentiable vector space, but only sees the part of the brackets that preserves
the degree in Sym∗, namely the part induced from the di�erential in Lc (and not the
higher Lie brackets). Hence, this allows us to reduce to the case of di�erential complexes
that we have discussed above.

It is often said that the structure of a factorization algebra equips the space of operators
with a so-called factorization product. In our case, this should be the multiplication
in the symmetric algebra, as it corresponds to the pointwise product of operators. We
formalize this in a way that avoids the slightly awkward use of transports and partitions
of unity in e.g. [GR17]:

Construction 3.2.7. Let M be a connected n-manifold and A ∈ Fun⊗(Disk /M ,V) a
locally constant factorization algebra onM . Then, the∞-groupoid of charts Charts/M ≃
Sing(M) (by 2.2.6) is connected as well. Since we can regard Charts/M ⊆ Disk /M as a full
subcategory, the values of A on any two charts are isomorphic, so choosing an arbitrary
disk D ⊆M , the value A(D) ∈ V is independent of D up to isomorphism.

In fact, for the same reason, for any two disks D and D′, the restriction of A to
(Charts(n)/M)/D ≃ Charts/D and Charts/D′ are isomorphic since there is an isomorphism
D → D′ in Charts/M . This means that we can associate an essentially unique En-algebra
A|D to A; so by the factorization product, we mean the multiplication on the underlying
E1-algebra (i.e. associative algebra) of A|D.

Example 3.2.8. For the case of a free �eld theory on a connected n-manifold with notation
as above, the factorization algebra Obsclmd(U) is given by Sym E !c. When embedding two
disjoint smaller disks D′, D′′ into a disk D, we use the fact that a factorization algebra
is a symmetric monoidal functor to obtain a canonical isomorphism

Sym E !c(D′)⊗̂ Sym E !c(D′′) ∼= Sym E !c(D) (3.35)

sending observables a, b to their symmetric product a⊗̂b in the symmetric algebra. Iden-
tifying this with polynomial functions on the BV-BRST complex, we see that the fac-
torization product corresponds to the pointwise multiplication of classical observables.
Similarly in the quantum case, meaning that under the identi�cation of factorization
algebras on R with associative algebras, the product on the latter is just the usual
multiplication of observables.

This fails in the complex of quantum observables, since the di�erential obtains an extra
term from the shifted symplectic structure. However one can use the Green's function of
the equations of motion to give an isomorphism of chain complexes W : Obscl(U)[ℏ] →
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Obsq(U), shifting the discrepancy between classical and quantum setting into the fac-
torization product. In particular, W is not a map of factorization algebras as it equips
Obsq(U) with the deformed Moyal star product � see [CG16, Section 4.6.2] and [GR17]
for more.

3.3. More on the Scalar Field in 1D

ForM an arbitrary Riemannian manifold and U ⊆M open, we have just found (both in
the classical and quantum world) the BV-BRST complex and the factorization algebra
of observables:

E(U) =
(
0→ C∞(U)

∆+m2

−→ C∞(U)[−1]→ 0
)

Obscl(U) ≃ Obsclmd(U) = Sym E !c(U) =
(
SymC∞

c (U)⊗̂
∧∗C∞

c (U),∆+m2
)

Eq(U) =
(
0→ C∞(U)⊕ R[ℏ] ∆+m2

−→ C∞(U)[−1]→ 0
)

Obsq(U) = CE∗ E !q,c(U) =
(
SymC∞

c (U)⊗̂
∧∗C∞

c (U)⊗̂R[ℏ],DivS
)

The quantum observables were obtained from the classical ones by performing a cen-
tral extension of the underlying L∞-algebra using the so-called (−1)-shifted symplectic
structure ⟨−,−⟩:

De�nition 3.3.1. The integration pairing on U induces an antisymmetric bracket of degree
1, called the (−1)-shifted symplectic structure on the BV-BRST complex, on E !(U) =(
C∞

c (U)[1]
∆+m2

−→ C∞
c (U)

)
via

⟨−,−⟩ : Ēc ⊗ E ! → R[1] , ⟨α, β⟩ :=
�
U

αβ volg (3.36)

for α, β in opposite degrees (−1) and 0 or the other way around, and vanishing for α, β
in other degrees. In particular, it is called symplectic since it induces an isomorphism of
di�erential complexes ϕ : E ∼= E![−1] that is antisymmetric in the sense that the formal
dual of ϕ agrees with −ϕ. More on this in 5.2.18.

Generally, every classical �eld theory admits such a (−1)-shifted symplectic structure
as long as it is constructed from a variational principle, we will show this in 5.2.16. It
induces on the factorization algebra of observables a P0-algebra structure, and on the
quantum observables a BD-algebra structure. We will not properly introduce them since
we think studying them is easier on the BV-BRST complex itself, and refer to [CG16,
A.3.2] for more.

From an abstract standpoint the above equations are all we need, as they tell us every-
thing about the perturbative behavior of the theory. In fact, since the theory is free, the



3.3 More on the Scalar Field in 1D 59

equations of motion cutting out the derived covariant phase space are linear so the stack
is completely determined by its (shifted) tangent space E , even non-perturbatively. How-
ever, much analysis is still required in order to draw insights from these expressions.

Let us restrict to the case of U = (0, 1) ⊆ R and m ≥ 0.

Proposition 3.3.2 ([CG16, 4.2.4]). The complexes E(U) and E !c(U) are homotopy equiv-
alent to simpler complexes

E(U) ≃ R⟨q, p⟩[0] , E !c(U) ≃ R⟨Q,P ⟩[0] . (3.37)

where Q,P are the duals of q, p.

Proof Sketch. Let us look at the �rst case. We begin by constructing a map ψ : R⟨q, p⟩ →
E0 by sending q 7→ 1, p 7→ x for m = 0, and q 7→ cosh(mx)/m, p 7→ sinh(mx)/m for
m > 0. This is a chain map since it lands in the kernel of the di�erential ∆+m2, in fact
it even hits the whole kernel and therefore induces an isomorphism on 0th cohomology.

To show that ψ is a homotopy equivalence, a necessary condition is that E(U) has
vanishing �rst cohomology, i.e. every smooth function lies in the image of ∆ + m2.
Informally, this is done by writing down a Greens function and using it to construct a
preimage under this di�erential operator, but of course we run into functional analytic
problems when convoluting with it. We have also argued with ordinary vector spaces
instead of DVS until now. See the reference for a precise proof using homological algebra
in such topological vector spaces; it turns out to be more convenient to prove the second
statement since it only deals with compactly supported functions.

Corollary 3.3.3 ([CG16, 4.3.3]). The factorization algebras observables of a scalar �eld
in one dimension are given, on any open interval D ⊆ R, by

Obsclmd(U) ≃ Sym E !c(U) ≃ SymR⟨Q,P ⟩ = R[Q,P ]
Obsq(U) ≃ CE∗(R⟨Q,P ⟩ ⊕ ℏR, [Q,P ] = ℏ) =: W [Q,P ]

(3.38)

where the Weyl algebra W [Q,P ] is de�ned as the associative R[ℏ]-algebra freely gener-
ated by Q and P modulo the relation QP − PQ = ℏ.

Proof Sketch. Again, see the reference for the functional analytic details. The �rst state-
ment is clear from our previous result since Sym preserves homotopy equivalences. For
the second statement, all we need to show is that the commutator QP − PQ = ℏ when
using the factorization product, since we already know those generate all solutions. In
other words, if we choose an operator with support in a small disk representing the ho-
mology class of Q, and an operator in a disjoint disk representing P , we must show that
moving these disks past each other introduces an ℏ because of the twisted di�erential.
This subtle calculation is carefully carried out in the reference.
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Proposition 3.3.4 ([CG16, 4.3.1]). The factorization algebras Obscl(U) ≃ Obsclmd(U) and
Obsq(U) are locally constant.

Proof. The classical case follows immediately from 3.3.2, since from the description there
it is not hard to see that disk inclusions induce isomorphisms on E !c so that this is a locally
constant cosheaf.

For the quantum case, we again employ the Eilenberg-Moore comparison theorem from
the proof of 3.2.6 to reduce to the associated graded object of the natural �ltration on
Sym≤n. Since the deformation from the classical to the quantum case involves a central
extension by a Lie bracket, the associated term in the Chevalley-Eilenberg di�erential
does not preserve the degree of Sym∗ and therefore vanishes in the associated graded.
This allows us to reduce to the classical case.

Corollary 3.3.5. Under the identi�cation of locally constant factorization algebras on R
with associative algebras in 2.4.3, the factorization algebras of classical and quantum
observables correspond to R[Q,P ] and the Weyl-algebra, respectively. In particular, this
allows us to understand the factorization product as the usual product of observables/
operators.

Construction 3.3.6. The partial derivative ∂
∂x

is a derivation on the algebra of smooth
functions C∞(U), for any open U ⊆ R. Since it commutes with the di�erential ∆+m2 in
the BV-complex, we obtain a derivation on E(U) or E !c(U). Abstractly, this means that
our theory is (time-)translation-invariant. We can uniquely extend it to a derivation on
the symmetric algebra Sym E !c(U) = Obsclmd(U) compatible with the structure maps of
this factorization algebra. Generally, we expect that every (in�nitesimally) translation-
invariant �eld theory allows for such a derivation on the associated factorization algebra
� and similarly for other symmetries.

Proposition 3.3.7 ([CG16, 4.3.3]). The derivation on Obsq =̂W induced by the in�nites-
imal translation − ∂

∂x
is inner, i.e. it is given as the commutator [H,−] where the

Hamiltonian H ∈ W is given by

H =
1

2ℏ
(P 2 −m2Q2) . (3.39)

In particular, the scalar �eld in one dimension agrees with a harmonic oscillator of
imaginary frequency � we will explain this in 3.5.1.

Of course, R is not the only one-dimensional manifold � we should also be interested in
describing the scalar �eld on S1 (non-connected manifolds do not give us anything new
because of 2.4.14).
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Proposition 3.3.8. The scalar �eld determines locally constant absolute factorization
algebras Obsclmd, Obscl and Obsq on all oriented 1-manifolds. In fact, the same result
holds in any dimension.

Proof. On 1-manifolds, we had seen in 2.4 that Disk or
1 ≃ Disk

fr
1 ≃ E1 as ∞-operads, so

a locally constant absolute factorization algebra on oriented 1-manifolds is completely
determined by the locally constant relative factorization algebra it induces on R.

This argument however breaks down on n-manifolds unless we restrict to the framed case.
We have shown above that the mentioned algebras of observables are locally constant
relative factorization algebras on every oriented n-manifold, and they clearly assemble
to a functor Diskorn → D(DBS) so by 2.3.6, they form an absolute factorization algebra.
Showing that it is locally constant would require a proof of our conjecture 2.2.13.

Remark. To be precise, we need to �x a background metric in order to de�ne the scalar
�eld on an oriented manifold. We ignore this since we have seen that the eventual algebra
of observables is (up to homotopy equivalence) independent of it. In fact, choosing an
O(n)-structure on a smooth manifold as in 4.2.2 already more or less �xes a metric, so
Disk or

n -algebras do have some knowledge in that regard.

Proposition 3.3.9 ([CG16, 8.1.2]). The global classical observables Obscl(S1) of the scalar
�eld on the sphere S1 with circumference L ̸= 0 are given

� For m = 0, by R[1]⊕ R[0],

� For Lm ∈ 2πN ̸=0, by R[2]⊕ R2[1]⊕ R[0],

� Otherwise, by R[0].

The quantum observables Obsq(S1) can be obtained in each case by adjoining ℏ. To be
precise, in order to let m be an imaginary number, we would have to complexify our
space of observables.

Remark. Our result in the second case di�ers from the reference.

Proof. As we are working with an absolute factorization algebra over all 1-manifolds,
we can use the excision axiom in 2.4.11 or the argumentation in 2.4.13 to show that the
factorization homology �

S1

Obsq ∼= HH∗(Obsq, µObsq) (3.40)

is the Hochschild Homology of the module µObsq where the identity action of Obsq
is twisted by the monodromy action µ of shifting an operator around the circle. Since
translations act via our Hamiltonian, we can see that this monodromy just shifts the wave
functions corresponding to Q,P by L, to the e�ect of multiplying them with exp(Lm) in
the case m ̸= 0. Calculating the Hochschild Homology of the Wely algebra is still fairly
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complicated, so it is better to treat this case using the underlying di�erential equations
as is done in the reference (it can however be carried out along similar lines as the last
case below). We therefore restrict to the classical observables:

Case m ̸= 0 and Lm ∈ 2πiN: In this case, the monodromy vanishes, so we can apply the
Hochschild-Kostant-Rosenberg theorem HH∗(R[Q,P ]) ∼= Ω∗(A2

R)
♯ ∼= ∧∗R2. The ♯ should

be a warning that we equip the di�erential forms with a vanishing di�erential, not the
exterior di�erential, since this would correspond to the Connes operator. Alternatively,
use the proof of the second case and set m = 0.

Case m ̸= 0 and Lm /∈ 2πiN: For nontrivial monodromy, use the resolution

HH∗(R[Q,P ], µR[Q,P ]) ∼= R[Q,P ]⊗L
R[Q,P ]⊗LR[Q,P ]op

µR[Q,P ] ∼=
∼=
(
R[Q]⊗L

R[Q1,Q2]
µR[Q]

)
⊗
(
R[P ]⊗L

R[P1,P2]
µR[P ]

) ∼=
∼=
(
(R[Q1, Q2][1]

·(Q1−Q2)−→ R[Q1, Q2])⊗R[Q1,Q2]
µR[Q]

)
⊗ (. . . ) ∼=

∼= (R[Q][1] ·(1−eLm)Q−→ R[Q])⊗ (R[P ][1] ·(1−eLm)P−→ R[P ]) ∼= R[0]⊗ R[0] = R[0]

since we assume eLm ̸= 1.

Case m = 0: Since Q corresponds to the function 1 and P to x in this case, µ(Q) = Q
and µ(P ) = LQ+P . The monodromy of P now explicitly depends on Q, so we can not
factor the Hochschild complex as above. A similar calculation yields

HH∗(R[Q,P ], µR[Q,P ]) ∼=
(
R[Q,P ][2] 0⊗LQ→ R[Q,P ]⊕2[1]

LQpr1→ R[Q,P ]
)
∼= R[1]⊕ R[0] .

Remark. Our result tells us that in the massless case, there is always a 1-dimensional
space of solutions, namely the constant functions; while in the massive case the space is
spanned by either 0 or 2 basic solutions depending on whether or not the radius of the
circle allows for an integer number of waves to �t (which may both in around the circle
in both directions). More generally, the factorization homology of Obsq on n-manifolds
therefore knows about spectral properties of the di�erential operator ∆+m2.

Finally, let us take a look at how the higher-dimensional case can be reduced to one
dimension. Let N be a closed oriented n-manifold and M = N ×R, with projection π :
M → R. As usual, we can de�ne the factorization algebra Obsq of quantum observables
for the free scalar �eld on M .

Lemma 3.3.10. This induces a pushforward factorization algebra π∗Obsq on R via

π∗Obsq(U) := Obsq(π−1(U)) ∀U ⊂ R , (3.41)

which is locally constant since Obsq was locally constant.
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Proof. The factorization algebra onM is completely determined by the underlying sym-
metric monoidal functor Obsq : Disk(M)⊔ → V⊗. We note that the inverse image functor
π−1 : Disk(R)⊔ → Disk(M)⊔ is well-de�ned and symmetric monoidal as well, so that
their composition again yields a factorization algebra. Since π−1 sends disk inclusions
to disk inclusions, it is locally constant as well. Finally, we need to show that π∗Obsq
and Obsq ◦π−1 agree on all open subsets U ⊆ R, not only disks:

π∗Obsq(U) = Obsq(π−1(U))
!∼= Lan

Open(R)
Disk(R) (Obs

q ◦π−1) = colim
D∈Disk(U)

Obsq(π−1(D))

We are �nished when we realize that (π−1(D))D∈Disk(U) form a Weiss cover (in fact, we
even need it to be a factorization SFK cover by 4.3.2), so Obsq satis�es descent with
respect to it.

Remark. This argument holds for all projections from product spaces and even for pro-
jections of arbitrary vector bundles; see [AFT14a, 2.24].

Let now (ei)i∈Λ be an orthonormal basis of eigenvectors of the operator ∆ + m2 on
C∞(N) with eigenvalues (λi)i∈Λ. In particular, their span

⊕
iRei forms a dense subspace

of C∞(N) (the latter is a sort of completion of the former). We can use this fact to
give an alternative description of the factorization algebra π∗Obsq, which in the physics
literature is known as canonical quantization: For this, denote by Am2 the Weyl algebra
associated to the 1-dimensional free scalar �eld with mass m. We de�ne an associative
algebra

AN :=
⊗
i∈Λ

Aλi
(3.42)

where ⊗ denotes the tensor product of R[ℏ]-algebras.

Theorem 3.3.11 (Canonical Quantization, [CG16, 4.4.1]). The associative algebra object
in D(DVS) associated to the locally constant factorization algebra π∗Obscl on R contains
a dense subalgebra that is quasi-isomorphic to AN . This means that the free scalar
�eld on a compact oriented space manifold N is essentially (up to functional analytic
subtleties) equivalent, as a physical system, to a collection of harmonic oscillators (see
3.5.1 for their factorization algebras) with frequencies corresponding to the eigenvalues
of the Klein-Gordon-operator ∆+m2.

Proof. From the above discussion, we know that
⊕

i

(
C∞

c (U)ei[1]
∆+λi−→ C∞

c (U)ei

)
=:⊕

i E !i,c(U) is a dense subcomplex of E !c(U). Therefore,

Obsclmd(U) = Sym E !c(U) ⊇
⊗̂
i

Sym E !i,c(U) =:
⊗̂
i

Obscli,md(U) (3.43)

is also a dense subspace, since Sym sends ⊕ to ⊗̂, and preserves the property of being
a dense subspace. Similarly for CE∗ but with a di�erent di�erential. We also know
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that the factorization algebras Obsqi correspond to the associative algebras Aλi
since E !i,c

corresponds to a free scalar �eld of mass
√
λi. From their explicit representation as Weyl

algebras, we know it is �nitely generated, so the completed tensor product agrees with
the usual tensor product. This implies that⊗

i

R[q∗λi
, p∗λi

] ⊆ Obscl(U) ,
⊗
i

Aλi
⊆ Obsq(U) (3.44)

are dense sub-factorization algebras.

3.4. Abelian Chern-Simons Theory and its

Quantization

The case of Chern-Simons Theory works similarly. For M a smooth oriented 3-manifold
and g a Lie algebra with �xed ad-invariant (e.g. Killing) form, we start with the BV-
BRST complex from 1.5:

E(U) =
(
0→ Ω0(M, g)[1]

d→ Ω1(M, g)
d→ Ω2(M, g)[−1] d→ Ω3(M, g)[−2]→0

)
(3.45)

This is the case of vanishing background �eld A0 and trivial G-bundle (as we have seen,
this is always the case in 3 dimensions); a generalization is straightforward. To proceed,
we use Poincaré duality � the integration pairing�

(− ∧−) : Ω̄n−i
c (M)⊗ Ωi(M)→ R (3.46)

exhibits Λn−iT ∗M = (ΛiT ∗M)! as the Verdier dual vector bundle, and Ω̄n−i
c (M) ∼= Ωi(M)

as the strong dual topological vector space. Using partial integration, we see that (up to
a sign we ignore) d is its own formal dual under this pairing, so these identities extend
to chain complexes. The factorization algebra of classical observables is then given as
the algebra of polynomial functions on E(U), in the sense of:

Obscl(U) = CE∗ E(U)∨ = CE∗


0 Ω̄0

c(U, g)[2] Ω̄1
c(U, g)[1]

Ω̄2
c(U, g)[−1] Ω̄3

c(U, g)[−2] 0

d

d

d


Since E(U) is an elliptic complex, the Atiyah-Bott lemma 3.1.15 again allows us to replace
E(U)∨ = Ē !c(U) with E !c(U) ∼= Ec(U)[1], where we ignore the trivial factor DensM . This
yields the homotopy equivalent subalgebra of smeared observables:

Obsclmd(U) = CE* E !c(U) = CE*


0 Ω0

c(U, g)[2] Ω1
c(U, g)[1]

Ω2
c(U, g)[−1] Ω3

c(U, g)[−2] 0

d

d

d


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At this point, it is important to remember that E is not just a chain complex, but an L∞-
algebra. In particular, the brackets ℓn unite to form the Chevalley-Eilenberg di�erential,
which in the classical case was given by a Schouten-Nijenhuis-bracket with S:

{−, S} = ιdS
!
= ℓ∨1 +

1

2!
ℓ∨2 +

1

3!
ℓ∨3 + . . . (3.47)

This observation leads us to the following insight on how to calculate ℓn:

Observation 3.4.1. Given a local L∞-algebra L with (−1)-shifted structure ⟨−,−⟩, �ber
coordinates ϕ = (ϕi) and brackets ℓn, we can write down the gauge �xed action

Sgf [ϕi] :=
1

2!
⟨ϕ, ℓ1(ϕ)⟩+

1

3!
⟨ϕ, ℓ2(ϕ, ϕ)⟩+

1

4!
⟨ϕ, ℓ3(ϕ, ϕ, ϕ)⟩+ . . . (3.48)

This allows to retrospectively �nd the higher Lie brackets on L, since the terms in the
gauge-�xed action not involving ghosts, anti�elds and antighosts should agree with the
usual action.

For Chern-Simons theory, the (−1)-shifted symplectic structure is the tensor product of
our �xed ad-invariant inner product and the integration pairing. Also, the action only
contains interactions of order 3, so comparing with the gauge-�xed action we see that
ℓn = 0 for n ≥ 3. To obtain the right expressions for the quadratic and cubic terms (up
to an overall normalization factor of 2), we �nd ℓ1 = d as expected and ℓ2 = [−∧−].

Proposition 3.4.2. The factorization algebra Obsq for classical Chern-Simons theory is
locally constant, both when regarded as valued in Ch(DVS) and D(DVS).

Proof. The complex E !c(U) = Ω∗
c(U)[2] ∈ Db(DVS) has homology H∗

c,dR(U) the com-
pactly supported deRham cohomology of U . This sends disks inclusions to isomorphisms
by the Poincaré-Lemma, so that E !c sends disk inclusions to quasi-isomorphisms. In fact,
they are even sent to homotopy equivalences; constructing the involved homotopies in-
volves "contracting" a compactly supported di�erential form in a bigger disk into a
smaller disk which can just be done by a scalar rescaling of the argument (we leave the
details to the reader).

Quantization using our simple methods is only possible for abelian Chern-Simons theory,
since ℓ2 = [−,−] = 0 must vanish for a free �eld theory. Quantum operators are then
given by

Obsq(U) = CE∗(Ω
∗
c(U)[2]⊕ Rℏ[0]) (3.49)

where Ω∗
c(U)[2]⊕ Rℏ[0] is the strong dual of the central extension of Ω∗(U)[1] carrying

the modi�ed L∞-brackets ℓ1 = d ⊕ id, ℓ2 = ℏ⟨−,−⟩ and ℓi = 0 for i > 2. Of physical
interest is mainly the homology of these complexes, since it yields the categories of
physical observables:
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Proposition 3.4.3 ([CG16, 4.5.1]). For M a smooth oriented 3-manifold without bound-
ary, physical observables on an open subset U ⊆M in abelian Chern-Simons theory are
given by

HkObscl(U) = Sym(Hk
c (M)[2]) . (3.50)

Proof. As we are only interested in homology, it does not matter whether we work with
smeared or unsmeared observables; and because we are working over the �eld R we can
apply the Künneth theorem without torsion terms to obtain the above result.

Proposition 3.4.4 ([CG16, 4.5.1]). Let M be a closed connected oriented 3-manifold and
b2 its second Betti number. Then, if we localize at ℏ, the physical quantum observables
of abelian Chern-Simons theory are

HkObsq(M) = R(ℏ)[1− b2] , (3.51)

the dg algebra over R(ℏ) spanned by a single generator of degree 1− b2.

Technical Remark. In the reference, this result is stated using a polynomial algebra in
ℏ, which seems problematic as the di�erential in Obsq adds a factor of ℏ making it
impossible for cycles of order 0 in ℏ to be boundaries.

Proof. Let us work explicitly with a basis [β1], . . . , [βb2 ] of H
2(M) and its dual basis

[α1], . . . , [αb2 ] ∈ H1(M) under the integration pairing. Also, let [α0] := [1] · vol(M)−1

and β0 := [M ] be dual generators of H0(M) and H3(M), respectively � this is where
our assumptions on M enter. The Chevalley-Eilenberg di�erential in Obsq is made out
of the exterior di�erential (which trivially vanishes on all cohomology classes), the Lie
bracket in g (vanishes in this abelian case), and the twist by ℏ times the integration
pairing. Therefore, dCE vanishes on all quadratic terms except for

dCE(αi ⊗ βj) = dCE(βi ⊗ αj) = ℏδij ∀i, j = 0, . . . , b2 . (3.52)

This is extended to the whole complex as a derivation satisfying the Leibniz rule, which
is expressed by the BD identity

dCE(a⊗ b) = dCEa⊗ b+ (−1)|a|a⊗ dCEb+ (−1)|a|ℏ⟨a, b⟩ . (3.53)

Let us suppress the tensor product. For example, since all other contractions vanish,

dCE(α0α1β1β0) = −α0dCE(α1β1)β0 + dCE(α0β0)α1β1 = −ℏα0β0 + ℏα1β1 . (3.54)

We can understand from this example that an operator O ∈ R(ℏ)[α0, . . . , βb2 ] is a cycle
i� it does not involve αi and βi of the same i. However, we can always multiply a pair
αjβj in front of this cycle to obtain a new operator with boundary dCEαjβjO = O, as
long as αj, βj do not appear in O. Using this idea, one can show that the operator
α0α1 . . . αb2 of degree 1− b2 generates the whole cohomology as every other combination
containing one αj or βj of each kind is homologous to it.
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Remark. From this discussion, one can go further and use the language of factorization
algebras to derive the connection between Wilson loop observables in abelian Chern-
Simons theory and the Gauss linking number. We refer to section 4.5.4 in [CG16].
Also, one can construct a connection between Wilson lines in non-abelian Chern-Simons
theories and quantum groups, see 8.2 in loc. cit. and [Cos13].

3.5. Further Examples

Now that we know how this works, let us write down the factorization algebras for more
examples.

Example 3.5.1 (Harmonic Oscillator). Covariant formalisms are a bit clunky when ap-
plied to mechanical problems instead of �eld theory, but let us still indicate how this
would work. Given the manifold M = R and the space of �elds F = C∞(R), the action
of the Harmonic oscillator is given by

SHO[q] := −
m

2

�
R
q
d2

dt2
q + ω2q2dx (3.55)

with m,ω > 0. Variation yields the equations of motion

m
d2

dt2
q −mω2q = 0 (3.56)

so that (since there are no local gauge symmetries) the BV-BRST complex is given by

E(U) =

(
0→ C∞(R)

d2

dt2
−ω2

−→ C∞(R)[−1]→ 0

)
≃ R2[0] . (3.57)

This complex is homotopy equivalent to R⟨s, c⟩[0] with basis solutions s = sin(ωt) and
c = cos(ωt), as can be seen similarly to the scalar �eld in one dimension. In particular,
notice that (up to a sign that is due to us working in Euclidean signature before) the
free scalar �eld in 0+1 dimensions is equivalent to the harmonic oscillator; we have also
seen in 3.3.11 that on a space manifold N , a dense subspace of the BV-BRST complex of
the scalar �eld is given by independently taking one harmonic oscillator corresponding
to every energy eigenvalue.

The factorization algebra of classical observables also corresponds to the algebra of poly-
nomials R[s, c], while quantization amounts to twisting with the (−1)-shifted symplectic
structure induced by integration. We again obtain, as corresponding associative algebra,
the Weyl algebra spanned by s, c, ℏ. This may also be rewritten as a Weyl algebra on
the ladder operators a := s+c√

2
, a† = s−c√

2
, and we will see in section 5.3 how the Fock

space arises from this.
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Example 3.5.2 (Yang-Mills Theory). For Yang-Mills Theory with gauge group G on a
trivial bundle with trivial background �eld, the BV-BRST complex is

E(U) =
(
0→ Ω0(U, g)[1]

d→ Ω1(U, g)
d⋆d→ Ωn−1(U, g)[−1] d→ Ωn(U, g)[−2]→ 0

)
(3.58)

with ℓ2 the tensor product of Lie bracket and exterior product, and ℓn = 0 for n > 2.
As it is elliptic and (up to signs) the di�erentials are self-adjoint,

Obscl(U) ≃ Obsclmd(U) = CE∗


0 Ω0

c(U, g)[2] Ω1
c(U, g)[1]

Ωn−1
c (U, g)[−1] Ωn

c (U, g)[−2] 0

d

d⋆d

d


where the di�erential is the sum of exterior di�erential and ℓ2.

Example 3.5.3 (Abelian Yang-Mills). In the special case where g = R with the trivial Lie
bracket, this is a free theory and quantization amounts to twisting with the (−1)-shifted
symplectic structure on E(U) induced by the integration pairing

Ω̄i
c(U)⊗ Ω4−i(U)→ R . (3.59)

exhibiting Poincaré duality. This yields the algebra of quantum observables, with un-
derlying graded vector space the symmetric algebra on

0→ Ω0
c(U)[2]

d→ Ω1
c(U)[1]

d⋆d→ Ω3
c(U)⊕ ℏR d→ Ω4

c(U)[−1]→ 0 (3.60)

and di�erential generated by d and the twist by ℏ
�
(− ∧−).

Example 3.5.4 (Abelian B-Field). The usual procedure tells us that

Obsclmd(U) = Sym


0 Ω0

c(U)[3] Ω1
c(U)[2] Ω2

c(U)[1]

Ωn−2
c (U) Ωn−1

c (U)[−1] Ωn
c (U)[−2] 0

d d

d

d d


where we use E! ∼= E[1] due to the shifted symplectic structure given by the integration
pairing ⟨−,−⟩, so that Sym E !c ∼= Sym Ec[1] and expand around zero B-�eld. Note that
all higher Lie brackets vanish as the theory is free, so quantization only amounts to a
central extension by ℏ⟨−,−⟩.

Example 3.5.5 (ϕ4-theory). Finally, let us write down the observables for classical ϕ4-
theory (to treat the quantum case, we would have to introduce Feynman graph combi-
natorics and renormalization). The space of �elds F = C∞(M) is the same as for the
scalar �eld on the spacetime manifold M , but the action is given by

Sϕ4 [ϕ] :=

�
M

(
1

2
ϕ(∆ +m2)ϕ+

λ

4!
ϕ4

)
. (3.61)
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Perturbing around ϕ = 0, this yields the same Euler-Lagrange equations as for the free
theory since the ϕ3-term appearing becomes negligible. This means that the BV-BRST
complex is still given by

E(U) =
(
0→ C∞(U)

∆+m2

→ C∞(U)[−1]→ 0
)
, (3.62)

but we see from 3.4.1 that the higher Lie brackets are di�erent: While ℓi = 0 for i ̸= 3, we
have ℓ3(α1, α2, α3) = λα1α2α3 where αi are smooth functions of degree 0 in this complex
(this is indeed graded antisymmetric on E [−1]). Since ℓ3 is of degree 2 − 3 = −1, and
the arguments are of degree 1 in E [−1], this expression lands in degree 3 · 1 − 1 = 2 of
E [−1] and can therefore, as an anti�eld, be contracted with a fourth �eld. Therefore,

Sgf [ϕ] =
1

2!
⟨ϕ, (∆ +m2)ϕ⟩+ 1

4!
⟨ϕ, ℓ3(ϕ, ϕ, ϕ)⟩ = Sϕ4 [ϕ] (3.63)

as expected. From this, we may easily calculate the factorization algebra of classical
observables as

Obsclmd(U) =
(
SymC∞

c (U)⊗̂
∧∗C∞

c (U),∆+m2 + ℓ∨3
)

(3.64)

where ∆+m2 acts on the �elds in the exterior product, and

ℓ∨3 : (C∞
c (U)[1]→ C∞

c (U))→ Sym3(C∞
c (U)[1]→ C∞

c (U)) (3.65)

sends α ∈ C∞
c (U)[1] to α λ

3!
(1⊗ 1⊗ 1) ∈ Sym3C∞

c (U)[0].



4. Factorization Algebras on

Strati�ed Spaces

In this chapter, we follow [AFT14a] in extending the de�nitions and results of Chapter
2 to the case where instead of a topological manifold, the factorization algebras live on
a strati�ed space � a space that is glued together from manifolds of di�erent dimensions
so that is locally looks like a cone. Again, we will see how homotopy theory and local
structure of the space are mirrored in these algebraic objects. However, the connec-
tion to physical intuition is more subtle and less developed than in the non-strati�ed
case; therefore we make several preparatory statements for their application in the next
chapter. We assume the reader is familiar with Appendix B.

4.1. Categories of Strati�ed Spaces

Developing a theory of factorization algebras on strati�ed spaces amounts to �nding
suitable replacements for the categories and operads constructed in section 2.2. Let, for
this purpose, (M → P ) be a conically smooth strati�ed space and V a sifted complete
symmetric monoidal ∞-category.

De�nition 4.1.1. Denote by Sngln the ordinary category of conically smooth strati�ed
spaces as de�ned in B.1 with smooth (strati�ed) open embeddings as morphisms, and
de�ne the full subcategories Bscn spanned by the conically smooth n-basics, and Diskn
on disjoint unions of such n-basics.

Remark. Most statements in this section make sense if we replace conically smooth by
C0-strati�ed spaces. We will generally ignore smoothness and work with the C0-case
instead as it is a lot easier to understand, pointing out situations where this leads to
problems.

Construction 4.1.2. Let rman : ∆ → Sngln be the functor that sends [n] to the smooth
n-simplex

rman([n]) := ∆n
sm = {(x0, . . . , xn) ∈ Rn+1 |

∑
i

xi = 0} . (4.1)

70
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De�nition 4.1.3 ([AFT14b, 4.1.4]). De�ne Sngln to be the∞-category of conically smooth
strati�ed spaces, where mapping spaces are de�ned as the simplicial sets

MapSngln(X, Y )m :=
{
f ∈ HomSngln+m

(∆m
sm ×X,∆m

sm × Y ) |π∆m
sm
f = π∆m

sm

}
(4.2)

whose m-simplices are smooth maps Rm×X → Rm×Y that induce the identity on the
∆m

sm-component (i.e. smooth Rm-families of maps X → Y ). These simplicial sets are
even Kan complexes, so we obtain the desired∞-category after applying the homotopy-
coherent nerve.

Denote by Bscn the full subcategory spanned by n-basics, and by Diskn the full subcat-
egory spanned by disjoint unions of n-basics.

Proposition 4.1.4. All of these categories admit ∞-operadic structures induced by dis-
joint union (de�ned precisely like in the manifold case), these are symmetric monoidal
structures for Sngl⨿n ,Disk⨿

n , Sngl
⨿
n ,Disk

⨿
n and partially symmetric monoidal structures

for Bsc⨿n and Bsc⨿n .

De�nition 4.1.5. Absolute factorization algebras on (conically smooth) strati�ed spaces
are symmetric monoidal functors

FAstrat(V) := Fun⊗(Diskn,V) ≃ AlgBscn(V) , (4.3)

this equivalence of categories is as in the manifold case induced by the fact that elements
of Diskn are �nite disjoint unions of elements of Bscn, so a symmetric monoidal functor
on the former is determined by its values on the latter.

De�nition 4.1.6. An absolute factorization algebra is constructible if it factors through
the canonical symmetric monoidal functor Disk⊔n → Disk⊔

n ; we write

FAcbl(V) := Fun⊗(Diskn,V) ≃ AlgBscn(V) . (4.4)

In particular, such a functor sends inclusions of basics into themselves, that are isotopic
to the identity, to isomorphisms in V . We however do not know whether this statement
has a converse.

De�nition 4.1.7. To study relative factorization algebras over a (conically smooth)
strati�ed space M , we need the slice 1-categories Sngl/M ,Disk/M ,Bsc/M as well as
the ∞-categories Sngl/M Disk /M ,Bsc/M . Remember that we generally set Disk /M =
Diskn×Sngl Sngl/M and so on.

Remark. As in the manifold case, Sngl/M ≃ Open(M) is equivalent to the poset of open
subsets of M , and Bsc/M ≃ Bsc(M),Disk/M ≃ Disk(M) for the subcategories of basics
and disjoint unions of basics. In particular, all of these 1-categories possess operadic
structures determined by disjoint union ⊔.
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Construction 4.1.8. Since the ∞-operad Disk⊔n is unital, there is a canonical map into
the coCartesian operad Disk⨿n , see A.7.13. As described in A.7.14, the slice projection
Disk /M → Diskn induces a pullback diagram

Disk⊔
/M Disk⨿

/M

Disk⊔
n Disk⨿

n

giving Disk⊔
/M the structure of an ∞-operad (that is not coCartesian) with underlying

∞-category Disk /M . Similarly, we can de�ne Sngl⊔/M and Bsc⊔/M . Keep in mind that
Disk⊔

/M and Sngl⊔/M carry a weak symmetric monoidal structure in the sense of A.7.14.

Remark. This is equivalent to the construction 2.2.8 we had used in the classical case.
Multimorphisms in Bsc⊔/M from (ji : Bi ↪→ M)i=1,...,m to j : B ↪→ M are, for example,
given by smooth strati�ed open embeddings ki : Bi ↪→ B with disjoint images, and
smooth isotopies ji ∼= j ◦ ki since those are the 2-morphisms in Bscn:

MulBsc/M (j1, . . . , jm; j) := MapSngln(B1⊔· · ·⊔Bm;B)×∏
i MapSngln (Bi,B)

∏
i

MapSngl/M (ji, j)

De�nition 4.1.9. A (relative) factorization algebra onM is a symmetric monoidal functor

FA(M ;V) := Fun⊗(Disk/M ,V) ≃ AlgBsc/M
(V) . (4.5)

It is called constructible i� it factors through Disk/M → Disk /M , yielding

FAlc(M ;V) := Fun⊗(Disk /M ,V) ≃ AlgBsc/M (V) . (4.6)

Proposition 4.1.10 ([AFT14a, 2.22]). Let JM be the class of isotopy equivalences in
Disk/M , namely precisely those morphisms sent to isomorphisms in Disk /M by the canon-
ical map. This exhibits Disk /M ≃ Disk/M [J −1

M ] as a localization, so that a relative
factorization algebra A : Disk⊔/M → V⊗ is constructible i� it sends the class JM to
isomorphisms in V .

Warning. As in the manifold case, we could de�ne Bsc(M) as the full subcategory of
Sngl/M on the open subsets of M that are basics. There also is a canonical functor
Bsc/M → Bsc(M) sending an open embedding (j : B → M) to its image j(B), which is
an equivalence of categories by the same argument. While it is more convenient to work
in the slice category, we hope this construction allows for better intuition, in particular
when we later study �eld theories.
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4.2. Tangent Classi�er and Local Structures

When we want to associate to a �eld theory on strati�ed spaces an absolute factorization
algebra of observables, the above de�nition is not very helpful. Even though conically
smooth strati�ed spaces have very nice properties, we know of no physical theory that can
be made sense of on every single one. They can only de�ned on subclasses, for example
manifolds with corners, oriented manifolds with boundary, or maybe even particularly
simple cones � all of these are restrictions on the local or tangential structure of our
spaces. Mathematically speaking, such local structure should be related to the ∞-
category Bsc/M , which contains local trivializations/ charts of M in the sense of smooth
basics.

Theorem 4.2.1 ([AFT14b, 1.2.10]). ForM → P a conically smooth strati�ed space, there
is an equivalence of ∞-categories

Bscop/M ≃ SingP (M) . (4.7)

In other words, Bsc/M knows precisely about the strati�ed homotopy type of M . This
theorem generalizes the analogous result 2.2.6 for manifolds.

In the case of smooth n-manifolds, tangential structures are restrictions on (the transition
functions of) the tangent bundle TM → M . Let τM : M → BO(n) be the associated
continuous map into the classifying space of vector bundles, the tangent classi�er of M .
Then, for G → O(n) a Lie group homomorphism, a G-structure on M is de�ned as a
lift

BG

M BO(n)

Example 4.2.2.

� If G = SO(n) ⊆ O(n), a SO(n)-structure is an orientation.

� If G = ∗ so that BG = ∆0, a G-structure is a framing.

� If G = SO(k,C) for n = 2k, a G-structure is a complex structure.

� For the double covering Spin(n) → O(n), a Spin(n)-structure is a spin structure.
Similarly for other lifts of the structure group, e.g. string- or �vebrane-structures.

� Many other interesting examples exist, e.g. the map G2 ↪→ O(7) induces G2-
structures, that are equivalent to a choice of orientation and spin structure
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� Following 2.2.7, we can de�ne a topological manifold with G-structure for every
homomorphism of topological groups G→ Homeo(Rn) = Top(n) in the same way
(letting the tangent microbundle factor through G). An O(n)-structure is the same
thing as a smooth structure, by smoothing theory.

� For G = Homeo+(Rn) the subgroup on orientation-preserving homeomorphisms, a
G-structure is an orientation on a topological manifold

� One can de�ne a map of classifying spaces BPL(n) → BTop(n). Factoring the
tangent microbundle of a topological manifold M through this is equivalent to
equipping M with a PL structure.

Let us generalize this to strati�ed spaces. In this section, let us always work in the
C0-strati�ed case, meaning that Bscn, Diskn, Sngln refer to C0-basics and so on.

De�nition 4.2.3. For (M → P ) an n-dimensional C0-strati�ed space, the tangent classi-
�er is the slice projection

τM : SingP (M) ≃ Bsc/M → Bscn . (4.8)

In particular if we form the strati�ed realization on both sides, B.2.1 allows us to interpret
| Bsc |strat as a (strati�ed) classifying space:

|τM |strat :M ≃ | SingP (M)|strat → |Bscn |strat . (4.9)

By A.2.14, slice projections are always right �brations and hence classify presheaves in
PSh(Bscn). Let us denote by τ : Sngln → PSh(Bscn) the functor that sends a strati�ed
space to its tangent classi�er.

Theorem 4.2.4 ([AFT14b, 4.4.8]). In particular, if (M → ∗) is a smooth manifold, this
map factors through the full subcategory BO(n) spanned by (Rn → ∗) ∈ Bscn, where it
agrees with the classifying map of the tangent bundle of a smooth manifold. Similarly,
for M a topological manifold, Charts(M) → BTop(n) ⊆ Bscn classi�es the tangent
microbundle of M , compare 2.2.7.

While this is di�cult to prove, it is extremely intuitive: Every point x on M has a
neighborhood U that is homeomorphic to Rn, and our claim is that we may identify this
neighborhood with the tangent space TxM . The morphisms in Bsc/M ≃ Charts/M then
apparently encode how these charts glue together to form a vector bundle.

De�nition 4.2.5. A tangential structure for C0-strati�ed spaces is a right �bration B →
Bsc. By abuse of notation, it is often simply denoted by B, and the presheaf in PSh(Bscn)
classi�ed by it according to A.2.13 is called B as well.

Let us in the following �x a tangential structure B → Bscn.
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De�nition 4.2.6. A B-structure on a C0-strati�ed space (M → P ) is a factorization

SingP M = Bsc/M → B → Bscn (4.10)

of its tangent classi�er. Using the pullback diagram

Sngl(B) Sngl(B) PSh(Bscn)/B

Sngln Sngln PSh(Bscn)τ

we construct a 1-category Sngl(B) and a ∞-category Sngl(B) of B-structured strati-
�ed spaces, or B-manifolds. Similarly, we construct Disk(B) and Disk(B), note that
we do not need Bsc(B) as this is just B. All of these categories come equipped with
symmetric monoidal structures induced by ⊔, since τ : Sngl⊔n → PSh(Bscn)⨿ is a sym-
metric monoidal functor, making the above a pullback diagram in symmetric monoidal
∞-categories if we also equip PSh(Bscn)⨿/B with the coproduct.

This means that we can de�ne absolute factorization algebras on B-structured strati�ed
spaces as symmetric monoidal functors Disk(B)⊔ → V⊗, and call them locally constant
i� they factor through Disk(B)⊔.

Example 4.2.7. Unlike in the manifold case, the category Bscn has multiple objects, so
choosing a tangential structure can not only pose restrictions on the transition maps, or
force the transition maps to lift to a bigger group (like in the spin structure case); but
can also restrict how the strati�ed space is locally allowed to look like (i.e. which kinds
of links we are allowed to use), or equip it with extra data like colorings:

� Let BTop(n) be the full subcategory of Bscn spanned by Rn → ∗, then BTop(n)-
manifolds are topological manifolds. Using topological subgroups G ⊆ Top(n), we
can compose right �brations

BG→ BTop(n)→ Bscn (4.11)

to incorporate G-structured topological (or, for G ⊆ O(n), even smooth) manifolds
into this context.

� For B the full subcategory spanned by Rn and Rn−1 × C(∗), we obtain manifolds
with boundary.

� For B the full subcategory spanned by Rn−m × Rm
≥0 → [m] for all 0 ≤ m ≤ n, we

obtain manifolds with corners.

� For B the full subcategory spanned by basics Ri×C(L) where i ̸= n−1, we obtain
topological pseudomanifolds up to the condition that the top stratum mush be
dense.
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� As 1-dimensional C0-strati�ed spaces are the same thing as graphs, if we restrict
to Bscor1 with only orientation-preserving inclusions of basics, we obtain directed
graphs

� For B = Bsc1×C → Bsc1 with C a discrete set of colors, we obtain colored graphs.

� For B the full subcategory of Bscn on those basics Ri × C(L) with n− i even (so
the dimension of L is odd), the category of B-manifolds contains precisely those
C0-strati�ed spaces that only consist of strata of even codimension. In particular,
every complex variety has this property.

� To generalize the last point, we could only allow basics Ri × C(L) where, if
dim(L) = 2k is even, the middle-dimensional middle-perversity intersection ho-
mology IHm

k (L,Q) vanishes. This yields (after also restricting to topological pseu-
domanifolds) an ∞-category of Witt spaces. Similarly for Intersection-Poincaré
spaces.

One may imagine that the presheaf Bscn → S classi�ed by B associates to every basic a
space of possible "colorings" of it, in particular an empty space of coloring would mean
that this local structure is not allowed at all. Similarly, to every inclusion of basics
it associates the induced changes of color/ whether such inclusions are allowed at all,
among other data.

Remark. Absolute factorization algebras on B-structured strati�ed spaces hence allow
us to describe �eld theories that can be de�ned simultaneously on all strati�ed spaces
with B-structure, e.g. Chern-Simons theory which can be de�ned on closed orientable
3-manifolds, and will later be extended to oriented 3-manifolds with corners.

Observation 4.2.8 ([AFT14a, 2.7]). For any C0-strati�ed space M → P , its tangent
classi�er Bsc/M → Bscn is a right �bration and can hence be interpreted as a tangential
structure. However, it classi�es a representable presheaf by A.2.14, so

Sngl(Bsc/M) = Sngln×PSh(Bscn)PSh(Bscn)/h(M)
∼= Sngl/M (4.12)

since Sngln ⊆ PSh(Bscn) is a full subcategory by B.1.10. Be very careful, since the
symmetric monoidal structure this induces on Sngl/M is not the one given by disjoint
union that we are interested in! Relative factorization algebras are not just absolute
factorization algebras with respect to this tangential structure.

Still, this is helpful to know: If B is an arbitrary tangential structure and M → P is
B-structured, we can factor the tangent classi�er Bsc/M → B → Bscn yielding a natural
transformation of associated presheaves h(M)|Bscop

/M
→ B. Applying the pasting lemma

to the pullback diagram
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Sngl(B)/M Sngl(B) Sngln

(
PSh(Bscn)/B

)
/(h(M)→B) PSh(Bscn)/B PSh(Bscn)

τ

and noticing the double slice category in the lower left is just PSh(Bscn)/h(M) tells us that
Sngl(B)/M ≃ Sngl/M and similarly Disk(B)/M ≃ Disk /M and B/M ≃ Bsc/M , so tangential
structures do not matter in the relative setting.

4.3. Weiss Descent

Analogously to factorization algebras on manifolds, we show that factorization algebras
on strati�ed spaces can be thought of as factorizable Weiss cosheaves. This relies on an
important descent property of Disk /M that generalizes the Seifert-van-Kampen theorem
from algebraic topology. Compare our discussion in B.4.

De�nition 4.3.1 ([Mat13, 2.10]). For (M → P ) a C0-strati�ed space and C an ordinary
category, a functor U : C → Open(M) is called a factorization SFK cover if, for any
nonempty �nite subset S ⊆ X, the full subcategory Cx spanned by those C ∈ C such
that S ⊆ U(C), is weakly contractible as in A.8.4.

Theorem 4.3.2 (Seifert-van-Kampen for Weiss covers). Let (M → P ) be a C0 strati�ed
space, C an ordinary category and U : C → Sngl/M a factorization SFK cover. Then,

Disk /M
∼= colim

C
Disk /U . (4.13)

Proof Sketch. Ideally, we should be able to prove this by applying strati�ed SFK B.4.4
to the Ran space, since a factorizing SFK cover is a SFK cover on the Ran space. We
however only know that Disk surj

/M
∼= SingP Ran(M)op by 2.5.5, ignoring disk inclusions

that are not surjective on connected components. This issue can either be �xed by
adding the inclusions of ∅ into a disk in by hand; or by hoping that an enhanced Ran
space, as in the references at the end of 2.5, allows for a more general statement. solve
this problem by hand; or rely on this alternative proof following [Mat13, 2.25] (who
hover only shows that this map is co�nal, not an equivalence):

As discussed in A.2.14, the left �bration Disk /M → Diskn classi�es the representable
functor MapDiskn

(−,M) : Disk op → S, so by A.9.2 we have

Disk /M
∼= laxcolim

D∈Diskn

Emb(D,M) . (4.14)
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where Emb denotes the mapping space in Diskn. A similar expression holds for each
U(C) with C ∈ C. If one explicitly proves that this lax colimit commutes with the
colimit over C, it su�ces to show that for each D ∈ Diskn,

Emb(D,M) ∼= colim
C∈C

Emb(D,U(C)) . (4.15)

Along the lines of [AFT14a, 2.21], one can show that there is a canonical map
Emb(D,M) → Emb({1, . . . , k},M) = Sing Confk(M) by choosing one point in every
one of the k connected components (basics) in D. The �bers of this map consist of au-
tomorphisms of the respective basics. Since those arise on both sides of the expression,
we can equivalently just show

Sing Confk(M) ∼= colim
C∈C

Sing Confk(U(C)) . (4.16)

But our assumption that U is a factorization SFK cover assures that Confk(U(C))
form an SFK cover of Confk(M), so we can just apply generalized Seifert-van-Kampen
B.4.3.

Corollary 4.3.3. The localization map Disk/M → Disk /M is left co�nal.

Proof. Similar to [HA, 5.5.2.13]. By Quillen's Theorem A A.8.3, it su�ces to show that
for every object (j : D →M) ∈ Disk /M , the pullback

P = Disk/M ×Disk/M
(Disk /M)j/ (4.17)

is weakly contractible. The projection P → Disk/M is a right �bration as it is the
pullback of a slice projection, and thus by A.2.13 classi�ed by a functor χ : Disk/M → S
that sends D′ ∈ Disk/M to

fib (Emb(D′, D)→ Emb(D′,M)) (4.18)

where by Emb we denote the mapping space in Sngln. Conversely,

P = colim
Disk/M

(χ) = fib

(
colim

D′∈Disk/M
Emb(D′, D)→ Emb(M,D)

)
(4.19)

since �ltered colimits in S commute with �nite limits; which vanishes by the previous
proposition.

Proposition 4.3.4 ([AFT14a, 2.28]). For M a conically smooth strati�ed space, the sim-
plicial set Disk(B)/M is sifted.

Theorem 4.3.5. Let V be a sifted complete symmetric monoidal∞-category. Restricting
along the inclusion Disk⊔/M ↪→ Sngl⊔/M ≃ Open(M)⊔ induces an equivalence of categories

FA(M ;V) ≃ Sh⊗
∞(MWeiss,Vop) ≃ Fun⊗(Disk/M ,V) , (4.20)

with inverse functor given by left Kan extension. This means factorization algebras on
M with values in V are the same thing as factorizable V-valued Weiss cosheaves on M .

http://www.math.ias.edu/~lurie/papers/HA.pdf#theorem.5.5.2.13
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Proof. Restriction a priori induces a functor into Fun(Disk/M ,V). This factors trough
the symmetric monoidal functors because we only plug in factorizable sheaves, whose
underlying functor sends disjoint unions of embeddings to tensor products, i.e. is sym-
metric monoidal itself.

Further, the inclusion Disk/M ↪→ Sngl/M is fully faithful, so left Kan extension
Fun(Disk/M ,V) → Fun(Open(M),V) along it is so as well. It stays like that on the
full subcategories of symmetric monoidal functors, however we must show that we actu-
ally land inside factorizable sheaves.

For this, let A′ : Disk⊔/M → V⊗ be a disk algebra; we need to show that LanOpen(M)
Disk/M

A′ is
a Weiss cosheaf. This Kan extension can be calculated as the colimit

Lan
Open(M)
Disk/M

A′(U) ∼= colim
D∈Disk/U

A′(D) ∼= colim
D∈Disk/U

A′(D)

by above co�nality statement, which we want to satisfy descent with respect to every
Weiss cover (Ui ⊆ U)i∈I . By adding all �nite intersections (as they are contained in
the �ech nerve incorporating this descent), we can make such a Weiss cover into a
factorization SFK cover U : C → Open(M) with objects of C given by �nite tuples in I.
This leaves us with

colim
C∈C

colim
D∈Disk/U(C)

A′(D)
!∼= colim

D∈Disk/U

A′(D) .

To show this, we apply transitivity of (left) Kan extensions to the composition

Disk /U → C → ∗

where using 4.3.2, the �rst map is the coCartesian �bration classi�ed by C 7→ Disk /U(C).
Left Kan extension along the terminal morphism is just a colimit, and left Kan extension
along the middle morphism by [KER, Tag 02ZM] is a �ber-wise colimit along the �bers
Disk /U(C), so we are �nished.

Finally, we need to show that the left Kan extension functor is essentially surjective, or
in other words that for A a factorizable Weiss cosheaf,

Lan
Open(M)
Disk/M

(
A|Disk/M

)
(U) ∼= colim

D∈Disk/U
A(D)

!∼= A(U)

Because Disk/U clearly form a Weiss cover of U , this isomorphisms follows from Weiss
descent. We do not have to use a simplicial diagram including all intersections since
every such intersection can again by covered by disjoint unions of basics.

Remark. Under this equivalence, constructible factorization algebras correspond to con-
structible Weiss cosheaves, i.e. Weiss cosheaves that send disk isotopies to isomorphisms.

To compare factorization algebras with cosheaves, assume that V contains all colim-
its and is equipped with the coCartesian symmetric monoidal structure V⨿, i.e. the
coproduct is the tensor product.

https://kerodon.net/tag/02ZM
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Proposition 4.3.6 ([Gin13, Lemma 11]). Factorization algebras in FA(M,V) are the same
thing as cosheaves on M . In fact, factorizable Weiss cosheaves on every Hausdor�
topological space are the same thing as cosheaves.

Proof. Using 4.3.5, the proof of 2.4.16 translates to this generality.

Corollary 4.3.7. Constructible factorization algebras in FAlc(M,V) are, via the above
identi�cation, the same thing as constructible cosheaves on M .

Proof. Combine the above proposition with B.3.6.

Corollary 4.3.8. Given a (constructible) cosheaf F ∈ coShcbl(M ;V) and a symmetric
monoidal functor S : V⨿ →W⊗ into a sifted complete symmetric monoidal∞-category,
the composition S ◦ F : Disk/M → W is a (constructible) factorization algebra on M .
If S preserves sifted colimits, then S ◦ F : Open(M)→W is the associated factorizable
Weiss cosheaf to this factorization algebra.

Proof. The �rst statement is immediately clear since we have seen that F is a (con-
structible) factorization algebra itself, with associated symmetric monoidal functor
F : Disk/M → W so that S ◦ F is again symmetric monoidal, i.e. a (constructible)
factorization algebra. For the second statement, note that the associated Weiss cosheaf
is recovered from this symmetric monoidal functor using a left Kan extension, which
is pointwise given by sifted colimits because of 4.3.4. If S preserves sifted colimits, it
commutes with this Kan extension; compare the argument of 3.2.2.

4.4. Examples in Dimension 1

Let us, for simplicity, start by writing down some examples involving 1-dimensional
strati�ed spaces. Remember that the only 1-basics are ∅, R with trivial strati�cation,
and cones on a �nite set of points C({1, . . . , k})→ [1].

We begin with M = (C(∗) → [1]) = (R≥0 → [1]), a manifold with boundary with
its canonical strati�cation sending the boundary to 0, and the interior to 1. It con-
tains basics of the form C(∗) and of the form R, so the exit-path category is given by
Sing[1](M) = Bscop/M = ∆1 as all charts in the bulk are isotopic, and there is an inclusion
R ↪→ C(∗). See B.2.20 for other ways to calculate it. Similarly, Disk /M consists of �nite
sets of disjoint basics inM , possibly including several of them in the interior of the form
R, but there can only be one basic C(∗) containing the boundary ∂M = {0}.
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Now, what is the operadic structure on Bsc⊔/M? We will denote the basic C(∗) inM as l,
and the basic R as a. Then, the only non-degenerate simplices in Bsc/M are the objects
l, a and one morphism a→ l. Multimorphisms are given by

Mul({a, a, . . . , a}, a) = {total orders on 1, ..., k} =
= Mul({l, a, . . . , a}, l) = Mul({a, . . . , a}, l)

where each source contains k ∈ N0 arguments a. All other multimorphism spaces are
empty. Intuitively, we can either include k disks into one disk in the interior; or we can
include k disks, possibly together with an interval [0, a), into a bigger interval [0, b).

De�nition 4.4.1 ([HA, 4.2.1.1]). We call the ∞-operad with objects (i.e. colors) l, a
and the discrete multimorphism spaces above by LM⊗. Composition is induced by
inserting an ordering into the respective position of another ordering, as for E⊗

1 . There
is a canonical map of operads E⊗

1 → LM⊗ sending the unique object to a, and there is
a map of operads E⊗

0 → LM⊗ sending the unique object to l.

Proposition 4.4.2. The above discussion shows that Bsc⊔/R≥0
≃ LM⊗, and Disk /R≥0

can
expressed in a similar way.

Corollary 4.4.3. Constructible factorization algebras on R≥0 → [1] are the same thing
as algebras over LM⊗, which are also called left modules on V . Precomposing with
E⊗

1 → LM⊗ associates to every left module an underlying associative algebra object
A in V ; and precomposing with E⊗

0 yields a pointed object L in V . The images of the
multimorphisms described above in V are morphisms

A⊗ A⊗ · · · ⊗ A→ A

L⊗ A⊗ · · · ⊗ A→ L

A⊗ A⊗ · · · ⊗ A→ L

that equip L with a homotopy coherent module structure over A. In particular, the �rst
morphism type describes the algebra structure on A, the second the module structure of
L, and the third type describes for k = 0 the pointing of L, while for higher k it agrees
with the composition of pointing and module multiplication.

Similarly, we could have de�ned an operad RM⊗ with colors a, r, such that the mul-
timorphisms in it encode a right module structure (here, the multimorphism space is
only non-vanishing if r appears only as the rightmost source, or not at all). A similar
argument would have allowed us to identify constructible factorization algebras over R≥0

with right module objects, since as expected the functor sending left to right modules
by reversing the algebra structure on A is an equivalence. Intuitively, this reverses the
orientation of R≥0. We see that

FAlc(R≥0;V) ≃ AlgLM V ≃ AlgRM V . (4.21)

http://www.math.ias.edu/~lurie/papers/HA.pdf#theorem.4.2.1.1


4.4 Examples in Dimension 1 82

Example 4.4.4. Next, let M = ([0, T ] → [1]) for T > 0 be a compact interval in R; a
manifold with boundary strati�ed in the canonical way. Its enter-path category is

Bsc/M ≃ Sing[1](M)op ≃ (∗ ← ∗ → ∗) , (4.22)

so the operad Bsc⊔/M now has three colors l, a, r. Multimorphisms have a similar de-
scription as above, their space vanishes unless there is either no argument l, r involved,
or precisely either one l or one r, on the respective side. In other words, constructible
factorization algebras on [0, T ] consist of

� an associative algebra object A in V ,

� a left module L over A,

� a right module R over A.

Putting this in di�erent words, the operad E⊗
[0,T ] := Bsc⊔/[0,T ] ≃ LM⊗ ⨿E⊗

1
RM⊗ so

algebras over it consist of a left and a right module over the same algebra.

However, we are still not �nished: Since [0, T ] is not itself a basic, we should still calculate
the factorization homology of an E[0,T ]-algebra determined by a triple (A,L,R).

Construction 4.4.5. We call the factorization homology
�
[0,T ]

(A,L,R) =: L ⊗A R ∈ V
the relative tensor product of the left module L with the right module R. It is calculated
as a left Kan extension using the formula

L⊗A R = Lan
Open(M)
Disk/M

(A,L,R)([0, T ]) ∼= colim
D∈Disk/M

(A,L,R)(D) ∼=

∼= colim
∆op

(
. . . L⊗ A⊗ A⊗R L⊗ A⊗R L⊗R

) (4.23)

where we have replaced Disk /M by the co�nal subdiagram Disk ′(M) → V on disjoint
unions of disks containing 0 and T , which can be checked using Quillen's Theorem A
A.8.3, see [AF15, 3.11] for a precise argument. Also, we have noticed that Disk ′(M) ≃
∆op by sending a disjoint union of two disks around the boundary, and i disks in the
interior, to the nonempty �nite set of "free spaces" between the disks, equipped with
the total order induced from R. The resulting geometric realization (i.e. colimit over a
∆op-diagram) is also called the two-sided bar construction.

Example 4.4.6. Next, let us look at the case where the basic C({0, 1}, ∗) → [1] is used.
This can be imagined as a point with two lines coming out of it, or in other words,
M = R→ [1] where the strati�cation indicates a marked point. The enter-path category
in this case is

Bsc/M ≃ Sing[1](R→ [1])op ≃ {∗ → ∗ ← ∗} (4.24)

so again, the operad E⊗
M = Bsc⊔/M has three di�erent colors a′, b, a. In this case, disks

inclusions however involve
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� including multiple disks of type a′, i.e. inside R<0, into a disk of type a′,

� including multiple disks of type a, i.e. inside R>0, into a disk of type a,

� including multiple disks of type a′, at most one disk of type b that includes 0, and
multiple disks of type a into a big disk of type b.

Again, we can write down an operad BM⊗ incorporating these types of disk inclusions,
such that E⊗

M ≃ BM
⊗. A BM⊗-algebra then consists of a triple (A′, B,A), where

� A and A′ are E⊗
1 -algebras because of the �rst two types of disk inclusions

� B is a pointed object equipped with a right-module structure over A′, and a left
module structure over A.

This fully characterizes constructible factorization algebras on R with a marked point,
since every open subset is a disjoint union of basics.

Example 4.4.7. Finally, we discuss absolute constructible factorization algebras on
framed 1-dimensional singular spaces Sngl fr1 := Sngl(∗ → Bsc1). As mentioned
above, basics of dimension 1 are precisely R and C({1, . . . , k}); and one can see
that �xing a framing is equivalent to choosing an orientation on the manifolds R and
C({1, . . . , k})−{−∞}, respectively. Therefore, objects of Sngl1 are graphs, and objects
in Sngl fr1 are directed graphs.

An absolute factorization algebra is given by a functor Bscfr1 → V preserving the operadic
structure. To every �avor of basic, we thus have to associate on object of V , such
that inclusions of multiple basics into one induce algebraic structures on these objects.
Figuring those out works similarly to the examples above; we �nd

� An associative algebra A := A(R) ∈ V

� For each i, j ∈ N0 that are not both zero, an object A(i, j) ∈ V together with i
left and j right module structures over A(R) that all commute with each other.
This is given by evaluating A on C({1, . . . , i+ j}) where i of the lines are directed
away, and j towards the cone point.

See the end of section 4.1 in [AFT14a] for more information. We can calculate the
factorization homology of A on the bouquet of 3 circles

(M → P ) := ((S1, 1,−1) ∨ (S1, 1) ∨ (S1, 1)→ {0 < 1 > 0′}) , (4.25)

with one pointing inside and one pointing outside of the middle:
�
M

A = A(1, 1)⊗A⊗Aop A(3, 3)⊗A⊗Aop A⊗A⊗Aop A (4.26)

In other words, note that A(3, 3) possesses 3 di�erent bimodule structures over A, and
what we have to do is (in any order) to
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� Form the derived tensor product of the �rst bimodule structure with the bimodule
corresponding to the extra pointing,

� Take Hochschild Homology with respect to the second bimodule structure,

� Take Hochschild Homology with respect to the third bimodule structure.

4.5. Examples in Higher Dimension

For higher-dimensional strati�ed spaces, the module structures can become even more
complicated.

Example 4.5.1. Let M = R× R≥0 with the usual strati�cation of a two-dimensional
manifold with boundary. There are two kinds of basics in this space: Disks in the
interior of M , and disks at the boundary of the form R× C(∗). This allows for similar
classes of basic inclusions as in the case of R≥0, see the �gure.

Figure 4.1.: Possible inclusion of multiple basics into one in R× R≥0

Arguing as in the last section, we may guess that for a constructible factorization algebra
A : Disk⊔

/M → V⊗, the image A(D) for a disk in the interior should be an E2-algebra,
while A(D′) for a basic at the boundary is an E1-algebra because we can include such
basics into each other in a similar way as we could include disks in R into each other.
Also, there should be a module action A(D′)⊗A(D)→ A(D′), and inclusions of multiple
disks into D′ like in the �gure introduce higher coherence relations. In other words, A
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consists of an E1-algebra, an E2-algebra, and a module structure of the former over the
latter that is compatible with both algebra structures.

An alternative way to see this is to prove a version of Dunn additivity 2.4.15 for con-
structible factorization algebras, making Disk⊔

/R×R≥0

∼= E⊗
1 ⊗LM⊗ so that a constructible

factorization algebra on M consists of an associative algebra object in the ∞-category
of pairs of algebras and left modules over them in V ; or conversely a pair of an algebra
and a left module in the ∞-category AlgE1

(V).

Example 4.5.2. Similarly for the n-dimensional manifold with boundaryM = Rn−1×R≥0,
one �nds that constructible factorization algebras on it agree with pairs (A,L) of an En-
algebra A and an En−1-algebra L, together with a module action of A on L compatible
with the respective algebra structures. Alternatively via Dunn additivity, an EM -algebra
is a pair of an associative algebra and a left module over it inside AlgEn−1

(V).

There is even another way to express this. Remember that given a commutative ring
R, an R-algebra is the same thing as another commutative ring R′ equipped with a
morphism R→ R′. Similarly, an R-module structure on a pointed set S is a morphism
R→ End(S). We can generalize this to En-algebras:

Proposition 4.5.3. Equipping an Ei-algebra L with a module structure over an En-algebra
A is equivalent to equipping it with a morphism of En-algebras

A→ Zn(L) , (4.27)

where Zn(L) is the En-center of M . This generalizes classical constructions like the
center of a monoid, the endomorphisms of a pointed set, Hochschild homology (this is
also called the derived center) and the Drinfeld center.

Remark. While we do not properly de�ne Zn(L), it is uniquely determined by this
universal property using the ∞-Yoneda Lemma.

Example 4.5.4. Given an n-manifold M with boundary, strati�ed in the usual way by
[1], a constructible factorization algebra on it consists of

� An EM̊ -algebra A,

� An E∂M -algebra L,

� A module structure of L over A that is parametrized by the homotopy type of ∂M
in a way that is hard to describe explicitly.

One should compare this with the recollement property of sheaves 5.5.4, which tells us
that a cosheaf on M is the same thing as a triple consisting of a cosheaf F◦ on M̊ , a
cosheaf F∂ on ∂M , and a map i∗j∗F◦ → F∂ for j : M̊ ↪→M, i : ∂M ↪→M .
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Example 4.5.5. Given a manifold M without boundary, with strati�cation M → [1]
such that the preimage of 0 marks an embedded submanifold N ↪→ M , describing
constructible factorization algebras on it is relatively di�cult as we need to be aware of
the fact that N might cutM into two pieces, or do other topologically non-trivial things,
that need to be captured in the algebraic structure. An easier approach to embedded
submanifolds is via absolute factorization algebras, let us explain this for the case of
knots in 3-manifolds.

We may de�ne a tangential structure B ⊆ Bsc3 spanned by R3 itself and R×C(S1). The
idea behind this is that Sngl(B) contains spaces which locally either look like a manifold,
or like R × C(S1) ≃ (R3 → [1]) where the strati�cation marks one coordinate axis in
R3. This are precisely 3-manifolds with marked lines and circles!

As there are precisely two �avors of basics, one can show that constructible absolute
factorization algebras on B-manifolds are determined by an E3-algebra for the bulk, an
E1-algebra for the lines and a module structure of the latter over the former. Note we do
not have to distinguish between left-, right- and bimodules over En-algebras for n ≥ 2
since the ordering of R is not present any more. This classi�cation is very useful both for
knot theory and for studying Wilson lines in e.g. Chern-Simons theory, compare [CG16,
8.2] and [Cos13].

Example 4.5.6. For M a compact smooth n-manifold with boundary, equip the quotient
M⧸∂M with the strati�cation sending points in the interior to 1, and the collapsed
boundary to 0. This space is C0-strati�ed since it locally either looks like Rn or C(∂M)
by a collar argument; it even has an atlas induced from M making it conically smooth
since this property is stable under forming a cone and gluing. A constructible factoriza-
tion algebra on this quotient is, intuitively, given by

� An EM̊ -algebra A encoding inclusions of disks away from the singular point,

� A pointed object L = A(C(∂M)) ∈ V associated to a basic around the singular
point,

� A module action of A on L induced by the inclusion of disks of the �rst into basics
of the second type. Just as A is not just an ordinary algebra, this is not just an
ordinary action but should rather be thought of as a family of actions parametrized
by (the homotopy type of) ∂M , see below.

Example 4.5.7. For M = R≥0 × R≥0 strati�ed over [2] as a manifold with corner, a
constructible factorization algebra on M consists of

� An E2-algebra A corresponding to disks living in the interior of M ,

� Two left modules L and L′ over A for the two boundary components,

� E1-algebra structures on L and L′ that are compatible with the A-module struc-
tures,
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� A pointed object N ∈ V that is a left module for both L and L′ corresponding to
the corner,

� Such that the two induced module structures of N over A are isomorphic.

Again, note that we can also write Disk⊔
/M
∼= LM⊗ ⊗ LM⊗.

Example 4.5.8. Finally, let us look at the pinched torus from B.1.12 as a more compli-
cated example. A constructible factorization algebra on it consists of

� An E2-algebra A for the interior,

� A pointed object L ∈ V for the pinch point,

� A left and a right module structure of L over A, corresponding to shifting disks
from the interior to the singular point from both directions,

� Automorphisms σ and σ′ of A, corresponding to moving disks around the torus in
the direction of the small circle,

� An involution τ of A turning the left- into the right module structure, correspond-
ing to moving disks around the big circle,

� Such that τ ◦ σ ∼= σ′ in a homotopy coherent way.

We could say that L has a module structure over A that is parametrized by the link
S1⊔S1 of the singular point. Let us capture this intuitive understanding in a somewhat
cryptic mathematical statement.

Conjecture 4.5.9. For a conically smooth strati�ed space (M → P ), a constructible
factorization algebra on it should consist of

� One En-algebra Ap for each n-dimensional stratum Mp with p ∈ P ,

� For p ≤ p′ in P , a module structure of Ap over Ap′ that is parametrized over the
link of Mp in Mp′

� Such that for p ≤ p′ ≤ p′, the composite module structure of Ap over Ap′′ should
be homotopic to the one induced by p ≤ p′′ as in the corner case,

� Higher coherence relations for longer chains in P .

We conjecture that similarly to the manifold case 2.4.19, this can be captured in an
elegant way by saying that

FAlc(M ;V) ≃ laxlim
(j:Ri×C(L)↪→M)∈Bsc/M

AlgEi
(V) (4.28)

Remember Bsc/M ≃ SingP (M)op is the category of enter-paths, its morphism spaces
describe the homotopy links of points in strata encoding the second item above. We use
a lax (co-)limit in this expression motivated by the analogous result for constructible
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sheaves B.24, and we use enter-paths because we are working with cosheaves. In the
manifold case, this reduces to an ordinary colimit by A.9.6 as the exit-path category
becomes a Kan complex.

The diagram Bsc/M ↪→ CatCatCat∞ to which we apply the Grothendieck construction is in-
formally given by sending any basic parametrized by Ri × C(L) to the ∞-category
of Ei-algebras AlgEi

(V), and any isotopy transport of basics in M making them factor
through an embedding Ri×C(L) ↪→ Rj×C(L′) where automatically j < i to an induced
transport map on Ei-algebras, composed with the operation of sending an Ei-algebra to
its center Ej-algebra. This is probably hard to describe explicitly, but can be checked to
yield the correct result in simple cases. See A.9.2 and A.2.12 for more (note the pullback
expression for the Grothendieck construction), we omit a more thorough discussion as
it is both speculative and technical.

We invite the reader to �gure out by himself what constructible factorization algebras
over the other examples B.1.12 look like.



5. Applications for Field Theories

The techniques developed in the last chapter will now be put to use to study �eld theo-
ries. After an extensive motivation on why �elds on strati�ed spaces are interesting at
all, and some mathematical background on shifted symplectic structures, we go through
a wealth of examples. Not only manifolds with boundaries or corners will be consid-
ered (in the �rst case, our discussion follows [GRW20]), but also triangulations and
cell decompositions of manifolds. We end with a compilation of future prospects and
applications.

5.1. Motivation

Just as (locally constant) factorization algebras are used to describe operator algebras on
manifolds, constructible factorization algebras allow us to apply similar constructions to
strati�ed spaces � in particular manifolds with corners, manifolds with marked embedded
submanifolds, conifolds that arise in string theory and even general complex varieties.
We have seen many examples that indicate how their algebraic structure captures the
local structure and homotopy theory of a strati�ed space. But why should we even
consider physics in these contexts?

5.1.1. Manifolds with boundary, bordisms, and Hamiltonian

Field Theory

In 1.3, we have introduced a derived geometric formulation of Lagrangian �eld theory
that �ts together very nicely with the formalism of factorization algebras. To repeat
the most important points: Given a spacetime manifold M , a space of (o�-shell) �eld
histories F ′ = [F/G] where we form a stacky quotient with respect to gauge symmetries,
and an action functional S : F ′ → R, we constructed a derived stack X := dCrit(S)
and called it the derived covariant phase space of our theory. Given a �xed background
�eld con�guration ϕ ∈ X, we wrote E := TϕX for the BV-BRST complex, with E [−1]
an L∞-algebra that describes perturbative �eld theory around ϕ.

All of this is generally covariant � we did not need to �x a time direction or a Cauchy
surface, not even a metric on spacetime. However, many physical concepts like states and
time evolution, and most crucially our very perception of reality, rely on the concepts of
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a beginning and an end. In other words, we should try to incorporate the formalism of
Hamiltonian �eld theory into this derived geometric description, since the Hamiltonian
phase space captures precisely this notion of "physics at a time slice".

A skeptical reader might point out the fact that we mostly deal with topological �eld
theories here, which are not actually dynamical. While it seems that this would make
a time evolution picture redundant, the opposite is actually the case, and this becomes
immediately clear when looking at Atiyah's axiomatic description:

De�nition 5.1.1. Fix a symmetric monoidal 1-category V⊗ (usually the category of chain
complexes, vector spaces, or Hilbert spaces) and let Bord⊔

d be a category where closed
(d− 1)-manifolds are objects, and morphisms from M to N are bordisms, i.e. compact
d-manifolds W with boundary ∂W = −M ⊔N , equipped with the symmetric monoidal
structure given by disjoint union. A d-dimensional topological �eld theory, in the sense
of Atiyah, is a symmetric monoidal functor Z : Bord⊔

d → V⊗.

Figure 5.1.: Examples of bordisms

The philosophy is that for every such bordism, we have a space of incoming states Z(M),
a space of outgoing states Z(N) and a linear map Z(W ) : Z(M) → Z(N) that acts as
a time translation operator. This captures the essence of the Hamiltonian formalism!

Because this concept is so elegant and powerful, a similar description should be available
to non-topological �eld theories as well. For those, we must distinguish:

� The (Hilbert) space of states of the theory, which depends on a choice of time-slice.
For free �eld theories, this usually is a Fock space.

� The covariant phase space, i.e. the space of �eld theories that satisfy the Euler-
Lagrange equations of motion.

By a system of time-slices, we mean a foliation by submanifolds in the Euclidean case
and a foliation by Cauchy surfaces in the Minkowski case. In the simplest case where
M = N × R, path integral quantization amounts to associating, for any two times
t0, t1 ∈ R and two states |ψ0⟩ on N × {t0} and |ψ1⟩ on N × {t1}, a transition amplitude
⟨ψ1|U(t0, t1)|ψ0⟩. We can understand the state |ψ0⟩ as associating an amplitude to any
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classical �eld con�guration at time t0, and similarly for |ψ1⟩. To understand how the
above transition amplitude is calculated, we use the following diagram:

�eld histories on N × [t0, t1]

states on N × {t0} states on N × {t1}

−·ei
� t1
t0

Ldt

Diagrams of this form are often called spans or correspondences. The arrows are given by
restricting a �eld history to (its germs at) the �xed times t0 and t1. We can understand
the path integral as a push-pull transformation, acting by:

� Precomposing |ψ0⟩ with the left arrow, pulling it back to an amplitude de�ned on
all �eld histories

� Multiplying this amplitude by the weight factor eiS

� Pushing the result forward to obtain an amplitude U(t0, t1) |ψ0⟩, using a sort of
in�nite-dimensional �ber integration.

This resembles the notion of a Fourier-Mukai transformation in algebraic geometry,
generally push-pulls along spans are called integral transformations (for example, the
usual Fourier transformation can also be written in this way, with weight/ integration
kernel given by eikx).

We will see, using language from derived symplectic geometry and Hermitian K-Theory,
that (perturbative) classical �eld theories on manifolds with boundaries are generally
given by such a span; and we will study the induced structure on factorization algebras.

5.1.2. Extended Topological Field Theories

A particular class of topological �eld theories that has been studied intensely is the family
of topological string theories. One of their main features is that they not only have a state
space for every closed 1-manifold, like a 2-dimensional topological �eld theory, but also
for 1-manifolds with boundary. Since the functor Z associating to a manifold its space of
states is monoidal, it is enough to specify its value on a circle, which is called the space
of closed strings, and on intervals corresponding to open strings. In fact, one usually
allows for the ends of open strings to be labeled by the D-branes they are restricted
to, so that one can construct an enriched category of branes with objects D-branes and
morphism spaces being the corresponding (Fock) spaces of open string states.

To axiomatize situations like this, Costello introduced de�nitions of open, closed, and
open-closed Topological Conformal Field Theories (TCFTs) in [Cos06] as functors from
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Figure 5.2.: Example of a 2-dimensional extended bordism

certain dg-categories O, C,OC of bordisms between open, closed and open-closed strings
into the dg-category Ch(C) of chain complexes. Of course, there are canonical inclusions
C ↪→ OC ←↩ O, inducing restrictions between the di�erent types of TCFTs. Costello
shows that:

� Given an open TCFT Z : O → Ch(C), we can construct a universal associated
closed TCFT as a homotopy Kan extension Zcl :=

(
LanOC

O Z
)∣∣

C.

� An open TCFT can equivalently be described by its category of branes, which is
a Calabi-Yau A∞-category. Similarly, it is a well-known fact that a closed TCFT
(as a special case of 2-dimensional topological �eld theories) is described by the
closed string space of states, a Frobenius algebra.

� The Frobenius algebra describing Zcl is the Hochschild-Homology of the Calabi-
Yau A∞-category of branes.

These statements suggest a close connection to factorization algebras, where homotopy
Kan extensions are used to calculate factorization homology and Hochschild Homology
calculates factorization homology on S1, corresponding to an incoming/ outgoing closed
string in the bordism. We will not make this connection more explicit, since the concept
of a TCFT is actually a bit dated: In his paper [Lur09], Lurie has sketched how to
formalize a beautiful generalization of this construction to arbitrary dimensions. It relies
on the theory of (∞, d)-categories, which we brie�y touch upon in A.1 � an informal
understanding is more than enough for our purposes.

De�nition 5.1.2. The (∞, d)-category BorddBorddBordd of d-dimensional bordisms consists of:

� objects being 0-dimensional manifolds

� morphisms being 1-dimensional bordisms between the respective 0-manifolds

� 2-morphisms being 2-dimensional bordisms between bordisms

� ...

� d-morphisms being d-dimensional bordisms between bordisms between...
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� (d + 1)-morphisms being di�eomorphisms between the resulting manifolds with
corners, restricting to the identity on the boundary

� (d+ 2)-morphisms being isotopies between those di�eomorphisms

� (d+ 3)-morphisms being isotopies between isotopies, and so on...

Note that this should indeed by an (∞, d)-category, since (d + 1), (d + 2)-morphisms
etc. are invertible. It is equipped with a symmetric monoidal structure given by disjoint
union.

De�nition 5.1.3. Fix a symmetric monoidal (∞, d)-category VVV⊗ with duals. A fully
extended topological �eld theory is a symmetric monoidal functor Z : BorddBorddBordd

⊔ → VVV⊗.
More generally, one can de�ne partially extended �eld theories that only associate values
in VVV to manifolds and bordisms of dimension d− r, . . . , d for 0 ≤ r ≤ d.

Remark. A precise formulation of the above de�nitions is of course very di�cult, see
[Lur09] and [Sch14] for more. We have not explained what "having duals" means, and
will not explain many terms in the next statement.

Theorem 5.1.4 (Cobordism Hypothesis, [Lur09]). There is a canonical equivalence of
(∞, d)-categories

Fun⊗(BorddBorddBordd
⊔,VVV⊗) ≃ (VVVfd)hO(d) (5.1)

between fully extended topological �eld theories and homotopy invariants in the (∞, d)-
category of fully dualizable objects in VVV with respect to the canonical O(d) action on it.
If we restrict to framed bordisms, we obtain precisely VVVfd on the right.

Remark. In particular, this can be seen as a universal property that uniquely charac-
terizes the (∞, d)-category of (framed) bordisms. One could say that (∞, d)-categories
know about bordism theory, e.g. one can calculate the Thom spectrum MTSO as the
geometric realization of the oriented bordism category:

Ω∞Σn MTSO(d) ≃ |BordordBordordBordord | (5.2)

This result by Galatius-Madsen-Tillmann-Weiss (see [Lur09, 2.5.7]) also bears striking
similarity to the theory of Quinn spectra.

Example 5.1.5. A TCFT is essentially the same thing as a fully extended topological
�eld theory of dimension 2 with values in chain complexes, and the cobordism hypothesis
captures the fact that a TCFT is completely determined by the associated Calabi-Yau
A∞-category. In fact, one can show that this datum (together with a choice of splitting
on the Hodge �ltration of its periodic cyclic homology) is enough to calculate for example
Gromov-Witten invariants in the topological B-model, see [CT20].
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In particular, the de�nition of an extended topological �eld theory proclaims that such
a theory associates an element of VVV to every d-manifold with corners. This is exploited
in the proof of the cobordism hypothesis, that very roughly proceeds by triangulating
arbitrary manifolds with corners by a simplicial complex and hence gluing the value of
an extended �eld theory from its value on simplices, which are manifolds with corners
themselves. We will mimic this idea in 5.7.

As an upshot, we conclude that extended �eld theories somehow generalize the philos-
ophy of Hamiltonian �eld theory in the sense that instead of only cutting in the time
direction, we are allowed to cut in every direction (e.g. for topological strings, we can
cut along their spacial direction). This strong locality principle is powerful enough to
allow for a full classi�cation of possible �eld theories, by the cobordism hypothesis.

5.1.3. Types of Boundary Theories

This idea of viewing spacial and temporal boundaries on the same footing is a striking
example of general covariance. However it a priori leads to some cognitive dissonance
� on spacial boundaries, we often want to impose boundary conditions like Dirichlet-
and Neumann-conditions on the bosonic string, but what is the interpretation of this
on temporal boundaries? The answer: Temporal boundary conditions are polarizations,
i.e. possible conventions to distinguish creation from annihilation operators. We are
lead to distinguish distinct types, or philosophies, of �eld theories on a manifoldM with
boundary:

� Atiyah-Segal-type/ Free boundary condition: We do not impose any boundary
conditions at all and do not �x any polarization, so that the theory on M does
not become a well-de�ned Lagrangian �eld theory. Rather, we regard it as an
individual patch, that we can glue together with other patches along the boundary
to construct a well-de�ned theory on a manifold without boundary that we have
cut into pieces.

� Fixed boundary condition: The boundary �eld theory that lives on ∂M induces
a boundary condition, or polarization, on the bulk �eld theory on M , and only
after restricting to the �eld histories satisfying this condition do we obtain a well-
de�ned �eld theory on M . This is essentially the spirit of the BV-BFV theories in
[CMR14].

� Defects: The boundary introduces an a priori arbitrary source term into the bulk
�eld theory. In particular, we do not need to de�ne an actual �eld theory on the
boundary.

All of these concepts make sense not only for manifolds with boundary, but for manifolds
with corners or embedded submanifolds as well. Even further, we argue that all of them
are of immediate physical interest, meaning that we need to extend the de�nition of a
factorization algebra to these more general kinds of spaces.
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What we will see is that the interaction between bulk and boundary occurs, ideally, at
a small neighborhood of the boundary looking like Rd−1 × R≥0. Compare this to the
neighborhood of a point inside the manifold, which always looks like Rd. We might say
that every interior point of a manifold with boundary is connected to the rest of the
manifold via a small sphere Sd−1 around it, called the link of the point, while any point
of the boundary has link D1 × Sd−2. For a manifold with corner, the links will look like
Sd−k−1 ×Dk, as is easy to imagine.

What if we allow for more general local structures? For example, let us look at a double
cone, like {x2 + y2 = z2} ⊂ R3. The link of the singularity in the center is S1 ⊔ S1, and
this in some way classi�es the type of singularity that occurs there. Physical intuition
would again tell us that if we have a physical theory living on the double cone (which
we regard as a smooth manifold, forgetting about the singular point), and introduce a
defect at the singularity, then the way it interacts with the theory would depend on a
small neighborhood around the singularity that looks like an open cone of the link.

When calculating the factorization product of two physical observables, the algebraic
properties of this product are determined by the space of di�erent directions from which
one of the corresponding operators can be shifted "into" the other, namely the link of
the point where we calculate this factorization product. We had formulated this very
philosophy for the module actions encoded in constructible factorization algebras in
4.5.9, giving us a �rst reason to assume that those are the right mathematical objects
to describe such spaces of observables.

Unfortunately, there are view interesting �eld theories on general strati�ed spaces (that
are not manifolds with corners). Some examples however arise in string theory: The open
(topological) A-model on the conifold {(z1, z2, z3, z4 ⊆ C4|

∑
z2i = 0)} can be described

both by the analogous model on the deformed non-singular space where
∑
z2i = a2 with

a ∈ C\{0}, or on the blow-up (the composition of this equivalences is known as conifold
transition). Still, understanding the theory on the singular space itself might lead to
new insights, for some ideas in this direction see [Ban10].

5.1.4. Observables and Constructible Sheaves

Finally, let us follow the intuition from 2.5 to �nd out how to de�ne a BV theory on
a strati�ed space. As a reminder, we had remarked that locally constant factorization
algebras on a manifold M have monodromy along multipaths : Given a �nite set of
starting points (xi)1≤i≤n in M, and a �nite set of end points (yj)1≤j≤m with m ≤ n, that
are connected by a �nite set of continuous paths which are allowed to join together,
but not split apart, we can transport local operators at the starting points to local
operators at the end points by taking their product at the places where paths join. For
example, this is how the operator product in a conformal �eld theory is recovered from
the respective factorization algebra.
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But what about a boundary CFT on a manifold with boundaryM? Here, there are some
operators that we can insert in the interior/ bulk, and some that live on the boundary.
We can compute the operator product of a bulk with a boundary operator by moving the
former closer and closer to the boundary; however we can not move a boundary operator
o� the boundary (to be precise, a boundary operator lives at a small half-disk at the
boundary, which contains a disk in the interior where bulk operators live). This means
that the factorization algebra of observables should also have monodromy with respect
to enter-multipaths, multipaths that only move downwards in the strati�cation poset as
in the picture � note that the boundary is sent to 0 by the canonical strati�cation on a
manifold with boundary, while to interior is sent to 1.

Figure 5.3.: Enter-multipath in the upper half-plane
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De�nition 5.1.6 ([AFT14b, 3.7.1, 3.7.4]). Given a connected C0-strati�ed space (M →
P ), we de�ne its Ran space Ran(M) as the space of nonempty �nite subsets S ⊆ M ,
equipped with a similar topology as in 2.5. It is C0-strati�ed over the poset PN0 of maps
P → N0 by counting the number of selected points in each stratum; we say that c ≤ c′

in this poset i� the set {p ∈ P |c(p) > c′(p)} contains no maxima of P .

Remark. This strati�cation poset is to coarse for out purposes; from the discussion in
[AFT14a] one can however follow that Ran(M) is even strati�ed by the set of �nite tuples
in P . The partial order on it is generated by the classes of splittings (p1, . . . , pi, . . . , pr) ≤
(p1, . . . , pi, pi, . . . , pr) and exits (p1, . . . , pi, . . . , pr) ≤ (p1, . . . , pj, . . . , pr) for pi ≤ pj.

Saying that factorization algebras of boundary CFTs (and, analogously, topological �eld
theories on manifolds with boundary) should have monodromy with respect to multi-
paths where all indivual segments are enter-paths is then, up to the same subtleties
regarding the de�nition of the exit-path category we faced in 2.5, equivalent to saying
that every such algebra should induce a functor

(
SingN>0 Ran(M → P )

)op → V , which
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is (using the exodromy correspondence) a constructible (hyper-)sheaf on the Ran space.
As in the manifold case, the exit path category of the Ran space can be identi�ed with
the category of disks Disk surj

/M with maps that are surjective on connected components,
so that (adding a factorization condition, and units) we recover our de�nition of a con-
structible factorization algebras.

But how should we recover such a complicated object from an actual physical theory?
As for the manifold case, we would expect it to be the Chevalley-Eilenberg algebra of a
BV-complex that itself is a sheaf on M , i.e. ignoring its L∞-structure, Obscl = Sym E∨.
In particular, the space of linear observables is given by E∨, and by taking the symmetric
algebra, we obtain polynomial observables.

Of course, if we multiply two linear observables, we obtain a quadratic observable �
therefore, they should not have monodromy along multipaths (since two paths joining
would yield the product in the symmetric algebra, as this is the factorization product).
However, they should still have monodromy along enter-paths Sing[1](M)→ Vop, where
we can freely switch the op from the source to the target. Linear observables in E∨,
using exodromy, should therefore form a Vop-valued constructible sheaf on M , i.e. a
constructible cosheaf. Consequently,

The BV complex of a free topological �eld theory on a C0-strati�ed space (M → P )
should be a constructible ∞-sheaf (whose stalks satisfy a �niteness condition), together
with a sheafy kind of (−1)-shifted symplectic structure we sketch in 5.8.

Warning. One idea to de�ne a symplectic structure on a constructible sheaf F is to
equip it with an isomorphism to a shift of its Verdier dual sheaf. While this is useful on
(pseudo-)manifolds, we will see that this is generally the wrong de�nition when it comes
to boundaries and corners.

5.2. Shifted Symplectic Structures and Lagrangians

As a motivation, we remind the reader of the following de�nitions, for V a �nite-
dimensional R-vector space:

De�nition 5.2.1. A bilinear form b : V ⊗V → R is called non-degenerate if for any v ∈ V ,
such that b(v,−) ≡ 0 identically, we must have v = 0 already. Equivalently, the induced
linear map b : V → V ∗ is an isomorphism (or monomorphism or epimorphism, since the
dimensions agree).

De�nition 5.2.2. A non-degenerate antisymmetric bilinear form ω :
∧2 V → R is called

symplectic form.

De�nition 5.2.3. A non-degenerate symmetric bilinear form b : S2V → R is called an
inner product.
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We want to generalize these de�nitions until they can capture the symplectic structure of
the BV-BRST complex. As a �rst step, let us replace vector spaces by chain complexes
of R-modules, for any ring R with R = R of primary interest to us. We need a notion
of �nite-dimensionality:

De�nition 5.2.4. Denote by Dfp(R) the derived ∞-category of �nitely presented chain
complexes, which is the full (stable) subcategory of the derived∞-category (see A.3.14)
D(R) generated by R[0] under shifts, direct sums and (co-)�bers. Similarly, the derived
∞-category of perfect chain complexes Dperf(R) is its its closure under direct summands.
To be explicit, Dfp(R) consists of bounded complexes of �nitely free R-modules, and
Dperf(R) of bounded complexes of �nitely generated projective R-modules.

Remark. The BV-BRST complex of a �nite-dimensional theory should lie in Dperf(R)
because it is an object of derived geometry. However since projective R-modules are
free, Dfp(R) ∼= Dperf(R), and since the abelian category of R-vector spaces is semisimple,
quasi-isomorphisms and homotopy equivalences agree so D(R) ≃ Ch(R). The latter does
however not hold for CVS or DVS. In the following, while we work with R = R, our
results still hold for arbitrary R and in even more general situations that include these
functional analytic contexts, see the end of this chapter.

Lemma 5.2.5. For P ∈ Dperf(R), the dual chain complex P∨ := Hom(P,R) is also in
Dperf(R) and there is a canonical isomorphism P ∼= P∨∨.

De�nition 5.2.6. A chain complex P ∈ Dperf(R) (or more generally, over any ring R)
is called an n-dimensional Poincaré complex if it is equipped with an inner product of
degree n, which is a symmetric map of chain complexes

ω : P ⊗ P → R[−n] (5.3)

such that the associated chain map P → P∨[−n] by the tensor product/ internal Hom
adjunction is a quasi-isomorphism. By symmetric, we mean that ω factors through
the invariants (P ⊗ P )S2 of the S2-action on P ⊗ P that interchanges the arguments.
More generally, we can de�ne Poincaré objects in every stable∞-category with a duality
functor (−)∨ as de�ned at the end of this section.

Remark. If we replace R by an arbitrary ring, we need to set P∨ = RHom(P,R), and
use ⊗L and homotopy invariants since we work in the derived ∞-category. Over R, the
considered functors are exact and need not be derived.

Example 5.2.7 (Poincaré-Duality). For M a closed oriented topological n-manifold, the
cap product with the fundamental class induces a quasi-isomorphism

C∗(M ;R) ∼= C∗(M ;R)∨[−n] (5.4)

exhibiting the singular cochain complex of M with values in R as an n-dimensional
Poincaré complex. Note that it indeed lives in the perfect derived category since closed
manifolds have �nite-dimensional homology.
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Example 5.2.8. Given a suitably well-behaved derived∞-category D of good topological
vector spaces, containing in particular sections of di�erential complexes and admitting
a duality functor (−)∨ that agrees with strong duality in this case (compare the end of
this section), Poincaré duality again tells us (see [Cal21, 1.13]) that for a closed oriented
smooth n-manifold M , the complex of di�erential forms Ω∗(M) is an n-dimensional
Poincaré complex in D.

Technical Remark. Just as Sylvester's theorem gives a classi�cation of non-degenerate
symmetric forms on Rn, algebraic L-theory classi�es Poincaré objects in a stable ∞-
category with duality functor, or more generally in a Poincaré ∞-category [CDH+20a].

Proposition 5.2.9. An inner product on a �nite-dimensional vector space V is the same
thing as a pairing exhibiting V [0] as a (0-dimensional) Poincaré object. Similarly, a
symplectic structure on V is the same thing as a pairing exhibiting the complex V [−1]
concentrated in degree 1 as a 2-dimensional Poincaré object.

Proof. For the �rst claim, we note that such a pairing V [0] ⊗ V [0] → R[0] is precisely
a symmetric bilinear map of vector spaces, and the condition that V [0] ∼= V [0]∨ is a
quasi-isomorphism implies on 0th homology groups that this map is non-degenerate,
and conversely.

In the symplectic case, a non-degenerate symmetric pairing of degree 2 on V [−1] is a
symmetric bilinear map V [−1]⊗ V [−1]→ R[−2] that induces a quasi-isomorphism

V [−1] ≃ R[−2]⊗ V ∗[1] = V ∗[−1] (5.5)

Shifting by 1, this is an isomorphism V ∼= V ∗ corresponding to a non-degenerate bilinear
map ω : V ⊗ V → R. Because of the Koszul sign rule, this map has to antisymmetric so
that the shifted map on V [−1]⊗ V [−1] is symmetric.

De�nition 5.2.10. An n-shifted symplectic structure on P ∈ Dperf(R) is a symmetric
pairing exhibiting P [−1] as an (2− n)-dimensional Poincaré complex.

Example 5.2.11. A symplectic structure on a �nite-dimensional vector space V is pre-
cisely a 0-shifted symplectic structure on V [0].

Example 5.2.12. For M a closed oriented topological 3-manifold, the shifted singular
cochain complex C∗(M ;R)[1] admits a canonical (2− n)-shifted symplectic structure �
similarly, up to functional analytic subtleties, for Ω∗(M)[1]. In particular, the BV-BRST
complex Ω∗(M)[1] for abelian Chern-Simons theory on a smooth oriented 3-manifold
admits a (−1)-shifted symplectic structure.
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De�nition 5.2.13 ([CDH+20b, Chapter 2]). Let P be an n-dimensional Poincaré-complex
with isomorphism ω : P ∼= P∨[−n]. A Lagrangian of it is a complex L ∈ Dperf(R)
equipped with a chain map f : L→ P such that the composition

L
f−→ P ∼= P∨[−n] f∨[−n]−→ L∨[−n] (5.6)

is a distinguished triangle (or, in the nomenclature of stable ∞-categories, a �ber se-
quence) in Dperf(R). In fact, we have to consider a 2-morphism η : ω ◦f ≃ 0 in the space
of symmetric pairings as part of the datum. This means that we can identify L∨[−n]
with the mapping cone of f , in a way that makes the respective distinguished triangles
isomorphic.

More generally, a Lagrangian correspondence between n-dimensional Poincaré complexes
(P, ω) and (P ′, ω′) is a diagram of the form

L

P P ′

f f ′

together with an isomorphism η : ω ◦ f → ω′ ◦ f ′ inside the space of symmetric forms
MapDperf(R)(L⊗ L,R[−n])hS2 , that induces (together with ω, ω′) a map

L→ P∨[−n]×L∨[−n] P
′∨[−n] ∼= (P ⨿L P

′)
∨
[−n] (5.7)

that is required to by an isomorphism. Equivalently, the composite map

fib(L→P ) ∼= fib(P ′ → P ⨿L P
′) −→

−→ fib(P ′ → L∨[−n]) ∼= fib((L→ P ′)∨[−n]) ∼= (cofibL→ P ′)∨[−n]

has to be an isomorphism.

This might seem very technical since we have to keep track of the explicit isomorphisms
of P, P ′ and their duals, but we do not exactly have a lot of wiggle-room translating
these classical de�nitions for symplectic vector spaces to the chain complex setting. A
few examples should be helpful:

Example 5.2.14.

� A Lagrangian correspondence L from P ∼= P∨[−n] to the zero Poincaré object
0 ∼= 0∨[−n] is a Lagrangian of P , since the above condition just reduces to L ∼=
(P ⨿L 0)∨[−n].

� A Lagrangian correspondence 0← L→ 0 where we regard 0 as an n-dimensional
Poincaré object, i.e. a Lagrangian of the zero object, is the same thing as an
isomorphism L ∼= 0×L∨[−n] 0 = ΩL∨[−n] = L∨[−n−1], exhibiting L as an (n+1)-
dimensional Poincaré object.
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� If V is a vector space with inner product ω (in other words V [0] is 0-dimensional
Poincaré), and L a vector space such that L[0] → V [0] is Lagrangian, then the
map L → V is injective since the sequence 0 → L → V ∼= V ∗ → L∗ → 0 has to
be exact, meaning that L must be a Lagrangian subspace of V . In particular, the
signature of ω vanishes.

� If V is a symplectic vector space, i.e. V [−1] is a 2-dimensional Poincaré object,
then for a vector space L a map L[−1] → V [−1] is Lagrangian i� it witnesses L
as a Lagrangian subspace of V , in particular it has to be injective.

� Given a compact orientable n-manifold M with boundary, the cap product with
the relative fundamental class of M exhibits the restriction map

i∗ : C∗(∂M ;R)→ C∗(M ;R) (5.8)

as Lagrangian of the (n− 1)-dimensional Poincaré complex C∗(∂M,R). Similarly
for di�erential forms, up to functional analytic subtleties. Taking (co-)homology
groups of the de�ning equation

C∗(M,∂M ;R) := fib(i∗) ∼= C∗(M ;R)∨[−n] = Hom(Cn−∗(M ;R), R) (5.9)

yields Poincaré-Lefschetz duality on a compact oriented manifold:

H∗(M,∂M ;R) ∼= Hn−∗(M ;R) (5.10)

Also, we can derive a theorem of Thom, stating that for dim(∂M) = 4k, the
signature of ∂M must vanish: One can show (using e.g. algebraic surgery) that
our statement implies that i∗ : H2k(M ;R) → H2k(∂M ;R) is also a Lagrangian
subspace with respect to the intersection pairing on the right hand side, so the
signature of this pairing vanishes.

� If W is a compact oriented (n+ 1)-manifold with ∂W =M ⊔ −N , i.e. a bordism
between closed oriented manifolds M and N , then the restriction maps

C∗(M ;R)← C∗(W ;R)→ C∗(N,R) (5.11)

form a Lagrangian correspondence. Similar for di�erential forms.

Theorem 5.2.15. Let P, P ′, P ′′ be n-dimensional Poincaré complexes and P ← L→ P ′ as
well as P ′ ← L′ → P ′′ Lagrangian correspondences. Then, the span P ← L×P ′ L′ → P ′′

induced by the diagram

L×P ′ L′

L L′

P P ′ P ′′

f f ′ g g′
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is also a Lagrangian correspondence.

Proof. We know that P ∼= P∨[−n] and similarly for P ′ and P ′′, and L,L′ being La-
grangian correspondences amounts to isomorphisms

L ∼=P∨[−n]×L∨[−n] P
′∨[−n] ,

L′ ∼=P ′∨[−n]×L′∨[−n] P
′′∨[−n] .

Consequently we can use the Pasting Lemma to dualize and extend above commutative
diagram to

(L×P ′ L′)∨[−n] L∨[−n] P∨[−n]

L′∨[−n] P ′∨[−n] L

P ′′∨[−n] L′ L×P ′∨[−n] L
′

where every square is a pullback (and by stability also a pushout). This implies, using
P ′ ∼= P ′∨[−n] and pasting, that L×P ′L′ ∼= P∨[−n]×(L×P ′L′)∨[−n]P

′′∨[−n]. Compatibility
of the required witnessing 2-morphisms can be veri�ed quickly.

Remark. Compare this with the observation that a bordism W between closed oriented
manifolds M and M ′, and a bordism W ′ from M ′ to M ′′, can be glued along a collar
to a bordism from M to M ′′. In particular, if P is an n-dimensional Poincaré complex
with two distinct Lagrangians L→ P and L′ → P , the pullback L×P L

′ is a Lagrangian
correspondence from 0 to 0, i.e. an (n+ 1)-dimensional Poincaré complex; just like two
null-bordisms of an n-manifold can be glued to an (n+ 1)-manifold as in the picture or
the proof of 1.9.

Figure 5.4.: Gluing two null-bordisms W,W ′ of N to a closed manifold
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Example 5.2.16. We have de�ned covariant phase space X of a �eld theory with space
of o�-shell �elds F and action S : F → R as a derived intersection of the graph of dS
and the zero section in T ∗F → F . It turns out that T ∗F , as a derived stack, possesses
a tautological symplectic structure (constructed similarly as for smooth manifolds) such
that the the graph of any closed section is a Lagrangian substack. We haven't introduced
these terms, but it is clear what they mean on tangent complexes: TTF pointwise
admits a 0-shifted symplectic structure such that the tangent complexes of the graphs
are Lagrangian. We have already claimed in 1.4.13 that the tangent complex plays well
with pullbacks, so for a �xed �eld con�guration ϕ in X,

TϕX = TϕGraph(dS)×TϕT ∗F TϕF (5.12)

which means by above theorem that the BV-BRST complex E = TϕX possesses a natural
(−1)-shifted symplectic structure, as expected.

Let us generalize another statement from bordism theory that will be useful later. Given
a bordismW fromM toM itself, we can glueW to itself along the boundary components
to obtain a closed manifold. For example forW = S1×[0, 1] the cylinder, the components
of ∂W = S1 ⊔ −S1 can be glued to obtain a torus.

Proposition 5.2.17. Given an n-dimensional Poincaré complex (P, ω) and a Lagrangian

correspondence P
f← L

f ′
→ P , the equalizer

equ(f, f ′ : L→ P ) = fib(f − f ′) (5.13)

is an (n+ 1)-dimensional Poincaré complex.

Proof. Let P be any chain complex, then there are natural diagonal and codiagonal
chain maps ∆ : P → P ⊕ P and ∇ : P ⊕ P → P , and for chain maps f, f ′ : L→ P the
composition

L
∆→ L⊕ L f⊕f ′

→ P ⊕ P ∇→ P

agrees with the sum f + g.

Since we assume P
f← L

f ′
→ P is a Lagrangian correspondence, we have

fib(f) ≃ fib(f ′)∨[−n− 1]

fib(f ′) ≃ fib(f)∨[−n− 1]

where the second equation follows from the �rst by applying (−)∨[−n−1] to both sides.
Now, we take the direct sum of these equations and take homotopy invariants with
respect to the S2-action that exchanges direct summands:

(fib(f)⊕ fib(f ′))hS2 ≃ (fib(f ′)⊕ fib(f))∨hS2 [−n− 1]
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We can write the �ber on the right side as a shift of a co�ber, and pull the homotopy
(co-)invariants inside:

fib

(
(L⊕ L)hS2

(f⊕f ′)hS2

−→ (P ⊕ P )hS2

)
≃ cofib

(
(L⊕ L)hS2

(f ′⊕f)hS2−→ (P ⊕ P )hS2

)∨

[−n]

Now, we use the statement from the beginning combined with the fact that the diag-
onal map induces an isomorphism C ≃ (C ⊕ C)hS2 , just as the codiagonal induces an
isomorphism (P ⊕ P )hS2 ≃ P :

fib(L
f+f ′
−→ P ) ≃ cofib(L

f+f ′
−→ P )∨[−n] ≃ fib(f + f ′)∨[−n− 1]

Up to exchanging f ′ and −f ′ which gives isomorphic Poincaré complexes (and is due to
the di�erent orientations in the manifold case), we have succeed since we have a quasi-
isomorphism that exhibits fib(f + f ′) as an (n + 1)-dimensional Poincaré complex. To
be precise, we would still have to check that this is induced by a symmetric pairing; this
is more technical but in principle works analogously.

Remark. For an alternative proof this and similar statements compare 5.7.15.

We can generalize the de�nitions of this chapter to the functional analytic setting:

De�nition 5.2.18 ([BY16, 2.15], [CG21, 4.2.0.2]). Let E be a local L∞ algebra with un-
derlying di�erential complex (E,D). A map between chain complexes of vector bundles
ω : E → E![n− 2] is called an n-shifted symplectic structure on E if it

� is an isomorphism on �bers,

� induces a symmetric pairing ⟨−,−⟩ : E ⊗ E → DensM ,

� and is compatible with the higher Lie brackets on E in the sense that the expressions�
M
⟨−, ℓK(−, . . . ,−)⟩ appearing in the gauge-�xed action are graded antisymmet-

ric.

In particular, this induces bilinear maps ωU ∈ E(U)∨⊗E !(U)[n−2] where E(U)∨ = Ē !c(U)
is the strong dual, that are closed under the Chevalley-Eilenberg di�erential.

De�nition 5.2.19 ([GRW20, 2.2]). A Lagrangian subbundle of a di�erential complex
(E,D) equipped with an n-shifted symplectic structure is a di�erential subcomplex
(L,D) ⊆ (E,D) such that

� The total rank of L is half of the total rank of E,

� The shifted symplectic structure vanishes when restricted to L.

Up to functional analytic subtleties, for any open subset U ⊆M , this makes the induced
map L(U)→ E(U) Lagrangian.
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In the following, we will ignore these functional analytic considerations and pretend
that we are in the world of �nite-dimensional vector spaces. Since every de�nition in
this chapter works in much greater generality, namely the language of Poincaré ∞-
categories we mentioned above, we hope that a version of functional analysis containing
spaces of sections of �nite dimensional vector bundles can in the future be formalized
in this way, making this caveat unsubstantial. Candidates for such a formalism could
be (�nitely generated) di�erential cohomology theories (i.e. sheaves in Sh(Man,Sp))
that are modules over the algebra object C∞(M); and more generally spectri�cations of
certain structured spaces as in [Wal16]. They should be connected to the di�erentiable
vector spaces we have studied by a sort of stable Dold-Kan equivalence.

Assumption: Let in the following D be a stable ∞-category that behaves like a version
of Dperf(R) for topological vector spaces in the sense that

� It contains spaces of sections of vector bundles on manifolds as a full subcategory

� Its morphism spaces are R-linear (to be mathematically precise, they should be
module spectra over the Eilenberg-MacLane spectrum HR),

� There is an antiequivalence (−)∨ : Dop → D that is a dualizing functor in the sense
of [CDH+20a], which means that there is a natural isomorphism ϕ : (−)∨∨ ∼= IdD
satisfying higher coherence conditions. To again be precise, ϕ must exhibit the pair
(V , (−)∨) as a homotopy �xed point of the∞-category Catex∞ of stable∞-categories
with exact functors under the S2-action that sends an ∞-category to its opposite.
This is equivalent to requiring D to be a Poincaré∞-category, since 2 is invertible
in all morphism spaces.

� On the subcategory of spaces of sections of vector bundles, (−)∨ should be similar
to the strong dual, i.e. taking continuous linear forms.

Also, mimicking Dperf(R) ⊆ D(R), we expect D to be contained in a larger ∞-category
D̂ that is presentable like D(DVS), as a subcategory of objects satisfying a �niteness
condition.

5.3. Topological Quantum Mechanics and

Polarizations

We begin our study of �eld theories on manifolds with boundary with one of the simplest
cases imaginable: A theory called topological quantum mechanics.

Fix a symplectic vector space V with Darboux basis V = ⟨a1, . . . , an, a†1, . . . , a†n⟩. This
means that the symplectic form ω : V ⊗V → V is de�ned by ω(αi, a

†
j) = −ω(a

†
i , aj) = δij

for i, j = 1, . . . , n on basis elements. Also, we identify ω with the induced duality
isomorphism ω : V → V ∗. Finally, L := ⟨a1, . . . , an⟩ ⊆ V and L′ := ⟨a†1, . . . , a†n⟩ are
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Lagrangian subspaces complementing each other in the sense that L ⊕ L′ = V . Note
such a complement is not unique.

Given the 1-dimensional manifold with boundary M = R≥0, the space of �elds for
topological quantum mechanics is the space F = C∞(M,V ) = Ω0(M) ⊗ V of smooth
V -valued functions on M . The action is given by

STQM [ϕ] :=

�
M

1

2
ω(ϕ ∧ dϕ) = ⟨ϕ, dϕ⟩ , (5.14)

where ω(−∧−) := ω⊗∧, and ⟨−,−⟩ :=
�
ω(−∧−) is the tensor product of ω with the

Kronecker/ integration pairing of di�erential forms. Let us vary this action, remembering
that ∂M ̸= ∅:

δSTQM =
1

2

�
M

ω(δϕ ∧ dϕ) + ω(ϕ ∧ dδϕ) = 1

2

�
∂M

ω(ϕ, δϕ) +

�
M

ω(δϕ ∧ dϕ) (5.15)

I� the boundary contribution ⟨ϕ, δϕ⟩∂ :=
�
∂M

ω(ϕ, δϕ) vanishes, the fact that ω is non-
degenerate yields the equations of motion dϕ = 0. Further, since the functional Hessian
d of the action is non-degenerate on 0-forms, there is no local gauge symmetry and from
1.3.4 we can read o� the BV-BRST complex:

E(U) =
(
Ω0(U)⊗ V d⊗idV−→ Ω1(U)⊗ V [−1]

)
= Ω∗(U)⊗ V (5.16)

This comes equipped with an almost (−1)-shifted symplectic structure given by ⟨−,−⟩,
up to boundary terms.

However, vanishing of the boundary contribution requires �xing a boundary condition �
a subspace of the covariant phase space (since our theory is free, this is the same thing
as the BV-BRST complex) where the form ⟨−,−⟩∂ vanishes on �elds restricted to the
boundary. Note that since ∂M is just a point, the restriction ϕ|∂M can be identi�ed with
an element of V , and ⟨−,−⟩∂ = ω : V ⊗ V → V .

We say that E∂ := V is the boundary BV-complex or BFV-complex, and ω is its associ-
ated 0-shifted symplectic form. Projection on the 0-component, followed by restriction,
induces a map of chain complexes r : E(M)→ E∂. A boundary condition or polarization
is, following the above discussion, determined by a subspace L of V that restrictions
of physical ϕ must lie in, where ω|L×L vanishes � to obtain a well-de�ned physical the-
ory, we will see that L must even be a Lagrangian subspace, like the one we have �xed
above.

Remark. Technically, our boundary conditions could also have depended not only on
ϕ(0), but also ∂ϕ(0) and higher derivatives, maybe even the whole germ of ϕ at x = 0.
The reason why we do not consider this is that our action only contains �rst derivatives,
so the boundary term does not contain any. A general discussion of Hamiltonian �eld
theories would indeed require the boundary complex to involve the pullback of the BV
complex to the boundary, see 5.5.7.
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Since the theory we have developed above is only for compact manifolds, let us for
a moment set M = [0, T ] for T > 0. This means that E∂ = V ⊕ V consists of two
components E (0)∂ = E (T )

∂ = V for initial and �nal time, and L ⊕ L′ is a Lagrangian
subspace (note how we choose opposite polarization for in- and outgoing states because
of the di�erent orientations). As explained in 5.2.14 the chain map r : Ω∗(M) ⊗ V →
Ω∗(∂M)⊗ V ∼= V given by restriction is also Lagrangian, so we know by 5.2.15 that the
(homotopy) pullback

EL(M) := E(M)×h
E∂ (L⊕ L

′) Ω∗(M)⊗ V

L⊕ L′ V ⊕ V = Ω∗(∂M)⊗ V

admits a (−1)-shifted symplectic structure, so that we can regard it as the BV-BRST
complex of a physical theory. One must notice at this point that since the map L→ V
is injective, the homotopy pullback agrees with the ordinary pullback of chain complexes
by model category theory; in particular

EL(M) = {α0 ∈ Ω0(M)⊗ V, α1 ∈ Ω1(M)⊗ V |α0(0) ∈ L, α0(T ) ∈ L′} (5.17)

equipped with the pairing
�
M
ω(− ∧ −) that is actually (−1)-shifted symplectic when

restricted to this subspace of E(M) since the boundary terms vanish, by the above.

Remark. To be more accurate, we should have regarded M as a bordism to see that
E (0)∂ ← E(M) → E (T )

∂ is a Lagrangian correspondence. We have not taken this point of
view since we are ultimately interested in R≥0.

Note that we have only calculated a single chain complex, not a whole sheaf; in particular
we have formed the pullback of E(M) and not E(U). If we restrict to an open interval
(a, b) ⊆ [0, T ] with 0 < a < b < T , we can not see the boundary and in particular
no boundary terms, so even after �xing the boundary conditions, we should expect
EL((a, b)) = E((a, b)) = Ω∗((a, b)) ⊗ V ∼= V [0] as there are only constant solutions (or
use the Poincaré Lemma). For the same reason, on opens of the form [0, b), we obtain
EL([0, b)) = E([0, b)) ×V L ∼= L[0] and similarly for (a, T ]. So if we de�ne a sheaf E∂ on
∂M = {0, T} with value V at both points, and similarly L with values L and L′, we can
write

EL := E ×i∗E∂ i∗L (5.18)

as a pullback of homotopy ∞-sheaves, where i : ∂M ↪→ M is the inclusion. Since
shea��cation is left exact, this is a pullback on each open.

Proposition 5.3.1. Above considerations determine a constructible sheaf EL on the man-
ifold with boundary [0, T ], equipped with its canonical strati�cation.
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Proof. We know by construction that E is a homotopy sheaf, and have given explicit
formulae for the values of EL on each open interval; its value on a general open is
hence given by a direct product over its connected components. Restriction maps are
then induced by the identity and diagonal map on the components in the bulk, and
the projection EL → E out of the pullback if we embed bulk intervals into a boundary
interval. Checking that this yields a constructible sheaf is thus straightforward using
B.3.6.

Alternatively, one can use the exodromy equivalence

Shcbl([0, T ],V) ∼= Fun(Sing[1][0, T ],V) (5.19)

with Sing[1][0, T ] ≃ Sing[1] |∆1| ≃ (∗ → ∗ ← ∗), so a constructible sheaf on [0, T ] is
uniquely determined by its values on intervals of the form [0, b), (a, b), (a, T ] and mor-
phisms between them, which are in this case given by L[0]→ V [0]← L′[0].

Since [0, T
2
) is (strati�ed) homotopy equivalent to R≥0, the restriction of EL to this

interval induces a constructible sheaf on R≥0 with similar properties, describing our
theory on the original manifold.

Corollary 5.3.2. The algebra of classical observables compatible with the boundary con-
dition Obscl,L(U) := Sym E∨L is a constructible factorization algebra on both [0, T ] and
R≥0 respectively, with values

Obscl,L((a, b)) = Sym(Ω̄∗
c((a, b))⊗ V ∗[1]) ∼= Sym(V )[0]

Obscl,L([0, b)) = Sym
(
Ω̄∗

c([0, b))⊗ V ∗[1]⧸{α |α1(0) ∈ L}
)
∼= Sym(L′)[0]

(5.20)

Proof. That Sym E∨ is a constructible factorization algebra is immediate from above
proposition and 4.3.8. To obtain the �rst row, the �rst equality is clear since the in-
tegration pairing exhibits Ω̄∗

c((a, b)) as the strong dual of Ω∗((a, b)). For the second
quasi-isomorphism, we use the Atiyah-Bott Lemma 3.1.15 to get rid of the distribu-
tional properties, and then the Poincaré Lemma. Also, we identify V ∼= V ∗ through the
symplectic pairing.

A completely rigorous proof of the second row follows from the main result of [GRW20].
We only give a sketch: The dual space of EL([0, b)) consists of forms n Ω̄∗

c([0, b)) ⊗ V
again using the integration pairing, but since forms in EL are restricted to lie in L at the
boundary, our linear forms do not need to distinguish (using that pairing) between forms
that take values in L at the boundary. This might seems a bit counter-intuitive, but
compare with Poincaré-Lefschetz duality that includes relative cohomology with respect
to the boundary: If there were no restrictions on forms to lie in L at the boundary, the
dual space would not be able to distinguish boundary forms at all. Generally, dual to
the space of the forms that lie in W ⊆ V at the boundary are forms with value in the
annihilator Ann(W ) ⊆ V ∗ at the boundary. Since L′ ∼= V⧸L as a complement to L,
using Atiyah-Bott and Poincaré-Lemma again, we obtain the right side.
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Remark. Compare this with our classi�cation of constructible factorization algebras on
R≥0 in 4.4.2. Obscl,L consists an associative algebra object Sym(V )[0] ∈ AlgE1

(D) ≃
FAlc(R>0,V) and a pointed object Sym(L′)[0] with a module structure over it. In fact,
as we are in the classical case, both of these are commutative algebras.

Since our boundary condition assures the existence of a (−1)-shifted symplectic structure
we can quantize this free theory:

Proposition 5.3.3 ([GRW20, Section 5.1]). A central extension by ℏ
�
ω(−,−) yields the

quantum BV complex EqL = EL⊕ℏR. The constructible factorization algebra of quantum
observables ObsqL on [0, T ] is then quasi-isomorphic to

ObsqL((a, b)) ∼= W (V )

ObsqL([0, b)) ∼= F (L′) := Sym(L′)[ℏ][0]
ObsqL((a, T ]) ∼= F (L)

where W (V ) is the Weyl algebra on V , the free associative R[ℏ]-algebra generated by
a1, . . . , an, a

†
1, . . . , a

†
n modulo the relations [ai, a

†
j] = ℏδij while all other generators com-

mute. Similarly, F (L′) is the Fock space associated to L′ ⊆ V , the symmetric R[ℏ]-
algebra spanned by the creation operators; and F (L) is the symmetric R[ℏ]-algebra
spanned by the annihilation operators.

Explicitly, we will follow the physical convention of writing elements of the initial time
Fock space as

(a†1)
N1 . . . (a†n)

Nn |0⟩ ∈ F (L′) (5.21)

with N1, . . . Nn ∈ N0, and elements of the �nal time Fock space as ⟨0| aN1
1 . . . aNn

n . Opera-
tors in a bulk interval (a, b) are arbitrary products of creation and annihilation operators,
which also seems reasonable from the point of view of quantum �eld theory. If we again
compare with our classi�cation of constructible factorization algebras 4.4.4, we identify
W (V ) with an associative algebra, F (L′) with a left and F (L) with a right (pointed)
module over it, where the module structure is induced by the multiplication of operators,
and the E0-structure, i.e. pointing of F (L), F (L′) is determined by the vacuum state.

While we have identi�ed the Fock space with the boundary operators, physicists inter-
pret it as the Hilbert space of states in our theory. The observation that these concepts
agree may be interpreted as a kind of bulk-boundary correspondence or operator-state-
correspondence (it is also sometimes called holography, which we fear risks oversimpli-
fying that concept). Choosing a boundary condition amounts to choosing a way to
distinguish creation and annihilation operators, or positions and momenta � this is why
we also call L a polarization.

Proposition 5.3.4. The inclusion (a, b) ⊆ [0, T ] induces, on ObsqL, the map that sends an
operator to its vacuum expectation value.
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Proof. We have seen that ObsqL((a, b)) is the Weyl algebra of operators, and by 4.4.5 the
global sections ObsqL([0, T ]) are given by the relative tensor product F (L′) ⊗W (V ) F (L)
of the initial and �nal state Fock space. For any pure tensor

(a†1)
N1 . . . (a†n)

Nn |0⟩ ⊗ ⟨0| aM1
1 . . . aMn

n (5.22)

we can shift all the creation operators to the right side and, using [ai, a
†
j] = ℏδij, commute

them next to |0⟩ where they vanish (strictly decreasing the amount of involved creators
and annihilators), and the remaining annihilation operators are now also on the left
side where they vanish as well. Only multiples of |0⟩ ⊗ ⟨0| survive in the end and
Obsq([0, T ]) ≃ R[ℏ]. This is precisely how vacuum expectations values are calculated in
quantum �eld theory. The map Obsq((a, b))→ Obsq([0, T ]) sends an operator O ∈W (V )
to the result of acting on the vacuum state to the left and right ⟨0|O|0⟩ := |0⟩ ⊗ ⟨0| O,
as it determines the pointing in both modules.

Finally, let us think about more general 1-dimensional manifolds with boundary.

Proposition 5.3.5. Let Chartsor1,∂ be the tangential structure determined by the subcate-
gory of Bsc1 on the basic oriented 1-manifolds with boundary R and R≥0 and orientation
preserving maps. The functors

� Obscl : Charts⊔1,∂ → D(R)⊗ sending R 7→ Sym(V )[0] and R≥0 7→ Sym(V/L)[0] ∼=
Sym(L′)[0], with action on morphisms induced by the quotient map, as well as
R≤0 7→ Sym(L)[0].

� Obsq : Charts⊔1,∂ → D(R)⊗ sending R 7→ W (V ),R≥0 7→ F (L′) and R≤0 7→ F (L).

are absolute constructible factorization algebras with respect to this tangential structure
on conically smooth strati�ed spaces.

Proof. Following our discussion in 4.4.7, an absolute constructible factorization algebra
A on oriented manifolds with boundary consists of

� An associative algebra A(R),

� A pointed left module A(R≥0) over A(R),

� A pointed right module A(R≤0) over A(R).

The triples described above precisely �t this pattern.
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5.4. CS-WZW Boundary Correspondence

A similar calculation can be done for classical Chern-Simons theory on a smooth ori-
ented 3-manifold with boundary. Remember the variation of the Chern-Simons action
in 1.13:

0 =
4π

k
δS = 2

�
M

⟨δA ∧ FA⟩+
�
∂M

⟨δA ∧ A⟩ (5.23)

This yields the equations of motion FA = 0 i� the boundary term

⟨A, δA⟩∂ :=

�
∂M

⟨A ∧ δA⟩ (5.24)

vanishes. Again, this must be ensured by a boundary condition imposed on A|∂M ∈
Ω1(∂M, g).

The BV-BFV complex of Chern-Simons theory is given by E(M) = (Ω∗(M, g)[1], d)
where we again trivialize the underlying principal bundle and expand around the
trivial background connection. We choose the boundary BFV complex E∂(∂M) =
(Ω∗(∂M, g)[1], d), not including derivatives of the �elds (or their whole germs) since the
boundary bracket already lives on this complex and does not contain any derivatives:

⟨−,−⟩∂ : Ω̄∗
c(∂M, g)⊗̂Ω∗(∂M, g)→ R[−2] (5.25)

is given as the tensor product of integration pairing and Killing form is a non-degenerate
symmetric pairing of degree 2 by Poincaré-Duality, so it induces a 0-shifted symplectic
structure on E∂ by 5.2.8. Further, the natural restriction map E → E∂ is Lagrangian,
because of the half-lives-half-dies principle in 5.2.14. We need to �nd an additional
Lagrangian subcomplex, taking the rôle of a polarization as in the last example, that
�xes the boundary condition.

To do that, we need to choose a complex structure on the 2-manifold ∂M =: Σ, and we
need to assume that g is a complex vector space with Lie bracket and Killing form, e.g.
by tensoring with C. For example in the abelian case, we set g = C instead of R.

Proposition 5.4.1. In this situation, L(Σ) := (Ω1,∗(Σ, g)[1], ∂̄) ⊆ Ω∗(Σ, g)[1], d) = E∂
is Lagrangian, since the di�erential subcomplex (

∧
1,∗T ∗M, ∂̄) ⊆ (

∧∗T ∗M,d) is a La-
grangian subbundle as in 5.2.19.

Proof. It is clearly a subcomplex since ∂̄ = d on L(Σ). Also, the Hodge star operator
being an isomorphism (or alternatively, complex conjugation being an isomorphism)
shows it is of half rank, and ⟨−,−⟩∂|L⊗̂L = 0 since the wedge product of two forms in L
must lie in Ω2,∗(∂M) = 0 for dimensional reasons.

Remark. Even though Chern-Simons theory is topological, we are allowed to equip it
with a boundary condition that is not; like in this case where, as we will see, it induces
a conformal �eld theory on the boundary.
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Since L(Σ) ⊆ E∂(Σ) is injective, the homotopy pullback EL(M) := E(M) ×h
E∂(Σ) L(Σ)

agrees with the ordinary pullback

EL(M) = ({A ∈ Ω∗(M, g)[1] |A|Σ ∈ Ω1,∗(Σ, g)[1]}, d) ⊆ E . (5.26)

The induced (−1)-shifted symplectic structure by 5.2.15 is, as expected, given by the
tensor product of integration pairing and Killing form since boundary terms vanish on
this subspace.

Let us remark at this point that E = Ω∗
M [1] ⊗ g is even a (homotopy) sheaf on M ,

similarly L and E∂ are sheaves on Σ and the pullback EL := E ×i∗E∂ i∗L for i : ∂ ↪→M is
a sheaf on M with global sections EL(M). Precisely as in the last section, one can show
that EL is constructible.

Proposition 5.4.2 ([GRW20, Section 5.3]). The classical observables Sym E∨L of Chern-
Simons theory satisfying the chiral boundary condition L form a constructible factor-
ization algebra determined by

Obscl(U) ∼=
(
Sym Ω̄∗

c(U, g)[2], dCE

) ∼= (SymΩ∗
c(U, g)[2], d)

Obscl(V ) ∼=
(
Sym(Ω0,∗

c (U)⊗ g[1]), ∂̄
) (5.27)

for open subsets U ⊆ M̊ and V intersecting the boundary. Here, dCE is the Chevalley-
Eilenberg di�erential induced by the exterior derivative and the Lie bracket.

Proof. That these are constructible factorization algebras again follows from 4.3.8, and
the �rst row follows from Poincaré-Duality and the Atiyah-Bott Lemma. The second
row works similarly as for Topological Quantum Mechanics 5.3.2 as well, by choosing a
complement to the Lagrangian L. We use (Ω0,∗(Σ)[1], ∂̄) for this purpose, even though
it is notably not a subcomplex of E∂ as the di�erential is di�erent. See loc. cit. for more
details.

Remark. In 4.5.6, we had classi�ed constructible factorization algebras on manifolds with
boundary as consisting of a bulk factorization algebra, a boundary factorization algebra
and a module structure of the latter over the former. We now see this in practice, as
the second formula describes a factorization algebra on Σ by the formula

Obscl∂ = Sym(Ω0,∗
c ⊗ g[1], ∂̄) . (5.28)

This is the algebra of operators of the chiral WZW model on Σ, which is why the
Lagrangian L we have chosen is also called the chiral WZW boundary condition.

In the case of abelian Chern-Simons theory, let us discuss the quantization carried out
via a twist by ℏ⟨−,−⟩.
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Proposition 5.4.3 ([GRW20, Section 5.3]). The quantum observables of abelian Chern-
Simons theory over C satisfying the WZW boundary condition form the constructible
factorization algebra Obsq ≃ Sym(EL,c[1][ℏ], d + ℏ∆) twisted by the shifted symplectic
structure ∆, associating

Obsq(U) ≃
(
Sym(Ω∗

c(U)⊗ g[2])[ℏ], d+ ℏ
�
M

⟨− ∧ −⟩
)

Obsq(V ) ≃
(
Sym(Ω0,∗

c (V )⊗ g[1])[ℏ], ∂̄ − ℏ
�
⟨− ∧ ∂−⟩

) (5.29)

for U in the interior and V an open at the boundary. Again, this induces a factorization
algebra on Σ which can be shown to correspond to the abelian Kac-Moody vertex algebra
expected for the WZW model.

Remark. More generally, one should be able to show that Chern-Simons and WZW the-
ory form an absolute constructible factorization algebra on smooth oriented 3-manifolds
with boundary (so we choose as tangential structure the full subcategory of conically
smooth basics on R3 and R2 × R≥0 → [1]). The only obstruction to formally proving
this is 2.2.13, as always.

Remark. Again, one notices a sort of bulk-boundary correspondence: Observables at
the boundary can be interpreted both as forming the Hilbert space of states for Chern-
Simons theory, and as elements of the induced locally constant factorization algebra on
Σ describing the WZW �eld theory.

5.5. Hamiltonian Approach to the Scalar Field

In this section, we study the free scalar �eld ϕ ∈ C∞(M) on a compact Riemannian
manifold (M, g) with boundary, using an approach motivated by [CMR14] and [Cap].
We need to be careful about the precise way we write down its action: Unlike in the
previous chapters, we set

S[ϕ] :=

�
M

1

2

(
−∂iϕ∂iϕ+m2ϕ2

)
volg =

�
M

1

2

(
−dϕ ∧ ⋆dϕ+m2ϕ ⋆ ϕ

)
(5.30)

which di�ers from our previous action containing ϕ(∆g + m2)ϕ by a boundary term.
Variation of this action yields

δS = −
�
∂M

δϕ ∧ ⋆dϕ+

�
M

δϕ ∧
(
d ⋆ dϕ+m2 ⋆ ϕ

)
=

= −
�
∂M

δϕ · dϕ ν∂M +

�
M

δϕ ∧
(
∆gϕ+m2ϕ

)
volM
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where ⋆ always denotes the Hodge star in M and ν∂M is the di�erential normal vector
along the boundary, so dϕν∂M = ∂nϕ vol∂M is the normal derivative of ϕ. We obtain the
Klein-Gordon equation, provided that the boundary term −

�
∂M

δϕ∂nϕν∂M =: ⟨δϕ, dϕ⟩∂
vanishes. This allows for an educated guess for the boundary BFV complex: For an
open U ⊆ ∂M ,

E∂(U) = (C∞(U)⊕ C∞(U))[0] ∼= (Ω0(U)⊕ Ωn−1(U))[0] (5.31)

so E∂ is the sheaf of sections of the di�erential complex over ∂M given by the direct sum
of two trivial vector bundles ϵϕ ⊕ ϵn in degree 0 on ∂M . One is determining the values
of ϕ on ∂M , and the other as �xing the normal derivative ∂nϕ. In other words, initial
conditions consist of values of ϕ and its �rst derivative in the normal direction.

Proposition 5.5.1. The pairing ⟨(α1, β1), (α2, β2)⟩∂ :=
�
∂M

(α1β2−α2β1) vol∂M determines
a 0-shifted symplectic structure on E∂.

Proof. This is clearly antisymmetric, and since ∂M is still orientable our identi�cation
E∂ = Ω0(∂M) ∼= Ωn−1(∂M) exhibits above it as the integration pairing on ∂M that we
know is symplectic.

Next, we would have to check that the restriction map r : E(M) → E∂(∂M) is La-
grangian. Spelling this out requires existence and uniqueness results from the PDE
theory of the Klein-Gordon equation, and relies heavily on the functional analytic de-
tails we suppress, we refer to [Cap] for more information.

Proposition 5.5.2. The following subbundles of E∂ = ϵϕ⊕ϵn are Lagrangian and therefore
determine boundary conditions:

� Dirichlet boundary condition: Sections that lie in 0 ⊕ ϵn come from �elds that
vanish at the boundary

� Neumann boundary condition: Sections that lie in ϵϕ⊕ 0 come from �elds that are
constant in the direction normal to the boundary

� Robin boundary condition: We can combine these concepts by looking at the sub-
bundle where c0ϕ + c1∂nϕ = 0, for ϕ, ∂nϕ the coordinates along ϵϕ and ϵn respec-
tively and (c0, c1) ∈ R2 − {0}.

Proof. Since everything is concentrated in degree 0, we only have to check that the
symplectic structure vanishes restricted to the bundles and that they are of half rank.
The latter part is clear since the above subbundles are all of rank 1, and the �rst
claim follows since any antisymmetric form restricted to a one-dimensional subspace
vanishes and the symplectic pairing only depends on the �ber coordinates in the bundles.
Explicitly for Robin boundary conditions, sections (α1, β1) and (α2, β2) as above and
λ := − c0

c1
, we impose βi = λαi so α1β2 − α2β1 = α1α2(λ− λ) = 0.
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Remark. Note that setting ϕ|∂M
!
= ϕ0 for 0 ̸= ϕ0 ∈ C∞(∂M) does not determine a

boundary condition, since it does not yield a sub-vector bundle. This is to be expected
since we are dealing with perturbative �eld theory around ϕ = 0, while �xing such
a condition would be strictly non-perturbative. The correct way to implement non-
vanishing Dirichlet boundary conditions would be by �xing a background solution that
satis�es them, and performing perturbation theory around it.

As in the previous sections, the above results allow us to de�ne constructible factoriza-
tion algebras Obscl and Obsq on any manifold with boundary that describe classical or
quantum operators on the scalar �eld. One can even de�ne a corresponding absolute
factorization algebra on all Riemannian manifolds with boundary, compare [Cap].

Let us also talk about periodic boundary conditions. Suppose ∂M = N⊔−N for a closed
oriented (n− 1)-manifold N , where we �x a di�eomorphism between the two boundary
components in other to identify E∂(N) and E∂(−N). As before, one can show that

the restrictions E∂
r← E r′→ E∂ to both boundary components constitute a Lagrangian

correspondence, so we apply self-gluing 5.2.17 to see that

Eperiod := fib(r−r′) =
(
C∞(M)

(∆+m2)⊕(r−r′)−→ C∞(M)[−1]⊕ (C∞(∂M)⊕ C∞(∂M)) [−1]
)

obtains a canonical (−1)-shifted symplectic structure. Notice that with all of C∞(M)
as source, r−r′ is surjective, so instead of the �ber we can take the kernel C∞

period(M) :=
{α ∈ C∞(M) |α|N = α|−N and ∂nα|N = ∂nα|−N} via the �xed di�eomorphism between
N and −N . This means

Eperiod =
(
C∞

period(M)
∆+m2

−→ C∞(M)
)

(5.32)

and a similar argument to 3.3.2 using results from PDE theory (uniqueness and existence
of solutions, and Green's function) identi�es this with the solutions of the �eld equations
on the self-gluing of M along N . In particular, it is enough to require continuity of the
�eld and its normal derivative at the boundary since by uniqueness, we still eventually
glue to smooth solutions.

Now, let us apply this to understand the Hamiltonian formalism and canonical quan-
tization. For this purpose, choose as underlying Riemannian manifold a product
(M, g) = (N, h)× [0, T ] with T ∈ R>0, π :M → [0, T ] the canonical restriction map and
(N, h) a closed oriented Riemannian (n − 1)-manifold. Remember from 3.3.11 that for
(λi)i∈Λ the spectrum of∆h+m

2 with eigenfunctions ei, the subspace
⊕

i Rei ⊆ C∞(N) is
dense, a fact that allowed us to describe a dense subspace the pushforward factorization
algebra π∗Obsq as a product of individual Weyl algebras for every energy eigenvalue.
Let us generalize this to the boundary case:

Theorem 5.5.3. Denote by ObsqTQM the constructible factorization algebra of topological
quantum mechanics on [0, T ] from 5.3, with underlying symplectic vector space V =
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⊕
i∈Λ(Rai+Ra†i ) and its canonical symplectic form. Then, the pushforward factorization

algebra π∗Obsq agrees, up to some functional analytic completion and the fact that Λ is
usually not �nite, with ObsqTQM ; and similarly for the classical case.

Remark. From a physicists point of view, our functional analytic/ �niteness problems
can be discussed away since physical particles should only carry a �nite amount of energy.
Then, this result essentially says that Topological Quantum Mechanics with values in V
is the compacti�cation of scalar �eld theory on N × [0, T ] along N .

Proof. We have already seen that the statement is true in the interior of [0, T ] as ObsqTQM

corresponds to the associative algebra W (V ) =
⊗

iW ⟨ai, a
†
i⟩ there, where we take the

tensor product over R[ℏ], agreeing with the result from 3.3.11.

On the boundary, ObsqTQM is described by the Fock space F (L′) =
⊗

i R[ℏ][a
†
i ] equipped

with a module structure overW (V ). For the scalar �eld, we need to choose a complement
L⊥ to the Lagrangian subbundle L of ϵϕ ⊕ ϵn determined by the respective boundary
condition, which is always a trivial bundle of rank 1 so that

π∗Obsq([0, b)) = Obsq(N × [0, b)) ∼= SymΓ(N,L⊥)[ℏ] ∼=
∼= SymC∞(N)[ℏ] ⊇ Sym

⊕
i

R[ℏ]ei ∼=
⊗
i

R[ℏ][ei]

contains this Fock space as a dense subspace. We have, similarly to the last sections,
used the main result of [GRW20] to retract the quantum observables to Sym(L⊥).

In the above calculation, the precise manner in which we identify the two factorization
algebras depends on L⊥, and therefore on the boundary condition L. Eventually, this
ambiguity is irrelevant since it is captured by our convention on how to identify ai
and a†i with wave functions. Sticking close to the notation from Chapter 3, regard ai
as behaving like emx and a†i as behaving like e−mx normal to the boundary. Then,
Dirac boundary conditions correspond on the TQM side to L′ =

⊕
i R(ai − a

†
i ) as the

involved perpendicular Lagrangian subspace; Neumann boundary conditions to L′ =⊕
i R(ai + a†i ) and Robin conditions to

L′ =
⊕

i
R
(
(c1 + c0)ai + (c1 − c0)a†i

)
.

Notice that every 1-dimensional subspace L0 of R⟨ai, a†i⟩ has to be Lagrangian since it
is spanned by a single basis vector l0 with ⟨l0, l0⟩∂ = 0 by antisymmetry.

Eventually, comparing with 3.5.1, we have thereby proven that the real scalar �eld on a
closed manifold can be described as a collection of in�nitely many Harmonic Oscillators,
and how Dirichlet and Neumann boundary conditions are encoded in this picture. Our
result agrees with what is expected by physical intuition, and comparing both sides tells
us a lot about the rôle our formalism plays for general Hamiltonian Field Theories. Let
us speculate on how our methods could be extended, using the following theorem from
sheaf theory:
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Theorem 5.5.4 (Recollement, [HA, A.8.16] and [PT22, 5.18]). For X a topological space,
j : U ↪→ X an open subset and i : Z = X − U ↪→ X its closed complement, the
∞-category Sh(X;V) of ∞-sheaves with values in a presentable stable (or compactly
generated) ∞-category V is a recollement of Sh(Z;V) and Sh(U ;V). This means in
particular that Sh(X;V) is equivalent to the ∞-category of triples of

� A sheaf FZ ∈ Sh(Z;V),

� A sheaf FU ∈ Sh(U ;V),

� A morphism FZ → i∗j∗FU .

Under this equivalence, any sheaf F ∈ Sh(X;V) can we recovered as the pullback

F i∗FZ

j∗FU i∗i
∗j∗FU

where FU = j∗F and FZ = i∗F .

Example 5.5.5. Any sheaf F on a manifold with boundary can be recovered from its
restriction F◦ to the interior, its restriction F∂ to the boundary, and a morphism F∂ →
i∗j∗F◦.

Corollary 5.5.6. For any strati�ed space f : X → P and V as above, let (P−, P+) be
a slicing of P , which means that P− is downwards closed, P+ is upwards closed, and
P− ∪ P+ = P while P− ∩ P+ = ∅. The subspaces X− := f−1(P−) and X+ := f−1(P+)
then decompose X into a closed and an open subset, and the ∞-category Shcbl(X;V) is
a recollement of Shcbl(X+;V) and Shcbl(X−;V).

Proof. The statement about the decomposition of X follows by continuity of f and the
de�nition of the Alexandrov-Topology on P . The statement about sheaves follows from
5.5.4 and the observation that a sheaf F on X is constructible i� its restrictions to X−
and X+ are constructible. See [Zet, Section 5] for a re�ned statement.

Construction 5.5.7. We now sketch how the Hamilton formalism for an arbitrary topo-
logical, conformal or free �eld theory may be introduced from the point of view of
constructible sheaves. Given a manifold M with boundary, the BV-complex of the �eld
theory we consider should de�ne a locally constant sheaf E ∈ Sh lc(M̊ ;V) that is Verdier
self-dual up to a shift by 3. The pairing inducing this Verdier self-duality is the (−1)-
shifted symplectic structure E !c ⊗ E → DensM̊ as E∨ ⊗DensM̊ is the Verdier dual sheaf.

Now, there is a canonical boundary BFV complex E∂ ∈ Sh lc(∂M ;V) associated to E ,
de�ned by taking the stalks of E at the boundary. The discussion in [Ban07, Section

http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.8.16
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8.2.2] shows that E∂ := i∗j∗E [−1] acts as a universal boundary sheaf to E , and this
should be the general way the unpolarized Hilbert Space (or, in the classical case, the
Hamiltonian Phase Space) is de�ned.

If the space of o�-shell �elds is given by the sections of a vector bundle F = Γ(−, E), the
boundary bracket may only depend on the values of the �elds and their derivatives at
the boundary, or even just on the �elds themselves. One should then be able to reduce
from this universal E∂ to a smaller subsheaf, namely the jet bundle J∞E|∂M or E|M .

5.6. Examples of Corner Theories

After our lengthy discussion of boundary conditions, let us now look at �eld theories on
manifolds with corners. As an example, �x the compact oriented 2-dimensionalM = ∆2.
A �eld theory on it should contain a bulk BV complex E , a boundary BFV complex E∂
and a corner BFFV complex E∂∂, where we follow the convention of [CMR14] to add
one factor of "Fradkin" inside the term "Batalin-Vilkovisky" for each codimension.

It is a classical fact that on any smooth manifold with corners, we may smooth out all
corners to obtain a homotopy equivalent manifold with boundary. We therefore expect
that the introduction of corners should involve less physical content than the introduction
of boundaries, in particular we do not need polarizations at corners. Instead, the corner
complex often imposes continuity or smoothness conditions on the sections of E∂, making
the resulting theory very similar to the smoothed out theory.

On ∆2, locality tells us that the contributions from di�erent boundary components
or di�erent corners should a priori be independent, so set E∂ = E01 ⊕ E02 ⊕ E12 and
E∂∂ = E0⊕E1⊕E2, where we suppress pushforward along the inclusions of the respective
components. As an example, let us choose a �nite-dimensional vector space V equipped
with a (possibly degenerate) antisymmetric form V ⊗ V → R inducing a map Π : V ∗ →
V .

� For each vertex i let Ei := (Ω∗({i}) ⊗ V ∗[1] ⊕ Ω∗({i}) ⊗ V, d ⊗ idV + id⊗Π) =

V ∗[1]
Π→ V regarded as a sheaf on {i},

� For each edge [i, j] and U ⊆ [i, j] the sheaf Eij(U) := (Ω∗(U) ⊗ V ∗[1] ⊕ Ω∗(U) ⊗
V, d⊗ idv + id⊗Π)

� And E := Ω∗
M ⊗ V ∗[1]⊕Ω∗

M ⊗ V on all of M , with di�erential again induced by d
and Π.

We obtain restriction maps �tting into a diagram
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E1

E01

E0 E02 E2

E12

E

Physically, this extended BFV-theory describes the free Poisson σ-model with target V .
Be aware that we use the term BFV-theory only due to the conceptual similarity with
[CMR14]; the precise setting di�ers quite a bit.

Remark. One can write down similar data for non-linear Poisson σ-model � this works
along the same lines of the compacti�cation of B-twisted Kapustin-Witten-theory in
[BY16, Section 4.5]. Generally, the examples in this paper �t into our context as well.

There is a large class of �eld theories that can be extended to arbitrary codimensions in
a fairly trivial way, namely the class of AKSZ-theories. We give no precise de�nition, but
essentially, these are theories where the covariant phase space on an arbitrary manifold
M is constructed as a mapping stack out of a derived stack associated to M . For
example, the covariant phase space of Chern-Simons theory was claimed in 1.56 to be

X(M) = Map(♭M,BG) . (5.33)

Now, we can de�ne boundary and corner complexes using the exact same formula; one
can show [Cal14] that the functor

Map(♭(−),BG) : Bord3Bord3Bord3 → Lagr3Lagr3Lagr3 (5.34)

is an extended topological �eld theory, where the right side is an (∞, n)-category with de-
rived stacks as objects, Lagrangian correspondences of stacks as morphisms, and higher
correspondences as higher morphisms. Taking the tangent space around a background
solution on a �xed manifold with corners M intuitively should yield the global BV-
complex (not a sheaf) on the interior of M , a BFV-complex on each boundary compo-
nent, and so on � again forming a network of (higher) Lagrangians.

For example, on the tetraeder ∆3, we obtain an extended BFV theory corresponding to
abelian Chern-Simons theory with
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� BFFFV complex E∂∂∂ =
⊕4

i=1(Ω
∗({i})[1], d) ∼= R[1] where i goes through all the

vertices,

� BFFV complex E∂∂ =
⊕6

e=1(Ω
∗(e)[1], d) living on the edges of ∆3,

� BFV complex E∂ :=
⊕4

f=1(Ω
∗(f)[1], d) on the faces,

� BV complex E := (Ω∗(∆2)[1], d) on the whole simplex.

Similarly for non-abelian Chern-Simons theory, where we tensor a factor of g to each
sheaf, giving us non-vanishing ℓ2-brackets via wedge product and Lie bracket. We have
restriction maps from the bottom to the top, and

� E∂∂∂ possesses a 2-shifted symplectic structure, given by multiplication in R as
(R[1])∨[2] ∼= R.

� E∂∂ → E∂∂∂ induces Lagrangian correspondences between the components for ver-
tices connected by an edge, so that combining 5.2.15 and 5.2.17 the �ber E ′∂∂ of
this map becomes 1-shifted Lagrangian, describing forms on the edges that are
compatible at the corners.

� E∂ → E∂∂ factors through E ′∂∂ since forms that live on the faces, when restricted
to the edges, are automatically compatible at the corners. This again, essentially
by 5.2.14, yields Lagrangian correspondences between the components, equipping
the �ber E ′∂ of this map with a 0-shifted symplectic structure.

� E → E∂ factors through E ′∂ for the same reason, and this map is Lagrangian.

We could obtain a physical BV-complex with a (−1)-shifted symplectic structure by
producing another Lagrangian L→ E ′∂ acting as a boundary condition.

There is one big problem with this description: What we have obtained are global com-
plexes on our manifold, its boundary and so on, but to construct factorization algebras,
we would need to start with a constructible sheaf as in the previous examples. Also,
instead of the global shifted symplectic structures we have just described, those should
also be de�ned in a local way. This resembles surgery theory, where we are interested in
CW complexes that not only satisfy global, but local Poincaré duality. We discuss two
ways to incorporate this:

� We can make E and the boundary and corner complexes into sheaves that are
Verdier self-dual up to a shift inside the interiors of the components they live on,
compare 5.8.14. This involves (higher) bordism theory of Verdier-self dual sheaves,
compare [Ban07, 8.2] and [Ban01].

� By working on simplicial complexes instead of manifolds with corners, we do not
have to use sheaves any more (as long as we are working with topological �eld
theories), since simplices are contractible and locally constant ∞-sheaves on them
are therefore constant. Simplicial BV theories thus have very e�cient descriptions
as we will see in the next section.
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For more examples of extended BV-BFV theories including BF-theory and Yang-Mills
theory, see [CMR14, Chapter 5]; examples for the boundary case in [Rab21] and [BY16]
can also often be extended.

5.7. Simplicial Topological Field Theories

In this last section, we will tease how our considerations about �eld theories on man-
ifolds with corners can be used to glue together �eld theories from triangulations on
compact manifolds. Generally, we introduce �eld theories on �nite simplicial complexes,
generating an abstract framework for cellular topological �eld theories including those
discussed in [Mne06] and [CMR20].

De�nition 5.7.1. A simplicial complex K consists of a set of vertices K0, together with
a partially ordered set IK of faces that is a collection of nonempty �nite subsets of K0,
such that

� for every v ∈ K0, the set {v} is in IK ,

� if σ ∈ IK and τ ⊆ σ, then τ ∈ IK ,

� and the partial order relation is given by inclusion.

The dimension of a face σ ∈ IK is de�ned as its cardinality minus 1. The dimension of
K is the maximum over the dimensions of all its faces.

De�nition 5.7.2. A map of simplicial complexes f : K → L is a map of underlying sets
f : K0 → L0 such that the image of a face is again a face. One obtains a category of
simplicial complexes.

A simplicial complex K should be regarded as special case of a simplicial set, where

� no ordering is �xed on the faces of an n-simplex,

� the gluing of simplices is regular, i.e. all n-simplices of K are isomorphic to the
standard simplex ∆n, and

� the intersection of two simplices is again a single simplex.

In particular, we can associate a simplicial set to any simplicial complex K (which is
unique after �xing an order on the vertices), and use this to de�ne e.g. the geometric
realization |K|. This agrees with its usual de�nition.

In the following, let us �x a �nite simplicial complex K; i.e. the set of vertices K0

is �nite. Also, let V be a stable ∞-category with duality functor (−)∨, for example
Dperf(R) or the category D of topological vector spaces we have �xed by assumption.
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De�nition 5.7.3. If we regard the poset IK as an ∞-category, functors in Fun(IK ,V)
will be called V-valued constructible sheaves on K and functors in Fun(IopK ,V) will be
called gluing data on K.

Proposition 5.7.4. If we assume V is presentable, this coincides with the usual de�nition
of a constructible ∞-sheaf on the geometric realization |K| if we stratify it by the poset
of simplices IK , namely

Shcbl(|K|,V) ≃ Fun(IK ,V) . (5.35)

We are however interested in non-presentable V like Dperf(R) or our functional-analytic
category D, that can be embedding in a larger presentable category V̂ like D(R) or
D̂. In this case, Fun(IK ,V) is equivalent to the full subcategory of Shcbl(|K|, V̂) on
constructible sheaves whose stalks lie in V ⊆ V̂ .

Proof. Since SingIK |K| ≃ IK by B.2.19, the presentable case follows immediately from
exodromy B.5.11. In the non-presentable case, use the exodromy correspondence for V̂
and notice that the value of the functor IK → V̂ on a simplex σ is the stalk of the
associated constructible sheaf at a point in the interior of σ. Compare [PT22, 6.32] for
this fact.

De�nition 5.7.5. To every constructible sheaf S : IK → V , we can associate a gluing
datum GS : IopK → V de�ned by

GS(σ) := lim
(τ⊆σ)∈(IK)/σ

S(τ) . (5.36)

Since V is stable and K �nite, this limit exists. Intuitively, S gives the stalks of a
constructible sheaf at points in the interiors of the respective simplices of K, and GS
gives the sections of the respective sheaf on the closures of the simplices.

De�nition 5.7.6 ([CDH+20a, 6.3.2]). Given a gluing datum F ∈ Fun(IopK ,V), we de�ne
its dual gluing datum DF as the functor IopK → V de�ned by

DF (σ) := lim
(τ⊆σ)∈(IK)/σ

F (τ)∨ . (5.37)

Note that DF = G(F∨) where F∨ := F ◦ (−)∨ : IK → V .

Example 5.7.7. Let K = ∆2 and �x F ∈ Fun(IopK ,V). Then,

DF ({0}) = lim
τ⊆{0}

F (τ)∨ = F ({0})∨ ,

DF ({0, 1}) = lim
τ⊆{0,1}

F (τ)∨ = F ({0})∨ ×F ({0,1})∨ F ({1})∨ ,

DF ({0, 1, 2}) = lim
τ⊆{0,1,2}

F (τ)∨ = fib

(
lim

τ∈∂∆2
F (τ)∨ → F ({0, 1, 2})∨

)
.

One can of course also write out the last line; we write it this way to make the connection
with polarizations easier to see in a moment.
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Proposition 5.7.8 ([CDH+20a, 6.6.1]). For every gluing datum F ∈ Fun(IopK ;V), there is
a canonical biduality isomorphism F ∼= DDF . In fact, (Fun(IopK ,V), D) is again a stable
∞-category with duality functor.

Technical Remark. This is a special case of the so-called cotensor Poincaré ∞-category
(V , (−)∨)IK . See the above reference for more, we warn the reader that this duality does
not agree with Verdier duality on constructible sheaves, which is on compact oriented
manifolds described by the tensor Poincaré ∞-category on Fun(IK ,V). To describe it,
we essentially only replaces the limit over (IK)/σ in our formula for DF (σ) by a colimit
over (IK)σ/.

Corollary 5.7.9. We can recover a constructible sheaf S : IK → V from its associated
gluing datum GF by taking the dual gluing datum and pointwise applying (−)∨:

S ∼= (DGS)∨ (5.38)

Proof. Since we have seen D(S∨) = GS, write out (DGS)∨ ∼= (DDS∨)∨ ∼= S∨∨ ∼= S.

Proposition 5.7.10 ([CDH+20a, 6.6.2]). Re�nement of the triangulation, and pullback
along maps of simplicial complexes, commute with the duality functor � see the reference
for a precise statement.

De�nition 5.7.11. For S ∈ Fun(IK ,V) a constructible sheaf, its simplicial cochain com-
plex with values in the local system F , or global sections, are de�ned as

C∗S := lim
σ∈IK

S(σ) ∈ V . (5.39)

which is again well-de�ned since K is �nite. We also de�ne the simplicial chain complex
as C∗S := colim

σ∈IK
S(σ).

Remark. Homotopy colimits in the derived category of a Grothendieck abelian category
can be calculated using the bar construction (see [CG16, C.5.11]). Using this fact, we
see that for V = D(R) with R a commutative ring or D(DVS), this simplicial chain
complex C∗(S) agrees with the one well-known from topology, and similarly for C∗(S).
In particular, if S = R is constant,

C∗(R) ∼= C∗
cell(K;R), C∗(R) ∼= Ccell

∗ (K;R) . (5.40)

One can also de�ne cellular and singular (co-)chains with values in a constructible sheaf
in this way.

De�nition 5.7.12. Similarly, for F : IopK → V a gluing datum, we de�ne C∗F and C∗F
by taking limits and colimits over IopK .
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Proposition 5.7.13. For S a constructible sheaf, the global sections C∗S ∼= C∗GS agree.
This is however generally not true for C∗.

Proof. We need to show that

C∗S = lim
σ∈IK

S(σ)
!∼= C∗GS = lim

σ∈Iop
K

lim
τ⊆σ

S(τ) ∼= lim
(τ⊆σ)∈TW(IK)

S(τ) =

�
τ∈IK

S(τ)

where the last expression is an∞-end, and TW(IK) denotes the twisted arrow category.
Since this end is mute in one entry, morphisms in the twisted arrow category that only
involve changing σ are sent to identities, so it calculates the limit on the left. One can
of course also see this more explicitly.

Theorem 5.7.14 (Poincaré Duality). If K is a triangulation of a closed oriented smooth
n-manifold, then for any gluing datum F ∈ Fun(IopK ,V),

C∗(DF ) = lim
σ∈Iop

K

lim
τ⊆σ

F (τ)∨ ∼= ( lim
σ∈Iop

K

F (σ))∨[−n] = C∗(F )∨[−n] (5.41)

Proof. We again combine the limits on the left side into a single limit over the poset
{σ, τ ∈ IK |τ ⊆ σ} which is ordered by inclusion in τ and containment in σ. Again, this
yields a coend that is mute in one variable, so we simplify to

C∗(DF ) = lim
τ∈IK

F (τ)∨
!∼= colim

σ∈IK
F (σ)∨[−n] = C∗(F )∨[−n] . (5.42)

If we rewrite F∨ =: S as a constructible sheaf, then this can be written as

C∗S
!∼= C∗S[−n] , (5.43)

which is just Poincaré duality for PL manifolds as in [Lur11, Lecture 26].

Warning. By triangulation of a smooth manifold, we mean a Whitehead triangulation;
what we actually want to talk about are triangulations of PL manifolds. Our argument
breaks down for topological manifolds, as their triangulations can have links that are
not spheres.

Technical Remark. The functor C∗ is a special case of the exceptional pushforward
introduced in [CDH+20a, 6.5.14], for the terminal map of simplicial complexes ! : K → ∗.
One should be able to generalize above result to more general �brations with manifold
�bers. Also, there should be generalizations to triangulations of PL pseudomanifolds if
we take perversity into account.

Example 5.7.15. ForK = ∂∆2, equation 5.42 says that limit and colimit over the diagram
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F ({0})∨ F ({1})∨ F ({2})∨

F ({0, 1})∨ F ({0, 2})∨ F ({1, 2})∨

agree. Let us check this explicitly, without using Poincaré Duality, by �lling in

C∗(DF )

DF ({0, 1}) DF ({0, 2}) DF ({1, 2})

F ({0})∨ F ({1})∨ F ({2})∨

F ({0, 1})∨ F ({0, 2})∨ F ({1, 2})∨

C∗(F )∨

where the three middle squares are pullbacks. We can make pullback squares into �ber
squares using the formula

lim (A→ B ← A′) = fib (A⊕ A′ → B) , (5.44)

obtaining a giant diagram

C∗(DF )

DF ({0, 1}) DF ({1, 2})⊕ F ({0})∨ DF ({0, 2})

0 F ({1})∨ ⊕ F ({0})∨ F ({2})∨ ⊕ F ({0})∨ 0

F ({0, 1})∨ F ({1, 2})∨ ⊕ F ({0})∨ F ({0, 2})∨

C∗(F )∨

where, due to the pasting lemma, every square is a pullback. In particular, from the big
square, we read o� that C∗(DF ) = 0×C∗(F )∨ 0 = C∗(F )∨[−1] as anticipated.
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Example 5.7.16. The argument in the above example extends to the case where K
is the boundary of an n-gon, for n ≥ 1. It is particularly simple for n = 1, where
IK =

(
• •

)
. For a gluing datum F : IopK → V determined by parallel morphisms

f, f ′ : C → D, we have

C∗(DF ) = lim
IK

F∨ = equ(f∨, f ′∨) = fib(f∨ − f ′∨) =

= cofib(f∨ − f ′∨)[−1] = coequ(f∨, f ′∨)[−1] = colim
IK

F∨[−1] = C∗(F )∨[−1] ,

since it is a general property of stable ∞-categories that �ber and co�ber sequences
agree. This also yields an alternative proof of 5.2.17.

Warning. In the above claim, 1-gon and 2-gon are no actual simplicial complexes in
our sense, since edges are not uniquely determined by the vertices they end on. Our
conjecture should still hold for a slight generalization of simplicial complexes, namely
for semi-simplicial sets. It does not hold for general simplicial sets, as can be seen from
the example of ∆2/∂∆2. We will see how to �x this by extending to a semi-simplicial
set in the next example.

Example 5.7.17. Let K be the triangulation of S2 consisting of two vertices v1, v2, two
edges e1, e2 and two 2-dimensional faces σ1, σ2. A gluing datum F : IopK → V is then
given by a diagram:

F (σ1) F (e1) F (v1)

F (σ2) F (e2) F (v2)

Let K0 ⊆ K be the subcomplex spanned by vertices and edges triangulating S1; by the
example above the restriction F |K0 satis�es C∗D(F |K0)

∼= C∗(F |K0)
∨[−1] =: F∂. Also,

D(F |K0) = (DF )|K0 since K0 is closed under containment, so the limits involved in
calculating DF only depend on values of F in K0. This lets us rewrite

(C∗F )∨[−2] ∼= lim (F (σ1)→ C∗(F |K0)← F (σ2))
∨ [−2] ∼=

∼= colim (F (σ1)
∨[−2]← F∂[−1]→ F (σ2)

∨[−2]) ∼=
∼= cofib (F∂ → F (σ1)

∨[−1]⊕ F (σ2)∨[−1]) [−1] ∼=
∼= fib (F∂ → (F (σ1)⊕ F (σ2))∨[−1]) ,

and our goal is to explicitly show this agrees with C∗(DF ) = limIK F
∨, as 5.7.14

states. Using F∂ = C∗(DF |K0), this becomes a mere manipulation of limits in stable
∞-categories.

Now, let us �nally apply all of this to �eld theory.
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De�nition 5.7.18. An m-dimensional Poincaré object (F, ω) in the stable ∞-category of
gluing data Fun(IopK ,V) is an object F equipped with an isomorphism ω : F

∼=→ DF [−m]
that is induced by a symmetric pairing.

Technical Remark. There are two ways to make sense of what we mean by a symmetric
pairing. First, notice that Dω[−m] : DF [−m]→ F is still an isomorphism, and we want
to require it to be an inverse to ω. Further, we require the 2-morphisms ω◦Dω[−m]→ Id
and Dω[−m] ◦ ω to satisfy a tower of higher coherence conditions.

It turns out (see [CDH+20a, 6.3.2]) that for V = Dperf(R), we may equivalently require
ω to be induced by a pairing β that is on object in

lim
σ∈Iop

K

MapDperf(R)(F (σ)⊗ F (σ),R[−m])hS2 , (5.45)

a compatible symmetric (up to coherent homotopy) pairing on F (σ) for each σ. Properly
explaining this would require introducing methods connecting quadratic forms, symmet-
ric bilinear forms and self-dualities in Poincaré ∞-categories which we do not want to
do so that we ignore this pairing in the following.

Theorem 5.7.19. For K a triangulation of a compact oriented smooth n-manifold and
(F, ω) an m-dimensional Poincaré object in Fun(IK ,V), the pair (C∗F,C∗ω) is an (n+
m)-dimensional Poincaré object in V .

Proof. We apply the isomorphism C∗ω and 5.7.14 to calculate

C∗F ∼= C∗(DF [−m]) ∼= (C∗F )∨[−n][−m] ∼= (C∗F )∨[−n−m] . (5.46)

Abstractly, C∗ is a duality-preserving functor and those preserve Poincaré objects.

De�nition 5.7.20. A (free topological) simplicial BV theory on a �nite simplicial complex
K of dimension n is a (3− n)-dimensional Poincaré object in Fun(IopK ,V).

Remark. By 5.7.9, we could equivalently have de�ned a simplicial BV theory as a con-
structible sheaf S equipped with an isomorphism GS → DGS[3 − n] ∼= S∨[3 − n].
The self-duality this imposes is di�erent from Verdier self-duality, since GS(σ)∨ takes a
colimit over faces of σ, while Verdier duality takes a colimit over simplices containing σ.

Corollary 5.7.21. Given a simplicial BV theory F : IopK → V on a triangulation of a
smooth oriented manifold, its global sections C∗F are a 3-dimensional Poincaré object
in V . In other words, they possess a (−1)-shifted symplectic structure as 2− 3 = −1.
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Remark. Similarly, one can show that for a simplicial BV theory F on a triangulation
K of a smooth oriented manifold with boundary, with K∂ the subcomplex that trian-
gulates the boundary, the canonical map C∗(F ) → C∗(F |K∂

) is a Lagrangian of the
2-dimensional Poincaré object C∗(F |K∂

). We obtain a BV-BFV theory on our manifold!
See 5.8.12 for a way to introduce boundary conditions.

Generally, our de�nition of a simplicial BV-theory is chosen in a way that

� On every individual top-dimensional simplex, we obtain something resembling an
extended BV-BFV theory, and

� For a PL triangulation of a manifold with corners, we should obtain a BV-BFV
theory on it by taking sections of the restricted gluing data.

One can view it as a middle ground between Lagrangian extended topological �eld
theories and extended BV-BFV theories, see 5.8.13.

Theorem 5.7.22. Any simplicial BV-theory F : IopK → V on an n-dimensional �nite
simplicial complex K de�nes a constructible factorization algebra Obscl := Sym E∨ of
classical observables on |K| → IK , where E is the constructible sheaf on |K| associated
to F .

Proof. We have seen that F can be identi�ed with a constructible sheaf on |K| → IK
in 5.7.4 and 5.7.9, which induces a constructible factorization algebra by 4.3.8.

Let us �nally develop several example theories on a �xed compact oriented manifold
triangulation K, to show that our considerations are not purely academic:

De�nition 5.7.23. For a given gluing datum F : IopK → V , the datum hyp(F ) := F ⊕DF
is a Poincaré-object in a canonical way, since D(F ⊕ DF ) = DF ⊕ D2F ∼= F ⊕ DF .
We call it the hyperbolic Poincaré-object associated to F . Similarly, we de�ne the n-
dimensional Poincaré-object associated to F as

hyp[n](F ) := F ⊕DF [−n] . (5.47)

This n-dimensional Poincaré object admits two canonical Lagrangians F → hyp[n](F )
and DF [−n]→ hyp[n](F ).

Construction 5.7.24. For G a group with associated one-object groupoid BG, we de�ne
a G-local system on an n-dimensional simplicial complex K to be a functor ω : IK →
BG. For a �xed representation ρ : BG → V of G (this contains the case of ordinary
representations on R-vector spaces if we restrict to functors with values in VectR ⊆
Dperf(R)), we obtain an associated constructible sheaf A := ρ ◦ ω : IK → V . We de�ne
abelian BF-theory on K as the simplicial �eld theory de�ned by the 3− n-dimensional
Poincaré object

FBF := hyp[3−n](GA) = GA⊕DGA[−3 + n] . (5.48)
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More generally, we could have chosen A to be an arbitrary gluing datum. The global
section BV-complex is given by

C∗FBF = C∗GA ⊕ C∗DGA[−3 + n] ∼= C∗A ⊕ C∗A∨[−3 + n] ∼=
∼= C∗

simp(K,A) ⊕ Csimp
∗+n−3(K,A)

∨ (5.49)

because C∗A∨ = limA∨ = (colimA)∨ = (C∗A)
∨.

Remark. On closed, oriented manifolds, this is essentially equivalent to the �eld theory
studied in Section 5 of [CMR20], if we identify C∗ of constructible sheaves on the dual
cell complex with C∗ on the ordinary complex. We explain in the next chapter how
our constructions generalize to regular cell complexes, but note at this point that by
construction, BF theory does not even require our simplicial complex to be a manifold
triangulation. This paper also explains how to quantize such theories, obtaining a par-
tition function that for abelian BF theory depends on Reidemeister torsion and Betti
numbers of the manifold.

Remark. Constructing hyperbolic objects might be seen as a perturbative analogue of the
universal bulk theory in [BY16], as we can locally split the coordinates on the cotangent
bundle used for its construction into "positions and momenta" as in F ⊕DF .

Construction 5.7.25. For g an R-vector space with non-degenerate inner product exhibit-
ing g ∼= g∨, and assuming K triangulates a compact oriented 3-dimensional manifold,
we de�ne abelian Chern-Simons theory with values in g as the simplicial �eld theory as-
sociated to the constant constructible sheaf S = g[0] : IK → Dperf(R) sending σ 7→ g[0].
To see that this is a simplicial BV-theory, evaluate

Gg[0](σ) = lim
τ⊆σ

g[0] ∼= C∗
simp(σ, g)

∼= g[0] (5.50)

where since σ is contractible, its simplicial cochain complex is quasi-isomorphic to g[0].
Composing with the inner product on g yields an isomorphism

Gg[0] ∼= g[0] ∼= g[0]∨ (5.51)

making Gg[0] into a (3− 3)-dimensional self-dual gluing datum. The global section BV
theory induced by 5.7.21 is

C∗g[0] ∼= C∗
simp(K, g) (5.52)

as expected for Chern-Simons theory (replacing simplicial chains by di�erential forms),
with (−1)-shifted symplectic structure given by the integration pairing since it can be
integrated up from contractible subspaces.

Construction 5.7.26. We can also de�ne higher-dimensional abelian Chern-Simons the-
ory. Choose an r-shifted Poincaré object g ∼= g∨[−r] in V , where the above corresponds
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to r = 0. If K is n-dimensional with n+r odd, de�ne the constructible sheaf S : IK → V
sending σ 7→ g[s] with s := n+r−3

2
. Then,

GS ∼= g[s] ∼= g∨[s− r] ∼= S∨[2s− r] (5.53)

so that GS is a Poincaré object of dimension −(2s − r) = 3 − n and hence de�nes a
simplicial BV theory. This contains as special cases simplicial variations of

� Topological Quantum Mechanics if n = 1, r = 2, s = 0 and g = V [−1] with V a
symplectic vector space,

� the free Poisson σ-model if n = 2, r = 1, s = 0 and we set g = (V ∗ → V [−1]) with
V a �nite-dimensional vector space and the di�erential Π : V ∗ → V induced by an
(anti-)symmetric pairing on V , so that g∨[−r] =

(
V ∗[1]

Π∗
→ V

)
[−1] ∼= g,

� abelian BF-theory valued in a �nite-dimensional vector space h for n arbitrary,
r = 3− n and s = 0, choosing g = h⊕ h[3− n]. This is also a special case of the
example above.

Finally, we sketch how interactions can (classically) be incorporated:

De�nition 5.7.27. An interacting simplicial BV-theory on a �nite n-dimensional simpli-
cial complex K is a gluing datum F : IopK → Dperf(R) where

� For each σ ∈ IK , the complex F (σ) is equipped with the structure of an L∞-
algebra, such that for σ ⊆ τ the map F (τ)→ F (σ) is a morphism of L∞-algebras,

� There is a symmetric pairing β = (βσ)σ∈IK inducing F ∼= DF [n− 3] as in the free
case,

� The symmetric pairing is compatible with the L∞-structure in the sense that for
each σ ∈ IK and k ∈ N>1, the map

βσ(−, ℓk(−, . . . ,−)) : F (σ)⊗k → R[n− 3] (5.54)

is totally graded antisymmetric.

Construction 5.7.28. If g is a Lie-algebra with ad-invariant non-degenerate inner product
κ : g ∼= g∨, we can de�ne non-abelian Chern-Simons theory as an interacting simplicial
BV-theory on the constructible sheaf S = g[0]. Unlike in the abelian case, GS ∼= g[0]
obtains a non-trivial Lie bracket that is part of a simplex-wise L∞-structure on this gluing
datum. The self-duality isomorphism is compatible with the Lie bracket in the sense
that βσ(−, [−,−]) is indeed totally antisymmetric: Since βσ is, up to quasi-isomorphism,
just given by κ, this is immediate from its ad-invariance.
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Remark. This also works for higher-dimensional Chern-Simons theory, yielding in par-
ticular a simplicial analog of classical non-abelian BF theory if g = h ⊕ h∨[n − 3] for
h a Lie algebra with an ad-invariant symmetric pairing, inducing a graded Lie bracket
on g. Further interesting examples to consider would be the Poisson σ-model with a
non-linear target, or quantizations of the above theories.

Remark. In the limit where the triangulation on the respective manifold gets �ner and
�ner, these simplicial theories should approximate the respective physical theories. For
the example of BF-theory, this is explained in [CMR20].

5.8. Epilogue: Further Developments

We have de�ned free topological �eld theories on manifolds with boundaries, and on
�nite simplicial complexes. Let us conclude with an outlook on how we would proceed
on more general classes of spaces. The most straightforward generalization is passing
from a �xed triangulation on a space to a whole class of triangulations:

De�nition 5.8.1. A piecewise linear space, or PL space in short, is a topological space X
together with a set T of locally �nite triangulations such that

� if T ∈ T , then the barycentric subdivision sd(T ) is also in T , and

� any T, T ′ ∈ T possess a common re�nement T ′′.

We refer to the standard literature (e.g. [Lur11, Lecture 17]) for more information, and
di�erent characterizations. In particular, one can de�ne a notion of PL maps between
PL spaces that preserve the PL structure, making PL spaces into a category.

De�nition 5.8.2. An n-dimensional PL manifold is a PL space X that is locally isomor-
phic to Rn with its canonical PL structure, in the sense that any point x ∈ X has an
open neighborhood that, together with its restricted PL structure, possesses mutually
inverse PL maps to and from Rn.

De�nition 5.8.3. If K is a simplicial complex and σ ∈ IK a simplex, the star of σ is
the set of simplices in K that have a non-empty intersection with σ, closed under the
operation of taking faces (so that it becomes a simplicial complex itself). The link of σ
consists of those simplices in the star that do not intersect σ. We identify star and link
with the respective subspaces of |K| spanned by their simplices.

Example 5.8.4. Usually, we are interested in the case where σ = {v}, so the star of {v}
is the closure of all simplices containing v as a vertex. If we for example let v = 0 ∈ ∆n,
then its star is all of ∆n, and its link consists of those simplices in ∆n that do not contain
v, making up ∆1<···<n ∼= ∆n−1.
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Proposition 5.8.5. A PL space X is an n-dimensional PL manifold i� it possesses a
triangulation K such that for every vertex v ∈ K0, (the geometric realization of) its link
is homeomorphic to Sn−1. This then automatically holds for every triangulation of X.
In particular, (Whitehead) triangulations of smooth manifolds yield PL manifolds, but
not triangulations of topological manifolds.

De�nition 5.8.6. For X a PL space with set of triangulations T ordered by re�nement,
we de�ne the ∞-category of combinatorial sheaves on M as the direct limit

Shcomb(X,V) := lim
T∈T

Fun(IT ,V) (5.55)

where for S a re�nement of T , the transition maps in this limit are given by right Kan
extension along the induced map IS → IT since every simplex of S is contained in a
corresponding simplex of T . By [CDH+20a, 6.6.2], the duality D carried out component-
wise is still well-de�ned on this limit, making Shcomb(X,V) into a stable∞-category with
duality functor.

De�nition 5.8.7. A BV �eld theory on an n-dimensional PL space X is a (3 − n)-
dimensional Poincaré object S in Shcomb(X,V); spelling this out, for every triangulation
T , we must specify a simplicial BV theory on T determined by a functor ST : IT → V ,
together with a symmetric pairing exhibiting GST

∼= S∨
T [3 − n] and compatible with

pushing forward (via right Kan extension) along re�nements of triangulation.

Example 5.8.8. One can check the our constructions of cellular �eld theories are indeed
compatible with re�nements, thus de�ning �eld theories on compact oriented PL mani-
folds. In fact, most results of the last section carry over to the PL case. We still expect
relatively good properties in the slightly more general case of PL pseudomanifolds.

Proposition 5.8.9. By the discussion in the last section, the global sections of a BV-theory
on PL manifolds (de�ned as the global sections of the induced constructible sheaf on
any triangulation, since those agree) yield a (−1)-shifted symplectic object in V .

Next, let us discuss the case of regular CW complexes and cellular �eld theories.

Construction 5.8.10. Let X be a �nite, regular CW complex (also called �nite ball
complex), where by regular we mean that for every cell in X, the respective gluing map
Dn → X is injective, i.e. the boundary of the cell is not collapsed in any way. Compare
this to the distinction between simplicial complexes and simplicial sets. We show in
B.2.18 that if we stratify X by its poset of cells IX , then SingIX (X) ≃ IX so that
constructible sheaves can be identi�ed with functors IX → V . The discussion in the
last section carries through without any changes, if we replace triangulations of compact
oriented smooth manifolds by cell decompositions. Even Poincaré Duality can still be
applied following [CMR20, Equation 8].
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De�nition 5.8.11. A cellular BV theory on a �nite regular CW complex X of dimension
n is a (3− n)-dimensional Poincaré object in Fun(IopX ,V).

De�nition 5.8.12. Let X be a �nite, regular CW complex that makes up a cell de-
composition of an n-dimensional compact oriented manifold M with boundary, and let
F : IopX → V be a cellular BV-theory, i.e. F ∼= DF [n− 3]. Denote by Y the subcomplex
that decomposes the boundary ∂M . A polarization or boundary condition is an element
P ∈ V , together with a natural transformation ρ : P → F |Iop

Y
of functors IopY → V , such

that the adjoint map P → C∗(F |Iop
Y
) is Lagrangian (note that the target is a (2 − n)-

dimensional Poincaré object by 5.7.14). Using 5.2.15 and the remark after 5.7.21, we
can glue the Lagrangians

C∗(F )→ C∗(F |Iop
Y
)← P (5.56)

to obtain a (3 − n)-dimensional Poincaré object C∗
P (F ) := C∗(F ) ×C∗(F |Iop

Y
) P ∈ V of

�elds satisfying the boundary condition P .

Finally, let us discuss how to systematically de�ne simplicial �eld theories. We start
with an n-dimensional Lagrangian extended �eld theory as discussed in [CHS21] and
[Cal14]. This is a symmetric monoidal functor of (∞, d)-categories

Z : BordnBordnBordn
⊔ → LagrnLagrnLagrn

× , (5.57)

i.e. a fully extended topological �eld theory as in 5.1.2 with values in the (∞, n)-category
of Lagrangian correspondences, with

� Objects derived Artin stacks equipped with a (3−n)-shifted symplectic structure,

� Morphisms Lagrangian correspondences X ← L → Y between shifted symplectic
stacks,

� Higher Morphisms up to degree n given by higher Lagrangian correspondences,

� (n+ 1)-morphisms given by homotopies of higher Lagrangian correspondences,

� Higher Morphisms given by higher homotopies.

While we do not give a precise de�nition, the notion of shifted symplectic stacks and
Lagrangian correspondences yields on tangent spaces precisely our notions of Poincaré
complexes and Lagrangian correspondences in 5.2, and higher Lagrangian correspon-
dences are on the level of tangent spaces the same thing as Poincaré objects on ∆n in
5.7. In particular, this should allow us to do the following construction:

Construction 5.8.13. Given a Lagrangian extended �eld theory (for example, an AKSZ
theory) Z and an n-manifold with borders M , we can

� Triangulate M by a simplicial complex K,
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� Regard the simplices inK as n-manifolds with borders, i.e. higher bordisms, whose
composition as n-morphisms in BordnBordnBordn is M regarded as a higher bordism,

� Apply Z to this composition, obtaining a system of derived Artin stacks and higher
Lagrangian correspondences,

� Choose a common geometric point ϕ of this system as in the diagram below,

� Take the tangent complex at ϕ for every involved stack, obtaining a Poincaré object
in TϕX− : Fun(IopK ,D)

� and associate to this a constructible sheaf E on |K| ≃M → IK .

Or course, this involves that our chosen category D is adapted to our notion of derived
stack as in [Wal16], and it would require some more work to show that all of these
de�nitions �t together. In particular, one should hope that this does not depend on how
we understand M as a higher bordism (i.e. which is the incoming, which the going side
etc.), and that the sheaf E is not only constructible over IK , but also when we stratify
M by its boundary and corner components. Below, we have sketched how our diagram
of Lagrangian correspondences of derived stacks looks like for K = ∆2; we regard the
value X on the interior as the covariant phase space of our theory.

X

X01 X02 X12

Spec(R) X0 X1 X2

ϕ

Note how ϕ induces compatible geometric points on all involved stacks.

Upshot: Extended �eld theories possess an intrinsic notion of locality, since we can
always triangulate spaces and glue the �eld theory together from this composition of
higher bordisms. This cutting-and-gluing notion of locality is at �rst glance in stark
contrast with the locality that BV data possess by being ∞-sheaves. The construction
above would show that in the regarded special case, triangulating and transitioning to
perturbation theory allows us to go from the former to the latter! This should make
simplicial (and cellular) BV theories a very useful tool in the study of perturbative
properties of extended �eld theories, particularly since it is extremely easy to write
down examples as we had seen.

Finally, let us sketch how in our language, extended BFV theories can be de�ned on
arbitrary manifolds with corners.
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De�nition 5.8.14. A BV-theory on an n-dimensional topological manifold with corners
M → [n] is determined by a constructible sheaf E ∈ Shcbl(X; D̂) such that

� The stalk Ex at every point x ∈M lies in D ⊆ D̂,

� The restriction E|Mn−k
to the stratum Mn−k of codimension k is a (3 − k)-

dimensional Verdier self-dual sheaf on Mn−k. By this, we mean that there is
an isomorphism E ∼= E∨ ⊗DensMn−k

[k − 3] induced by a symmetric pairing.

� If we denote by ik :Mk ↪→M the inclusions of strata, then the sheaves (ik)∗(ik)∗E
form a system of Poincaré objects and Lagrangians in Shcbl(X; D̂) with maps in-
duced by the recollement decomposition 5.5.4 extended to strati�cations.

Remark. This de�nition even makes sense on a topological pseudomanifold with corners,
if we replace DensMn−k

by the Verdier dualizing complex ωMn−k
.

In other words, the pair of M and E should be a higher bordism of self dual sheaves,
generalizing [Ban01, Chapter 4] or [Lur11, Lecture 26] in the case of ordinary bordisms.
A �st step at getting a better understanding of this is our study of the algebraic L-
theory of Shcbl(M, D̂) in [Zet], which is helpful to precisely formulate the last part of the
de�nition above.



A. Higher Categories and Higher

Algebra

For a complete introduction to higher category theory, we refer the reader to [KER], since
we de�nitely can not do this subject justice here. We try to give a working intuition for
the de�nitions we need in the main text without delving into too many technicalities,
which unfortunately means that we often have to be a bit imprecise or refer to the
literature.

A.1. ∞-categories

We assume the reader is familiar with basic category theory (e.g. limits, adjunctions,
slice categories), enriched categories and Kan extensions. Let us still, for comparison,
repeat the de�nition of an ordinary category:

De�nition A.1.1. A (small) category C consist of

� A set of objects

� For any two objects X, Y ∈ C a set HomC(X, Y ) of morphisms between X and Y

� For all X, Y, Z ∈ C an associative composition map

◦ : HomC(Y, Z)× HomC(X, Y )→ HomC(X,Z) (A.1)

� For any X ∈ C an identity morphism idX that does not change morphisms under
composition

Remark. Being small refers to the fact that objects and morphisms are sets (in a �xed
universe), we will also encounter many cases where this is not the case. Still, let us avoid
set-theoretic problems unless they are actually important.

De�nition A.1.2. A category if called a groupoid if every morphism f : C → D in it is
invertible, i.e. there exists a g : D → C such that f ◦ g = idD and g ◦ f = idC .

136
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Example A.1.3. � Examples of categories can be found all over mathematics, e.g. the
category Set of sets and maps between them, the category Top of topological spaces
and continuous maps, the category Ab of abelian groups and homomorphisms or
the category Cat categories and functors.

� There are also important examples of groupoids: For each group G, we can con-
struct a groupoid BG with one object ∗ and HomBG(∗, ∗) = G, where composition
is given by the group operation and inverses exist because G has inverses.

� For X a topological space, we may also introduce the fundamental groupoid π≤1X
with objects the points ofX, and morphisms the homotopy classes of paths between
the respective points. Composition is given by concatenation of paths, and inverses
exist since paths can be followed in the inverse direction.

Some of these examples seem to possess further information that we were not able to
capture:

� Given two functors F,G : C → D, the category Cat allows for a space of nat-
ural transformations Nat(F,G). In other words, there are morphisms between
morphisms, and these can also be composed.

� It is a bit strange that π≤1X contains a large amount of objects (uncountably many
for almost all manifolds), but the morphisms only consist of homotopy classes of
paths, instead of actual paths. Why is that? Note that concatenation of paths is,
in itself, not associative, but only so up to a reparametrization (i.e. a homotopy)!
If we want to keep information about individual paths, we therefore need to add
information about homotopies into the mix.

Both of these problems can be resolved by 2-categories, also called bicategories. They
should consist of a set of objects, together with a set of morphisms between any two
objects and a set of 2-morphisms between any two morphisms that have a common
source and target. Also, they feature composition operations for morphisms and 2-
morphisms, as well as associativity constraints and identity (2-)morphisms. Composi-
tion of 1-morphisms should only be associative up to an invertible 2-morphisms (the
associator), and identity 1-morphisms should only act as identities up to invertible 2-
morphisms as well; we see this in the second example since concatenation of paths is
not strictly associative. We therefore always speak about weak 2-categories, instead of
strict 2-categories where associativity and identity conditions hold on the nose. Finally,
the invertible 2-morphisms in the above de�nition should be considered as extra data
in a 2-category, and they must themselves satisfy higher coherence relations, like the
pentagon identity (see [KER, Tag 007Q] for a precise de�nition).

� The (strict) 2-category CatCatCat consists of (small) categories as objects, functors as
1-morphisms and natural transformations as 2-morphisms.

https://kerodon.net/tag/007Q
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� The (weak) 2-category π≤2X of a topological space X consists of points of X
as objects, paths in X as morphisms, and homotopy classes of homotopies as 2-
morphisms (we need to think about homotopy classes again to satisfy the strict
associativity for 2-morphisms). This is even a 2-groupoid, since morphisms and
2-morphisms are invertible.

But now, the second example su�ers from a similar issue concerning homotopy classes as
before. This points us toward a straightforward idea: Why do we not de�ne 3-categories,
4-categories etc., as well as fundamental n-groupoids π≤3X, π≤4X, . . . consisting of ob-
jects, morphisms, 2-morphisms, 3-morphisms and so on? The reasons why this is not a
priori a good idea:

� We need to add composition operations for each type of morphism, that can inter-
act with each other (horizontal composition, whiskering) and satisfy associativity
and identity constraints up to higher isomorphisms � that also need to be part of
our data! Also, these higher isomorphisms must satisfy their own coherence rela-
tions up to even higher isomorphisms, which are subject to even higher coherence
relations and so on. Even the de�nition of a (weak) 3-category is so complicated
that it is extremely hard to work with � of course, things are a lot simpler for strict
n-categories.

� Even if we could de�ne an n-category (even n-groupoid) π≤nX for each n ∈ N,
this still would not resolve our problem since the n-morphisms are still given by
homotopy classes of maps.

Surprisingly, it is possible to resolve both problems at once by �guratively going two
steps forward and one step back: Things surprisingly become a lot simpler when we do
not look at n-categories, but at n-groupoids, where m-morphisms for all 1 ≤ m ≤ n are
invertible. Letting n go towards∞, there should be for each topological space X an∞-
groupoid π≤∞X that knows about points, paths, homotopies, homotopies of homotopies
etc. in X. Since homotopies from the constant path to itself are just embedding of
S2 into X, and similarly for the other levels, this means that π≤∞X knows about all
homotopy groups and hence, at least if X is a CW complex (by Whitehead), the full
homotopy type of X. Thus, ∞-groupoids, which contain n-groupoids as special cases,
are intimately related to (CW) topology and homotopy theory � but their de�nition
should still be "algebraic", which can be achieved by working with simplicial complexes
as models. A bit of ordinary category theory is necessary to understand it:

De�nition A.1.4. We de�ne the presheaf category of a given small category C as
PSh(C) := Fun(Cop, Set), note that it is never small unless C = ∅. There is always
a fully faithful, limit-preserving functor h : C → PSh(C), the Yoneda embedding, which
sends C 7→ HomC(−, C).

Theorem A.1.5 (coYoneda Lemma). For C a (small) category, any presheaf F ∈ PSh(C)
may be written as a colimit of representable ones (i.e. those that lie in the image of the
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Yoneda embedding):

∀C ′ ∈ C : F (C ′) = colim
C∈C/F

HomC(C
′, C) =

� C∈C
HomC(C

′, C)× F (C) (A.2)

Remark. C/F denotes the generalized slice category (also called comma category)
C ×PSh(C) PSh(C)/F , which by the Yoneda lemma agrees with the category of elements�
F (i.e. the category of pairs (C, a) with C ∈ C and a ∈ F (C)). The latter coend ex-

pression is also called the Ninja Yoneda Lemma [Lor15], it tells us that the Hom-functor
acts as a delta distribution in the coend. We will not use it further, but it is helpful in
the proof.

Proof. We start by recalling the usual Yoneda Lemma:

F (C ′) = Nat(HomC(−, C ′), F ) (A.3)

For G ∈ PSh(C) any other presheaf, above colimit is characterized by

Nat(colim
C∈C/F

HomC(−, C), G) ∼= lim
C∈C/F

Nat(HomC(−, C), G) = lim
C∈

�
F
G(C) (A.4)

As the last limit is taken in Set, we may describe it as the set of families
(bC,a ∈ G(C))C∈C,a∈F (C) such that for any morphism f : C → C ′ in C, we have the
compatibility bF (C′),F (f)(a) = G(f)(bC,a). Rewriting this, we see that ηC : F (C)→ G(C)
sending a 7→ bC,a assemble into a natural transformation F ⇒ G. In other words, the
limit agrees with Nat(F,G), as claimed.

Technical Remark. While this was quite cumbersome, proving the coend expression is
a lot easier (and the colimit expression can ultimately be derived from it, using how
weighted colimits/ Kan extensions can be written as coends). Let S ∈ Set, then:

HomSet

(� C∈C
HomC(C

′, C)× F (C), S
)
∼=

�
C∈C

HomSet (HomC(C
′, C)× F (C), S) ∼=

∼=
�
C∈C

HomSet (HomC(C
′, C),HomSet(F (C), S)) ∼=

∼= Nat (HomC(C
′,−),HomSet(F (−), S)) ∼= HomSet(F (C

′), S)

Corollary A.1.6. Let C,D be small categories, and let D contain all small colimits. Then,
precomposing with the Yoneda embedding h induces an isomorphism

Funcolim(PSh(C),D) ∼= Fun(C,D) , (A.5)

where Funcolim denotes the colimit-preserving functors and the inverse is given by Yoneda
extension, i.e. Left Kan Extension Lanh. In other words, any colimit-preserving functor
on the presheaf-category of C is determined by its action on C.
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Theorem A.1.7 (Nerve-Realization Paradigm). Let r : C → D be a functor, C be small,
and D admit all (small) colimits. This functor induces an adjunction

PSh(C) D|−|
N

where the Yoneda extension | − | := Lanh r is called the associated realization functor,
and N(D) := HomD(r(−), D) the associated nerve. In fact, any adjunction containing
a presheaf category arises in this way.

Proof. The left Kan extension exists because D has all colimits, we show that | − | ⊣ N .
For D ∈ D, F ∈ PSh(C), we must construct a natural isomorphism

HomD(Lanh r(F ), D) ∼= Nat(F,HomD(r(−), D)) . (A.6)

Both sides send colimits in the argument F to limits, and by the coYoneda lemma above
the presheaf F is a colimit of representable presheaves. Without loss of generality, we
may therefore assume that F = HomC(−, C) is representable. But then

HomD(Lanh r(F ), D) ∼= HomD(r(C), D) ∼= Nat(Hom(,C),HomD(r(−), D)) , (A.7)

where we use A.1.6 in the �rst equality (the universal property of presheaf category and
Yoneda extension), and the Yoneda lemma in the second.

Now, let us apply this to construct models for ∞-groupoids and ∞-categories:

De�nition A.1.8. The simplex category ∆ consists of the nonempty �nite totally ordered
sets [n] = {0 < 1 < 2 < · · · < n}, for n ∈ N0, as objects; and order-preserving maps as
morphisms.

De�nition A.1.9. A simplicial set is a functor X : ∆op → Set. Let us write sSet :=
PSh(∆) for their category. We denoteXn := X([n]), and the Yoneda embedding h([n]) =
Hom∆(−, [n]) =: ∆n.

By the coYoneda-Lemma, elements of sSet are colimits of representable presheaves ∆n,
and the presheaf category is in some sense freely generated by such colimits. Morphisms
between the ∆n are, since the Yoneda embedding is fully faithful, the same thing as
morphisms in ∆, i.e. order-preserving maps. These can be written as compositions of
face maps that leave out one number, like [1] → [2] via 0 7→ 0, 1 7→ 2; and degeneracy
maps that double one number, like [2]→ [1] via 0 7→ 0, 1 7→ 1, 2 7→ 1. Geometrically, we
should imagine [n] and ∆n as n-simplices, i.e. n-dimensional triangles/pyramids with
vertices labeled by the numbers 0 to n, so that these maps can be identi�ed with face
inclusions, and regarding an n-Simplex as a degenerate (n + 1)-simplex (e.g. regarding
a line as a triangle with an angle of 0°).
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Figure A.1.: Objects of ∆ regarded as topological simplices

Due to the fact that presheaves are free gluings of these representables, we expect that
simplicial sets are abstract gluings of simplices along their faces, in other words a slightly
generalized version of simplicial complexes:

Example A.1.10. � ∆n for any n ≥ 0 are simplicial sets.

� The boundary ∂∆n is the sub-simplicial set of ∆n that is obtained when erasing
the interior. For example, ∂∆1 : ∆op → Set sends each [n] ∈ ∆ to the order-
preserving maps [n] → [1] that are not surjective � there are precisely two of
those, corresponding to ∂∆1 ∼= ∆0 ⨿∆0.

� The horn Λn
i , for 0 ≤ i ≤ n, is the sub-simplicial set of ∆n that is obtained when

erasing both the interior and the face opposite to the vertex i.

Figure A.2.: Example of a simplicial set

Example A.1.11. Let us de�ne a functor rtop : ∆ → Top sending [n] to the topological
n-Simplex |∆n| := {(x0, . . . , xn) ∈ [0, 1]n+1 |x1 + · · · + xn = 1}, with the action on
morphisms that we geometrically expect. Since Top has all colimits, we may employ the
nerve-realization paradigm to obtain an adjunction

sSet Top
|−|

Sing

where |−| is called geometric realization and Sing(X) = HomTop(|∆•|, X) is the singular
simplicial set of a topological space X.
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De�nition A.1.12. A Kan complex is a simplicial set K that satis�es the horn �ller
property: Any map of simplicial sets Λn

i → K can be �lled, i.e. extended, to a map
∆n → K such that the following diagram commutes:

Λn
i K

∆n

∃

Theorem A.1.13 (Homotopy hypothesis, [KER, Tag 012Y]). For any topological space
X, the singular simplicial set Sing(X) is a Kan complex. The adjunction | − | ⊣ Sing
induces an equivalence of categories between CW-complexes and Kan complexes. In fact,
it even induces a Quillen equivalence between sSet (with the Quillen model structure)
and Top that induces above equivalence on homotopy categories.

Kan complexes are homotopy types!

This resolves our �rst problem: Kan complexes should be the same thing as∞-groupoids,
if we regard their vertices as objects, edges as morphisms, n-simplices as n-morphisms.
We say that a morphism h in a Kan complex K is a composition of morphisms f, g if
there is a 2-simplex σ ∈ K2 such that, identifying σ with a map ∆2 → K via the Yoneda
lemma, restriction of this map to the boundary component {0 < 2} agrees with h, while
the restrictions to {0 < 1} and {1 < 2} agree with f and g, respectively. We say that σ
witnesses h as a composition g ◦ f .

Such a composition exists for any morphisms f : X → Y and g : Y → Z as can be seen
by �lling up Λ2

1; but since this �lling is not required to be unique, the composition of
morphisms is not uniquely de�ned. However, using higher horn �llers, one can show it
is unique up to a contractible space of choices. Composition of higher morphisms, as
well as associativity, are witnessed by higher horn �llers; and identity n-morphisms are
induced by the degeneracy maps. In particular, by �lling up the other horns Λ2

0 and
Λ2

2 where one edge is degenerate, we see that every morphism in a Kan complex has an
inverse.

We have also solved our problem concerning fundamental ∞-groupoids if we set
π≤∞(X) := Sing(X). Because of the homotopy hypothesis, our wish that this should
know about the entire homotopy type of a CW-complex comes true. But what about
∞-categories?

Example A.1.14. Let rcat : ∆→ Cat be the functor that sends the partially ordered set
[n] to the corresponding thin category with objects 0, . . . , n. Again, we can apply the
nerve-realization paradigm to obtain an adjunction

https://kerodon.net/tag/012Y
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sSet Cat
h

N

where hX is called the homotopy category of X. The nerve functor N is fully faithful,
so categories are a special case of simplicial sets; but NC is a Kan complex i� C is a
groupoid.

The problem is that if C is not a groupoid, then the horns Λ2
0 and Λ2

2 will not always
have �llers, since these would require the existence of inverse morphisms (in the case of
degenerate simplices). We therefore must relax the horn �ller condition:

De�nition A.1.15. A simplicial set X is called quasi-category if it satis�es the weak horn
�ller condition: Any inner horn Λi

n → X with 0 < i < n can be extended to ∆n.

Λn
i K

∆n

∃

We will interchangeably also use the terms ∞-category or (∞, 1)-category for this con-
struction; the di�erence in terminology is useful to distinguish the explicit simplicial
model we have constructed from the abstract, ontological concept of a higher category
that we tried to motivate in the beginning. In particular, morphisms in an (∞, 1)-
category can be non-invertible, while one can show that all n-vertices in a quasi-category,
for n > 1, are invertible in some sense � this is what the 1 in the name refers to. Clearly,
every Kan complex is a quasi-category; also the nerve of an ordinary category is one
(in fact, ordinary categories are precisely those quasi-categories where the choice of an
inner horn �ller is always unique).

But what about (∞, 2)-categories? To �nd a common generalization of (∞, 1)-categories
and 2-categories, we should as a �st step �nd a fully faithful functor from 2-categories
into simplicial sets, as we did for 1-categories.

De�nition A.1.16 ([KER, Tag 009T]). The Duskin nerve of a 2-category is de�ned via
the nerve-realization paradigm; applied to the functor r2−cat : ∆→ Cat2, which is given
by composing rcat with the inclusion of categories into 2-categories. It is fully faithful,
and the Duskin nerve of a (2, 1)-category is a quasi-category.

However, the Duskin nerve of a 2-category with non-invertible 2-morphisms can never be
a quasi-category. One can however proceed as above, and de�ne a class of simplicial sets
that contains Duskin nerves to model (∞, 2)-categories. This is a lot more complicated
than for quasi-categories, see [KER, Tag 01W6].

https://kerodon.net/tag/009T
https://kerodon.net/tag/01W6
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There are also notions for (∞, k)-categories, with k ∈ N0, but these generally follow a
slightly di�erent philosophy in their de�nition � see [Lur09] for more. Also, there are
currently two di�erent notions of (∞,∞)-categories, via a projective or an inductive
limit in k; and both are still poorly developed. We only need k ≤ 2 in this text.

k \ n −2 −1 0 1 2 . . . ∞
0 point boolean set groupoid 2-groupoid ∞-groupoid
1 " " poset category (2, 1)-category (∞, 1)-category
2 " " " 2-poset 2-category . . . (∞, 2)-category
. . . . . .
∞ " " " " (∞,∞)-category ?

The inclusion functors in vertical and horizontal direction in this chart have adjoint
functors that we will make use of regularly. We already know that the nerve functor
from categories to (∞, 1)-categories, and the Duskin nerve from 2-categories to (∞, 2)-
categories, have left adjoints (the homotopy category and the homotopy 2-category).

De�nition A.1.17. Given an (∞, 1)-category C, we can forget all non-invertible 1-
morphisms, obtaining its underlying∞-groupoid C≃. Similarly, given an (∞, 2)-category
CCC, we can forget all non-invertible 2-morphisms, yielding an (∞, 1)-category Pith(CCC)
called its pith. These functors are right adjoint to the respective inclusions.

Left adjoints are harder to construct, but also of interest.

� By localizing (as de�ned in A.2.3) an ∞-category at all 1-morphisms, one obtains
a Kan complex, a process called Quillen �brant replacement (equivalently one can
apply Kan's Ex∞-functor).

� Similarly, a sort of localization of an (∞, 2)-category at all 2-morphisms is called
Joyal �brant replacement.

In fact, both of these constructions can be applied to arbitrary simplicial sets; they are
�brant replacements in the Quillen and Joyal model structures on sSet, respectively.

A.2. Higher Category Theory

Since ∞-categories and ordinary categories both contain objects and (possibly non-
invertible) morphisms, the only di�erence between them is the existence of invertible
higher morphisms, i.e. homotopies, homotopies of homotopies and so on, that act as co-
herence data for composition, associativity and identity constraints for the 1-morphisms
in an ∞-category. It seems reasonable to assume that, as long as work in a homotopy
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coherent manner, most concepts from ordinary category theory should translate to ∞-
categories without much change (similarly, concepts from 2-categories should translate
to (∞, 2)-categories). Let C,D be ∞-categories, then we can de�ne:

De�nition A.2.1. The ∞-category of functors Fun(C,D) is the internal Hom between
them in sSet. In other words, Fun(C,D)n = HomsSet(C × ∆n,D). Morphisms in this
functor ∞-category are called natural transformations, and invertible morphisms are
called natural isomorphisms.

De�nition A.2.2. Functors F : C → D and G : D → C de�ne an equivalence of ∞-
categories if their compositions F ◦ G and G ◦ F are both naturally isomorphic to the
respective identity functors.

Warning. A functor of (∞, 2)-categories, regarded as simplicial sets, is a map of simplicial
sets that additionally sends invertible 2-vertices to invertible 2-vertices.

Proposition A.2.3. For C and ∞-category and W a set of morphisms in it, there is
another ∞-category C[W−1], called the localization of C at W , equipped with a functor
C → C[W−1] such that for any ∞-category D, precomposing with it induces a fully
faithful functor

Fun(C[W−1],D) ↪→ Fun(C,D) (A.8)

with essential image spanned by those functors F : C → D that send each morphism
in W to an isomorphism. By this universal property, C[W−1] is uniquely determined
up to equivalence (unlike for ordinary categories, where it can be made unique up to
isomorphism).

De�nition A.2.4. For C,D ∈ C, the morphism space

Map(C,D) := {C} ×C Fun(∆
1, C)×C {D} (A.9)

is always a Kan complex. It is homotopy equivalent to the left and right pinched mor-
phism spaces {C} ×C C/D and CC/ ×C {D}.

Warning. For (∞, 2)-categories they are di�erent; one has to work with the left pinched
morphism space (which is an (∞, 1)-category).

Proving the statements we make (e.g. that the functor category is again an∞-category)
uses a lot of simplicial combinatorics that we will not discuss; see [KER] for more. In
particular, we freely use:

� Join and slice constructions for simplicial sets, like C/C above. Note that there are
two simplicial models for those, that are equivalent as ∞-categories.

� The opposite simplicial set Cop.
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� Special kinds of morphisms between simplicial sets, for example trivial �brations,
Kan �brations, left and right �brations, Cartesian and coCartesian �brations, and
many more. The last four will be motivated in A.2.12.

Example A.2.5.

� If C is the nerve of an ordinary category, then MapC(C,D) is a discrete space.

� For X a topological space and x, y ∈ X, the mapping space MapSing(X)(x, y) is the
space of paths from x to y in X.

We have learned that morphism spaces of ∞-categories are Kan complexes. Are ∞-
categories the same thing as categories enriched over Kan complexes? This can not
literally be true, since enriched categories have strict composition maps, while compo-
sition in an ∞-category is, as we have seen, only de�ned up to a contractible space of
choices. But it is essentially true:

De�nition A.2.6. Denote by sSet -Cat the ordinary category of sSet-enriched categories,
and by rcube : ∆→ sSet -Cat the functor that sends [n] to a simplicially enriched category
with objects 0, . . . , n and morphisms between i, j ∈ [n] given by

Homrcube([n])
(i, j) := N(P ({i, i+ 1 . . . , j}),⊆) ∈ sSet . (A.10)

Putting this into words, we take the nerve of the ordinary category associated to the
poset of subsets of the set {i, i + 1 . . . , j}, ordered by inclusion. For intuition: This
simplicial set is just a (i− j + 1)-dimensional cube.

Theorem A.2.7. Applying the nerve-realization paradigm A.1.7 to rcube yields an adjunc-
tion

sSet sSet -Cat
Path

Nhc

where Nhc(C)n = Fun(rcube([n]), C) is called the homotopy coherent nerve of the simpli-
cially enriched category C. This is a Quillen equivalence with respect to certain model
structures on both sides, yielding an equivalence of the homotopy categories: Quasi-
categories are the same thing as Kan-enriched categories!

Remark. Since Kan complexes are the same thing as (good) topological spaces, one
could via a change of enrichment also say that quasi-categories are the same thing as
topologically enriched categories.

Proposition A.2.8 ([KER, Tag 01YL]). Similarly, if C is a simplicially enriched category
where all morphism spaces are quasi-categories, then its homotopy coherent nerve is an
(∞, 2)-category. Every (∞, 2)-category can be obtained this way up to equivalence of
(∞, 2)-categories. However, one can not proceed like this to obtain all (∞, 3)-categories.

https://kerodon.net/tag/01YL
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Proposition A.2.9 ([KER, Tag 01LG]). For C a category enriched over quasi-categories
and X, Y ∈ C, there is an equivalence of the internal Hom with the left pinched mapping
spaces in the (∞, 2)-category Nhc(C):

HomC(X, Y ) ≃ HomL
Nhc(C)(X, Y ) ≃ HomR

Nhc(C)(X, Y )op (A.11)

In particular, if C is even enriched over Kan complexes, this is a homotopy equivalence

HomC(X, Y ) ≃ MapNhc(C)(X, Y ) . (A.12)

Example A.2.10.

� Let Kan be the Kan-enriched category with objects Kan complexes, and mor-
phisms spaces HomKan(K,L) := Fun(K,L), which is indeed a Kan complex. The
homotopy coherent nerve S := NhcKan is the ∞-category of spaces. Its rôle in
higher category theory is the same as the rôle of Set in ordinary category theory;
one might argue it is the most important ∞-category.

� S∗ := S/∆0 is the ∞-category of pointed spaces. Equivalently, it is the homotopy
coherent nerve of the Kan-enriched slice category Kan/∆0 .

� Denote by Sfin the full subcategory of S on Kan complexes with �nitely many
non-degenerate simplices, and similarly Sfin

∗ .

� Let QC be the category enriched over quasi-categories, where objects are quasi-
categories and HomQC(C,D) := Fun(C,D). The homotopy coherent nerve CatCatCat∞ :=
Nhc(QC) is the (∞, 2)-category of all ∞-categories.

� If we denote by QC≃ the Kan-enriched category with objects quasi-categories, and
morphisms given by the Kan complexes HomQC≃(C,D) := Fun(C,D)≃, then the
homotopy coherent nerve is Cat∞ := Nhc QC≃ ≃ Pith(CatCatCat∞), the∞-category of all
∞-categories.

� The homotopy coherent nerve of the quasi-category-enriched slice category
CatCatCat∞,obj := NhcQC/∆0 is the (∞, 2)-category of lax-pointed ∞-categories. We will
denote its pith ∞-category by Cat∞,obj.

After these very foundational de�nitions, let us introduce some universal constructions
for ∞-categories:

De�nition A.2.11. Let K ∈ sSet, and p : K → C be a morphism of simplicial sets, that
we interpret as a diagram in the∞-category C. Denote by K◁ the left cone on K, formed
by adding an initial object to it (i.e. taking the join ∆0 ⋆ K). The limit cone of this
diagram, if it exists, is a morphism p : K◁ → C with p(−∞) := lim(p), that induces for
all C ∈ C a homotopy equivalence

Map(C, lim(p)) ≃ Nat(constC, p) (A.13)

https://kerodon.net/tag/01LG
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where constC : K → C it the constant diagram on C. Note how this agrees with the
ordinary limit if C is a 1-category. Oppositely, we can de�ne a colim(p) by extending p
to K▷ such that

Map(colim(p), C) ≃ Nat(p, constC) . (A.14)

� Special cases of this construction yield (as in ordinary category theory) products,
coproducts; pullbacks, pushouts; �nal, initial and zero objects; kernels, cokernels;
and �ltered (co-)limits (see A.8.5).

� While coproducts and products can be treated with similar intuition as in ordinary
categories, pullbacks and pushouts behave like homotopy pullbacks and pushouts.
For example, (co-)limits in S are precisely homotopy (co-)limits of topological
spaces; and kernels in chain complexes are mapping cones, see A.3.4.

� Just like every set is a colimit (coproduct) over its elements regarded as one-element
sets, every Kan complex K is the colimit over the functor const∗ : K → S.

� Using the mapping space construction in a similar way, one can de�ne adjunctions,
Kan extensions, and so on.

� Almost all the usual formulae for limits and colimits still hold. Generally, almost
all theorems from category theory still hold, like the Yoneda lemma, colimits com-
muting with colimits, uniqueness of colimits and adjoints, Quillen's theorem A for
co�nal (see A.8.1) functors, and so on.

� There are notions of accessible, presentable (sometimes also called locally pre-
sentable), and compactly generated ∞-categories mimicking the ordinary notions,
and the Adjoint Functor Theorem holds.

� Presentable∞-categories are "the same thing" as combinatorial model categories!
Higher category theory therefore trivializes many cumbersome model category cal-
culations.

See [HTT, Chapter 4 and 5] for more. Finally, let us give a short comment on why
higher category is so technically di�cult (and why [HTT] is almost 1000 pages long).
Giving a functor between two ∞-categories, and checking that it is indeed a functor,
can be extremely di�cult to do explicitly, for example it is very hard to see why the
mapping space construction we gave above is functorial in its arguments. However, to
even de�ne a Yoneda embedding, see that limits are functorial and so on, we need to
understand this. There is a very elegant, roundabout way to de�ne the mapping space
functor:

Theorem A.2.12 (Grothendieck construction, [HTT, Section 3.2]). For a �xed ∞-
category C, functors F : C → Cat∞ are essentially the same thing as simplicial sets
M equipped with a simplicial map p :M→ C that is a so-called coCartesian �bration.
More explicitly, the �ber of p over an object C ∈ C is equivalent to the∞-category F (C),
and the action of F on morphisms in C is encoded via a version of parallel transport
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along a certain class of morphisms inM, called p-coCartesian morphisms. Conversely,
one can obtain p from F as the pullback

M := Cat∞,obj×Cat∞C → C . (A.15)

Similarly, functors F : Cop → Cat∞ are essentially the same thing as Cartesian �brations
over C, i.e. simplicial maps p : M → C such that pop : Mop → Cop is a coCartesian
�bration. To make these statements precise, one could write down a Quillen equivalence
between certain model structures on (marked) simplicial sets.

Remark. We do not de�ne coCartesian �brations, since that is a bit cumbersome and
it is enough for us to know that such a notion exists. However, we could interpret this
result as saying that the category Cat∞ acts as a classifying space for them; see B.5 for
more.

Corollary A.2.13. For a �xed ∞-category C, functors C → S are essentially the same
thing as left �brations over C, with a similar explicit description of this correspondence
as above. Oppositely, functors Cop → S are the same thing as right �brations.

Remark. This is immediately clear if we de�ne a left �bration to be a coCartesian
�brations where all �bers are Kan complexes, and similarly for right �brations. There
is however a much simpler characterization of when a map of simplicial sets is a left or
right �bration via a horn lifting property. We recommend reading [KER, Tag 01J2] for
more on the Grothendieck construction.

Remark. One can deduce that for an∞-groupoid K, the∞-categories Fun(K,S) ≃ S/K
are equivalent. This relies on a model category argument; given an arbitrary map of Kan
complexes M → K, we can always replace it by a left �bration that is weakly homotopy
equivalent to M . This induces an equivalence between S/K and its full subcategory
spanned by the left �brations, so we can apply A.2.13. Note that this argument would
break down for K an arbitrary ∞-category, where we would have to work with this
subcategory.

Example A.2.14. One can show that for C an ∞-category and C ∈ C, the projection
CC/ → C out of the slice category is a left �bration [KER, Tag 018F]. The associated
functor C → S sends D to the �ber CC/×C {C} ≃ MapC(C,D), so it can be used together
with the analogous observation for the right �bration C/C → C to de�ne the mapping
space functor.

https://kerodon.net/tag/01J2
https://kerodon.net/tag/018F
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A.3. Stable ∞-categories

De�nition A.3.1. A zero object 0 in an∞-category C is an object that is both initial and
�nal; in other words for any C ∈ C,

MapC(C, 0) ≃ MapC(0, C) ≃ ∆0 (A.16)

are contractible. Since this is a universal property, a zero object is (if it exists) unique up
to a contractible space of choices. Also, for C,D ∈ C, the composition of the essentially
unique maps C → 0 → D speci�es a zero-morphism in every mapping space of C, so
they become pointed spaces.

De�nition A.3.2. If C has a zero object 0, and f : C → D is a morphism in C, then its
�ber fib(f) is the equalizer of f and the zero morphism 0 from C to D (just like the
kernel in ordinary category theory). Similarly, its co�ber cofib(f) is the coequalizer of
f and 0. Sequences of the form

fib(f)→C f→ D (A.17)

C f→D → cofib(f) (A.18)

(up to isomorphism) are called �ber sequences and co�ber sequences, respectively.

De�nition A.3.3. An ∞-category C is called stable if:

� It has a zero object 0,

� Every morphism in C has a �ber and a co�ber,

� Any co�ber sequence is also a �ber sequence.

One can show, using these axioms, that:

� Fiber and co�ber sequences agree

� All �nite limits and colimits exist in C

� A square is a pushout square i� it is a pullback square

� The loop space functor Ω : C → C sending C 7→ 0 ×C 0 is an equivalence of
categories, with inverse the suspension functor Σ : C 7→ 0⨿C 0.

� The homotopy category hC has a natural Ab-enrichment.

Theorem A.3.4 ([HA, 1.1.2.14]). If C is a stable∞-category, then the homotopy category
hC is a triangulated category. In particular, (co-)�ber sequences in C become triangles
in hC, co�bers become (functorial) mapping cones and Σ becomes the shift functor [1].

http://www.math.ias.edu/~lurie/papers/HA.pdf#theorem.1.1.2.14
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The upshot: Stable ∞-categories are equipped to take over the rôle of triangulated
categories (and their dg enhancements), just like presentable∞-categories took over the
rôle of (combinatorial) model categories. This is extremely nice, since their de�nition is
just a homotopy coherent formulation of the axioms of an abelian category, in particular
very simple compared to Verdier's de�nition. Similarly, presentable stable ∞-categories
are one analogon of Grothendieck abelian categories.

De�nition A.3.5. An exact functor F : C → D between stable ∞-categories is a functor
that preserves �nite limits (or equivalently, �nite colimits). We obtain an ∞-category
Catex∞ of stable ∞-categories and exact functors as a (non-full) subcategory of Cat∞.

Proposition A.3.6 ([HA, 1.1.3.2]). A full subcategory D of a stable ∞-category C that
contains the zero object, and is closed under �bers and co�bers, is itself stable. We call
this a stable subcategory.

Proof. D has a zero object, �bers and co�bers since they can be calculated in C because
their universal properties restrict. For the same reason, �ber or co�ber sequences in D
are precisely �ber or co�ber sequences in C where every object lies in D, so the notions
coincide.

Proposition A.3.7 ([Gro16]). An ∞-category C is stable i� it admits �nite limits and
colimits, and �nite limits and colimits commute.

Let us construct a few examples.

De�nition A.3.8. A simplicial abelian group is an ordinary functor in sAb :=
Fun(∆op,Ab). Forgetting about the group operation, it has an underlying simplicial set,
which can be shown to automatically be a Kan complex. Conversely, every X ∈ sSet
de�nes a simplicial abelian group ZX : ∆op → Ab by composing with the free Z-module
functor.

De�nition A.3.9. For X a simplicial abelian group, let its Moore complex C∗(X) be
the chain complex (in homological convention) with Cn(X) = Xn concentrated in non-
negative degrees and di�erential induced by the face maps δi : Xn → Xn−1 in X:

∀c ∈ Xn : dc :=
n∑

i=0

(−1)iδiXn ∈ C∗(X)n−1 (A.19)

The normalized Moore complex N∗(X) is the subcomplex of C∗(X) spanned by the non-
degenerate simplices, where all contributions form degenerate simplices in the di�erential
are set to 0.

Both C∗ and N∗ are additive functors and preserve colimits. Therefore, N∗ is the
Left Kan Extension along the (Ab-enriched Yoneda embedding) of its restriction to

http://www.math.ias.edu/~lurie/papers/HA.pdf#theorem.1.1.3.2
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∆ (by A.1.6), and therefore arises by applying the nerve-realization paradigm A.1.7
to this restriction. Hence, it has a right adjoint K : Ch(Z)≥0 → sAb sending
C 7→ Hom(N∗(−), C). We call K(C) the Eilenberg-MacLane space of C, in particu-
lar for A an abelian group, K(A, n) := |K(A[n])| is the Eilenberg-MacLane space from
topology.

Theorem A.3.10 (Dold-Kan correspondence). The functors N∗ and K form an equiva-
lence of categories between non-negatively graded chain complexes and simplicial abelian
groups, Ch(Z)≥0 ≃ sAb. This can be generalized to any abelian category, instead of Ab.

Example A.3.11. Applying C∗ to Z Sing(X) yields the singular chain complex of a topo-
logical space X.

Construction A.3.12. Let C be a di�erential graded (dg) category (a category enriched
over Ch(Z)). Truncating the morphism complexes at 0 and applying K yields a category
enriched over simplicial abelian groups, and forgetting the group structure yields a Kan-
enriched category because of A.3.8. Finally, applying the homotopy coherent nerve yields
an ∞-category NdgC, called the dg-nerve of C.

Remark. There is an equivalent construction of the dg-nerve that is easier to compute;
the shortest way to de�ne it is to apply the nerve-realization paradigm to a functor that
realizes objects of ∆ as A∞-categories, see [Fao13]. This paper also shows that if C is a
pretriangulated dg-category, then Ndg(C) is stable.

Example A.3.13. For R any commutative ring, let Ch(R) be the dg-category of chain
complexes of R-modules. Denote by Ch(R) := Ndg Ch(R) its dg-nerve, the stable ∞-
category of chain complexes. Explicitly, its

� Objects are chain complexes of R-modules

� Morphisms are chain maps

� 2-morphisms are chain homotopies

� 3-morphisms are chain homotopies between chain homotopies, and so on.

Example A.3.14. Localization (as in A.2.3) of Ch(R) at the quasi-isomorphisms
yields the derived ∞-category D(R) of R. Similarly for the bounded variants
Db(R), D+(R), D−(R), all of which are stable.

More generally, one can de�ne the derived ∞-category D(A) of any abelian category A
by inverting the quasi-isomorphisms in the∞-category of chain complexes in A. This is
particularly well-behaved for Grothendieck abelian categories, where D(A) actually is a
presentable ∞-category.
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Example A.3.15. Let Sfin
∗ be the∞-category of �nite pointed spaces from A.2.10. Denote

by Exc∗(Sfin
∗ ,S) the full subcategory of Fun(Sfin

∗ ,S) on functors that are

� reduced, i.e. preserve the �nal object, and

� excisive, i.e. send pushout squares to pullback squares.

This is the stable ∞-category Sp of spectra. Its homotopy category agrees with the
triangulated category of (symmetric) spectra.

A.4. Sheaves and ∞-Topoi

De�nition A.4.1. Let C be an ∞-category, then denote by PSh(C) := Fun(Cop,S) its
presheaf category, and by h : C → PSh(C) the fully faithful Yoneda embedding.

As in ordinary category theory, we often want to restrict our attention to a full subcat-
egory of PSh(C) that contains sheaves, which are presheaves that satisfy descent with
respect to a particular notion of covering.

De�nition A.4.2. A Grothendieck pretopology τ on C consists of, for every U ∈ C, a set
of coverings Covτ (U) whose elements are families (Ui → U)i∈I with Ui ∈ C, such that
the following hold:

� Given an isomorphism U ′ → U , the one-element family (U ′ → U) is a covering.

� For any morphism V → U , the pullbacks (Ui×U V → V )i exist and form a covering
again.

� If for any i, the family (Uij → Ui)j is a covering, then the composition (Uij → U)ij
is a covering.

Technical Remark. While every Grothendieck topology, as in [HTT, 6.2.2.1], is a
Grothendieck pretopology, the latter or usually much smaller. However, every pretopol-
ogy speci�es a unique topology by de�ning the covering sieves as those that contain a
whole covering family, see [Pst18, A.5]. We will therefore work with this simpler notion.

De�nition A.4.3. An ∞-site Cτ is an ∞-category C equipped with a Grothendieck pre-
topology τ . Since covering families are invariant under isomorphisms (combining the �rst
and third axiom), it is enough to specify the pretopology on the homotopy category.

De�nition A.4.4. Given a covering (Ui → U), we de�ne its �ech nerve C(Ui → U) ∈
Fun(∆op,PSh(C)) as the simplicial diagram

. . .
⊔

i,j,k h(Ui) ×
h(U)

h(Uj) ×
h(U)

h(Uk)
⊔

i,j h(Ui) ×
h(U)

h(Uj)
⊔

i h(Ui)

http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.6.2.2.1
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which by functoriality of h possesses a canonical morphism to h(U).

De�nition A.4.5. A sheaf on an ∞-site C is a presheaf F : Cop → S that is local with
respect to these morphisms; that is for every covering (Ui → U),

lim
∆op

MapPSh(C)(C(Ui → U), F )
!
= MapPSh(C)(hU , F ) = F (U) . (A.20)

In other words, we require

F (U) = lim
∆op

( ∏
i F (Ui)

∏
i,j F (Ui ×U Uj) · · ·

)
. (A.21)

Technical Remark. We denote the full subcategory on them by Sh(Cτ ), leaving out the
topology if it is clear. This is equivalent to the de�nition in [HTT] by [Pst18, A.8, A.9].

Theorem A.4.6 ([HTT, 6.2.2.7]). For any∞-site C, there is a shea��cation functor (−)sh,
which can be constructed as a trans�nite composition of a plus construction (mimicking
the classical double-plus-construction) is left adjoint to the canonical inclusion

Sh(C) PSh(C) .
i

(−)sh

This leads to a general axiom for ∞-categories that "look like" categories of sheaves:

De�nition A.4.7. An ∞-topos X is an ∞-category that can be written as a left exact
accessible localization of a presheaf category. In other words, there must exist a (small)
∞-category C and an adjunction

X PSh(C)
i

L

such that i is fully faithful and preserves κ-�ltered colimits for some regular cardinal κ,
and L preserves �nite limits.

Technical Remark. The accessibility condition (preserving κ-�ltered colimits) is equiva-
lent to ensuring X is again presentable. It is currently not known whether it is automatic
(as it is in the case of n-topoi).

Remark. This de�nition is extrinsic, since it tells us how to construct ∞-topoi, but not
how to check if a speci�c ∞-category is one. There are also several intrinsic de�nitions,
for example the Giraud-Rezk-Lurie axioms.

http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.6.2.2.7
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Warning. Not every left exact accessible re�ective localization of a presheaf category
arises as sheaves with respect to a Grothendieck category! It is not even known whether
any ∞-topos can be written as sheaves on an ∞-site at all.

Example A.4.8. Since identity functors are always left exact accessible localizations,
presheaf categories are always ∞-topoi. In particular, S = PSh(∗) is an ∞-topos. Also,
for any ∞-site Cτ , the sheaves Sh(Cτ ) form an ∞-topos using the adjunction A.4.6.

Example A.4.9. For X an ∞-topos and C an object in it, the slice topos X/C is again
an ∞-topos.

De�nition A.4.10. A geometric morphism between ∞-topoi is an adjunction

X Y
f∗

f∗

where f ∗ preserves �nite limits. Let us denote the subcategory of Cat∞ on ∞-topoi and
geometric morphisms by LTop.

Proposition A.4.11. S is the terminal object of LTop. This means that every ∞-topos
X is equipped with an essentially unique adjunction

X Y
Γ∗

Γ*

In particular, for ∗ the terminal object, Γ∗ = MapX (∗,−) and if X = Sh(C) over a
∞-site, Γ∗(K) = (C 7→ K)sh. Also, note that since Γ∗ preserves colimits and every
Kan-complex is the colimit over its points, Γ∗ can be understood via its value on ∆0.

De�nition A.4.12 ([Pst18, A.10 and A.12]). Given∞-sites C and D, a morphism of sites
is a functor F : C → D that sends coverings to coverings.

Further, F has the covering lifting property if for any U ∈ C and (Vi → F (U)) covering
family in D, there is a covering (Uj → U) in C such that for every j one can �nd an i
such that one can factor F (Uj)→ Vi → F (U).

Proposition A.4.13 ([Pst18, A.11 and A.13]). For any morphism of sites F : C → D,
precomposition F∗ := − ◦ F preserves sheaves and, together with shea��cation of the
Left Kan Extension along it F ∗ = (−)sh ◦ LanF , induces an adjunction

Sh(D) Sh(D) .
F∗

F ∗
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If F has the covering lifting property, then F∗ commutes with shea��cation, in particular
it preserves colimits and admits another left adjoint F− : Sh(C)→ Sh(D).

Let D be an arbitrary ∞-category.

De�nition A.4.14. A functor F : Cop → D is a D-valued sheaf on C if, for any D ∈ D,
the composition MapD(D,F (−)) : Cop → S is a sheaf on C. We denote the subcategory
on them by Sh(C,D) ⊆ Fun(Cop,D).

Remark. Again, explicitly we impose that for any cover (Ui → U), we have �ech descent:

F (U) = lim
∆op

( ∏
i F (Ui)

∏
i,j F (Ui ×U Uj) · · ·

)
. (A.22)

In particular, this limit should exist in D.

Proposition A.4.15 ([SAG, 1.3.1.7]). If D has all limits, there is an equivalence

Sh(C,D) ≃ Funlim(Sh(C)op,D) , (A.23)

where Funlim denotes the subcategory of Fun on the limit-preserving functors.

This description can be further re�ned when we restrict to the class of presentable ∞-
categories, which generalizes the class of (locally) presentable ordinary categories. To put
it loosely, an ∞-category is presentable if is accessible, that is, generated under colimits
by a small subcategory of compact objects; and it has all colimits (and automatically
all limits).

Theorem A.4.16 ([HA, 4.8.1.17]). For C and D any presentable ∞-categories, one can
de�ne their tensor product C ⊗ D := Funlim(Cop,D) that is again a presentable ∞-
category, and a natural functor C × D → C ⊗D such that for any presentable E ,

Funcolim(C ⊗ D, E) ≃ Funcolim,colim(C × D, E) . (A.24)

Here, Funcolim,colim denotes functors that preserve colimits in both variables. In partic-
ular, C ⊗ D is symmetric in C and D.

Corollary A.4.17. For D a presentable ∞-category, Sh(C,D) ≃ Sh(C)⊗D.

Corollary A.4.18. If D is a presentable (and/ or stable) ∞-category, then Sh(C,D) is
presentable (and/ or stable) as well.

Proof. For D presentable, Sh(C,D) = Sh(C)⊗D is presentable by A.4.16.

If D is stable, then Fun(Cop,D) is stable because limits and colimits in a functor category
are computed pointwise, so we need to show that the sheaves form a stable subcategory
in the sense of A.3.6. This follows since the shea��cation functor is left exact, so that the
category of sheaves is in particular closed under �bers and contains the zero object.

http://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf#theorem.1.3.1.7
http://www.math.ias.edu/~lurie/papers/HA.pdf#theorem.4.8.1.17
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A.5. Sheaves on Topological Spaces

Let us apply this machinery to the probably most interesting case:

De�nition A.5.1. For X a topological space and D a complete∞-category, equip the thin
category of open subsets Open(X) with the Grothendieck pretopology τ where covering
families are open coverings. We denote

Sh(X) := Sh(Open(X)τ ) , Sh(X;D) := Sh(Open(X)τ ;D) . (A.25)

Remark. In particular, a functor F : Openop(X) → D is an ∞-sheaf if for any open
cover (Ui ⊆ U),

F (U) = lim
∆op

( ∏
i F (Ui)

∏
i,j F (Ui ∩ Uj) · · ·

)
. (A.26)

There are several di�erent ways to intuitively make sense of this descent condition.
First of all, note the similarity with the �ech complex which also involves comparing
sections at higher intersections of the Ui. One can show that for every ordinary sheaf
F0 ∈ Sh(X;Z), the derived sections RΓ(−, F0) ∈ Sh(X;D(Z)) form an ∞-sheaf; the
descent condition in this case is equivalent to the statement that sheaf cohomology of
F0 agrees with the �ech hypercohomology of RΓ(−, F0) on any cover (this follows from
the �ech-to-sheaf-cohomology spectral sequence).

As a second example, suppose we are given a collection of topological spaces (Xi)i∈I and
open subsets U (i)

j ⊆ Xi for i, j ∈ I, together with homeomorphisms ϕij : U
(i)
j
∼= U

(j)
i such

that ϕjk ◦ ϕij = ϕik on the respective intersections. Then, we can glue the spaces Xi

together along the gluing maps ϕij. Note how this involves triple intersections, unlike the
ordinary sheaf condition which only compares sections on intersections of two open sets
in a covering. A similar descent via triple intersections holds for the functors of points
of stacks in algebraic geometry. Since descent for ∞-sheaves involves intersections of
arbitrary order, they are sometimes called higher stacks.

Proposition A.5.2. A continuous map of topological spaces f : X → Y induces a geo-
metric morphism

(f∗ ⊣ f ∗) : Sh(X)→ Sh(Y ) . (A.27)

In particular, for F ∈ Sh(X) and x ∈ X with inclusion x : {x} → X we can de�ne the
stalk x∗F of F at x.

Proof. This follows immediately from A.4.13, since the inverse image f−1 : Open(Y )→
Open(X) is a morphism of sites by de�nition of continuity.
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An∞-topos X can be understood as an exotic world to do topology in; in particular the
terminal ∞-topos S describes usual topology (of CW complexes), and the topoi Sh(X)
describe (if X is paracompact and Hausdor�) topology relative to X. In particular, one
can de�ne homotopy groups of objects in every ∞-topos. However, not all results from
usual topology still hold � in particular, the theorem of Whitehead can break down:

De�nition A.5.3. A morphism f : X → Y in an ∞-topos X is called ∞-connected if it
induces an isomorphism on all homotopy groups internal to X (we do not de�ne what
this means).

Proposition A.5.4 ([HA, A.3.9]). A morphism f : F → G in Sh(X) is ∞-connected i�
for any x ∈ X, it induces an isomorphism on stalks x∗f : x∗F

∼=→ x∗G.

De�nition A.5.5. Let X be an ∞-topos, then an object X ∈ X is hypercomplete if it
is local with respect to ∞-connected morphisms, meaning that for any ∞-connected
f : C → D, precomposing with f induces a homotopy equivalence

− ◦ f : MapX (D,X)
≃→ MapX (C,X) . (A.28)

Theorem A.5.6. The full subcategory on the hypercomplete objects X hyp is again an∞-
topos, the hypercompletion of X . The functor (−)hyp is a re�ection on the subcategory
of LTop on the hypercomplete ∞-topoi.

De�nition A.5.7. For C an ∞-site, we call a D-valued sheaf F ∈ Sh(C,D) hypercomplete
if for any D ∈ D, the composition MapD(D,F ) ∈ Sh(C) is hypercomplete. Denote their
full subcategory by Shhyp(C,D).

De�nition A.5.8. We call hypercomplete D-valued sheaves on X hypersheaves, and de-
note their category by Shhyp(X,D)

Proposition A.5.9. If X is paracompact Hausdor� and of �nite covering dimension, every
sheaf on X is hypercomplete.

Proof. This is very technical and only added for lack of reference. [HTT, 7.1.1.1] assures
that we can �nd a basis Ui for the topology of X, such that every Ui is itself open,
paracompact Hausdor� and of �nite covering dimension; therefore [HTT, 7.2.3.6] tells us
that Sh(Ui) has �nite homotopy dimension. Since the Yoneda embeddings hUi

∈ Sh(X)
generate Sh(X) under colimits and the slice topoi Sh(X)/Ui

≃ Sh(Ui), we even know
that Sh(X) is locally of �nite homotopy dimension. Because of [HTT, 7.2.1.12], every
∞-topos that is locally of �nite homotopy dimension is hypercomplete.

http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.3.9
http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.7.1.1.1
http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.7.2.3.6
http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.7.2.1.12
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A.6. ∞-Operads

Let us �rst review the classical notion of a colored operad, also called multicategory or
simply operad. Albeit looking complicated, it just generalizes the de�nition of an ordi-
nary category by allowing for morphisms with multiple sources (and a single target).

De�nition A.6.1. An operad O⊗ consists of a set of objects, and for every objects
C1, C2, . . . , Cn, D ∈ O with n ∈ N0 a set of multimorphisms, or n-ary morphisms,

MulO(C1, . . . , Cn;D)

together with composition operations or the form

MulO(C1, . . . , Cn;D1)×MulO(D1, . . . , Dm;E)→ MulO(C1, . . . , Cn, D2, . . . , Dm;E)

that satisfy evident associativity conditions. Finally, there should be identity multimor-
phisms idC ∈ MulO(C;C) for all C ∈ O, acting as identities for all kinds of compositions.

Remark. We use the superscript ⊗ to indicate that O⊗ is an operad, and in particular
cases to keep track of how the multimorphisms are de�ned. It is however left out if it
clutters the notation and is obvious.

Example A.6.2.

� The operad Vec⊗R of contains real vector spaces as objects, and
MulVec(V1, . . . , Vn;W ) consists of multilinear maps V1 ⊗ · · · ⊗ Vn → W .

� Similarly to the �rst example, any monoidal category C can be interpreted as an
operad by setting MulC(C1, . . . , Cn;D) := HomC(C1 ⊗ · · · ⊗ Cn, D).

� A partially monoidal category is de�ned similarly to a monoidal category, but the
tensor product does not have to be well-de�ned for all pairs of objects. We can
still capture the data of it inside an operad, by setting MulC(C1, . . . , Cn;D) = ∅ if
the product C1 ⊗ · · · ⊗ Cn is not well-de�ned. An example would be the category
of open subsets in a topological space, with inclusions as morphisms and disjoint
union as partial monoidal product.

� Comm⊗ = E⊗
∞ is the operad with a single object ∗, and one multimorphism of

every degree MulE1(∗, . . . , ∗; ∗) = ∗.

� Triv⊗ is the operad with a single object ∗ and only the identity multimorphism.

� E⊗
0 is the operad with a single object ∗ and only two multimorphisms id∗ ∈

MulE0(∗; ∗) and 1∗ ∈ MulE0(∅; ∗).

� Assoc⊗ = E⊗
1 is the operad with a single object ∗ and n-ary multimorphisms

corresponding to orderings of the set {1, . . . , n}. Composition is given by inserting
one ordering at the position of the respective element into the other ordering.
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In principle, a generalization to∞-operads seems evident: We should allow for the mul-
timorphism spaces to be Kan complexes instead of discrete sets, and compositions should
be simplicial maps � this yields Kan-enriched operads, analogously to Kan-enriched cat-
egories. Again, they are technically di�cult to work with, and a de�nition as a simplicial
set is usually preferred. We do not compile it here since it is extremely technical; however
we can give many interesting examples.

De�nition A.6.3. A functor F : O⊗ → O′⊗ of Kan-enriched operads consists of a map
on the set of objects, and for all C1, . . . , Cn, C ∈ O a simplicial map

MulO(C1, . . . , Cn;C)→ MulO′(F (C1), . . . , F (Cn);F (C)) (A.29)

that is compatible with the composition maps. The functors O⊗ → O′⊗ are themselves
the objects of a Kan-enriched category, i.e. via the homotopy-coherent nerve of an ∞-
category. This is called the ∞-category of O-algebras in O′ and denoted AlgO(O′) (in
fact, it is in some cases an ∞-operad itself). This equips (small) ∞-operads with the
structure of a category enriched over∞-categories, so that taking the homotopy coherent
nerve yields the (∞, 2)-category of ∞-operads OpOpOp∞. Replacing the morphism spaces by
the Kan complexes AlgO(O′)≃ yields its pith, the ∞-category of ∞-operads Op∞.

Example A.6.4. Ever∞-category is an∞-operad with only 1-ary multimorphisms. Con-
versely, every∞-operad has an underlying∞-category that is obtained by forgetting all
multimorphisms that are not 1-ary.

Example A.6.5 (Little Cubes Operads). Let [0, 1]n ⊆ Rn be the n-dimensional unit cube.
An embedding [0, 1]n ↪→ [0, 1]n is called rectilinear if it is of the form

(x1, . . . , xn) 7→ (a1x1 + b1, . . . , anxn + bn) (A.30)

for an ∈ R>0, bn ∈ R≥0 chosen in a way that its image lies inside [0, 1]n. Similarly,
an embedding [0, 1]n ⊔ · · · ⊔ [0, 1]n = [0, 1]n × {1, . . . , k} ↪→ [0, 1]n is called rectilinear
if its restriction to each copy of [0, 1]n is, and their images are disjoint. Equip the set
Rect([0, 1]n×{1, . . . , k}, [0, 1]n) of such rectilinear embeddings with the topology induced
from its natural embedding into R2·n·k via the coordinates an, bn.

The ∞-operad E⊗
n has a single object [0, 1]n, and the Kan complex of k-ary multimor-

phisms of is de�ned as the Kan complex

MulE⊗
k
([0, 1]n, . . . , [0, 1]n; [0, 1]n) := Sing Rect([0, 1]n × {1, . . . , k}, [0, 1]n) (A.31)

where composition is induced by inserting a cube with embedded cubes at the place of
one embedded cube, see the �gure.
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Figure A.3.: Composition of 3-ary multimorphisms in the E2-operad

Remark. Instead of embedding n-cubes into n-cubes in a rectilinear way, we could have
embedded n-disks into n-disks in a framing-preserving way, or points into Rn. The
reason these constructions yield the same ∞-operad is that the respective spaces of
multimorphisms are homotopy equivalent (see also the proof of 2.4.4):

Rect([0, 1]n × {1, . . . , k}, [0, 1]n) ≃ Embfr(Rn × {1, . . . , k},Rn) ≃
≃ Confk(Rn) := Emb({1, . . . , k},Rn)

Construction A.6.6. Every rectilinear embedding [0, 1]n × {1, . . . , k} ↪→ [0, 1]n can be
extended to a rectilinear embedding [0, 1]n+1 × {1, . . . , k} ↪→ [0, 1]n+1 applying the
identity on the (n + 1)-component. This induces a continuous map Rect([0, 1]n ×
{1, . . . , k}, [0, 1]n) → Rect([0, 1]n+1 × {1, . . . , k}, [0, 1]n+1) that is compatible with com-
position, hence one obtains maps of ∞-operads

E⊗
0 → E⊗

1 → E⊗
2 → . . . (A.32)

Proposition A.6.7 ([HA, 5.1.1.5]). This recovers the ordinary operads E⊗
0 ,E⊗

1 = Assoc⊗

as special cases (the �rst claim is clear; for a proof of the latter, see 2.4.4). Also, taking
a colimit in Op∞ over the sequential diagram constructed in A.6.6 yields

Comm⊗ = E⊗
∞ = colim

n∈N
E⊗

n . (A.33)

http://www.math.ias.edu/~lurie/papers/HA.pdf#theorem.5.1.1.5
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A.7. Symmetric Monoidal ∞-categories and Algebras

De�nition A.7.1. Let Fin∗ be the ordinary category (or its nerve) of �nite pointed sets
⟨n⟩ = {∗, 1, 2, . . . , n} with pointed maps. In particular, denote by ρi : ⟨n⟩ → ⟨1⟩ the
map that sends i 7→ 1 and all other elements to ∗, for i = 1, . . . , n.

De�nition A.7.2. A symmetric monoidal ∞-category V⊗ with underlying ∞-category V
is a functor v : Fin∗ → Cat∞ such that for each n, the functors v(ρi) exhibit v(⟨n⟩) as
the product V×n.

Remark ([HA, 4.1.2.5]). Similarly, monoidal ∞-categories can be de�ned as functors
∆op → Cat∞ satisfying similar properties, but we will need them.

De�nition A.7.3. A partial symmetric monoidal ∞-category V⊗ with underlying ∞-
category V is a functor v : Fin∗ → Cat∞ such that for each n, the functors v(ρi) exhibit
v(⟨n⟩) as a full subcategory of the product V×n.

Construction A.7.4. For V⊗ a symmetric monoidal ∞-category, the unique morphism
u : ⟨0⟩ → ⟨1⟩ in Fin∗, and the morphism t : ⟨2⟩ → ⟨1⟩ sending ∗ 7→ ∗ and everything
else to 1, induce morphisms

1V : ∗ → V , ⊗ : V × V → V (A.34)

called the unit object and tensor product of V . Other morphisms in Fin∗ induce higher
coherence relations on them, in particular the morphism ⟨2⟩ → ⟨2⟩ interchanging 1 and 2
induces a symmetric braiding V ⊗W ∼= W⊗V . Similarly for partial symmetric monoidal
∞-categories, but here the tensor product of two objects is not always de�ned.

Example A.7.5.

� For R a ring, the ∞-category of chain complexes Ch(R) is symmetric monoidal
with respect to the tensor product of chain complexes. Similarly for the derived
∞-category D(R) and the derived tensor product.

� Ch(R)op is also symmetric monoidal with respect to ⊗, similarly for any symmetric
monoidal ∞-category.

� The ∞-category os spectra Sp is symmetric monoidal with respect to the smash
product ∧.

� Any ∞-category with �nite products is symmetric monoidal with respect to the
product, similarly for coproducts.

� For X a topological space, the partially ordered set Open(X) is (after regarding it
as a thin category and taking the nerve) partial symmetric monoidal with respect
to disjoint union ⊔.

http://www.math.ias.edu/~lurie/papers/HA.pdf#theorem.4.1.2.5
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De�nition A.7.6. Any (partial) symmetric monoidal ∞-category V⊗ can be interpreted
as an ∞-operad, with the same objects as V and multimorphism spaces

MulV⊗(C1, . . . , Cn;C) := MapV(C1 ⊗ . . . Cn, C) . (A.35)

In the partial case, we set MulV⊗(C1, . . . , Cn;C) = ∅ if C1 ⊗ . . . Cn does not exist. In
other words, symmetric monoidal∞-categories are precisely those∞-operads where the
multimorphism spaces are representable by objects in V .

Example A.7.7. Given a symmetric monoidal ∞-category V , we will often look at the
∞-categories of algebras AlgEn

(V).

� An algebra A : E0 → V is fully determined by the image C := A(∗) of the unique
object ∗ ∈ E0, and the image F (u) : 1V → C of the unique 0-ary morphism
u ∈ MulE⊗

0
(∅; ∗). In fact, AlgE0

(V) ≃ V1V/ so we say that E⊗
0 -algebras are pointed

objects in V .

� An algebra over E⊗
∞ = Comm⊗ is determined by the image C := A(∗) of the

unique object, and the images of the unique n-ary multimorphism for each n ∈ N.
In other words, C is equipped with maps

u : 1V → C, idC : C → C, m : C ⊗ C → C, C ⊗ C ⊗ C → C, . . . (A.36)

These equip the object C with a unit, a multiplication and higher associativity
relations on it. In particular, since there is only a single n-ary multimorphism in
E⊗

∞ for each n, the multiplication can not depend on the ordering of the arguments
and is automatically commutative (for any reordering σ : ⟨n⟩ → ⟨n⟩ of the n
arguments, and m0 : ⟨n⟩ → ⟨1⟩ the map that sends every element except for the
point to 1, the multimorphisms m0 ◦ σ = m0 in E⊗

∞ agree). We call E∞-algebras
commutative algebras.

� Algebras A : E⊗
1 → V are determined by the image C := A(∗) and the induced

unit map u : 1V → C, as well as precisely one n-ary multiplication map C×n → C
for each ordering on the set {1, . . . , n}, together with higher coherence relations.
This allows the tensor product to depend on the ordering in a very free way, so
that what we obtain is an associative algebra without any commutativity.

� E⊗
2 -algebras are again given by a �xed object C ∈ V together with a multiplication,

but since the space of rectilinear embeddings of 2-dimensional cubes is connected,
all orderings on the arguments of this multiplication give isomorphic results. These
isomorphisms however are part of the data, and can lead to a sort of braiding. This
is explicitly discussed in 2.4.5, it leads to a braided commutative algebra that is
commutative up to isomorphisms, but has weaker coherence relations on these
isomorphisms as an E∞-algebra.

� En-algebras for even higher n become more and more commutative.

In particular,
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� Precomposition with the maps of ∞-operads from A.6.6 yields restriction maps
from En-algebras to Ek-algebras for k < n, as expected (e.g. every symmetric
algebra is associative).

� Conversely, to any Ek-algebra, we can associate a center En-algebra as we discuss
in 4.5.

� If C is an ordinary symmetric monoidal category, E1-algebras in C are the same
thing as ordinary algebra objects in C, and E2,E3, . . . ,E∞-algebras all agree with
commutative algebra objects (by an Eckmann-Hilton-type argument, see below).

� For R a commutative ring, E1-algebras in Ch(R) are di�erential graded algebras,
and E∞-algebras are commutative graded algebras (at least, the respective ∞-
categories are equivalent; some straightening is necessary). En-algebras for 1 < n <
∞ interpolate between them, increasing the amount of symmetry. For example,
Tannaka-Duality associates to an E1-algebra a Hopf algebra, and to an E2-algebra
a quasitriangular Hopf algebra.

� For CatCatCat the (2, 1)-category of ordinary categories, with symmetric monoidal struc-
ture given by the product, E1-algebras are monoidal categories, E2-algebras are
braided monoidal categories, and En-algebras for n > 2 are symmetric monoidal
categories.

� For Cat2Cat2Cat2 the (3, 1)-category of (2, 1)-categories, with symmetric monoidal struc-
ture given by the product, E1-algebras are monoidal, E2-algebras are braided
monoidal, E3-algebras are sylleptic monoidal and En-algebras for n > 3 are sym-
metric monoidal (2, 1)-categories.

� In the symmetric monoidal (n+1, 1)-category of (n, 1)-categories, there are (n+2)
distinct notions of Ek-algebras (known as k-tuply monoidal (n, 1)-categories),
where for k > n+ 1 the notions coincide. This is known as the Baez-Dolan stabi-
lization hypothesis. It also holds for (n,m)-categories with m arbitrary [GH15]. To
visualize what all these notions actually mean: One can identify k-tuply monoidal
(n,m)-categories with (n + k,m + k)-categories that only have a single object,
morphism, . . . , (k − 1)-morphism.

� Eventually, E1-algebras in Cat∞ are monoidal ∞-categories and E∞-algebras are
symmetric monoidal ∞-categories.

Theorem A.7.8 (Dunn additivity). For k, k′ ∈ N0, the maps from A.6.6 exhibit Ek+k′ as
the tensor product of the operads Ek and Ek′ . This means that for any ∞-operad O⊗,

AlgEk
(AlgEk′

(O)) ≃ AlgEk+k′
(O) . (A.37)

Remark. Using this result, we may compare the increasing commutativity of E⊗
n with

the classical Eckmann-Hilton argument : For any set A with two binary operations ·,× :
A × A → A making A into a monoid with common unit e ∈ A, such that · and ×
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are compatible in the sense that (a · b) × (c · d) = (a × c) · (b × d) (imagine this by
putting a, b, c, d into the corners of a square), both multiplications necessarily agree and
are commutative:

a× b = (a · 1)× (1 · b) = (a× 1) · (1× b) = a · b = (1× a) · (b× 1) = (1 · b)× (a · 1) = b× a

This leads for example to the fact that higher homotopy groups are commutative.

De�nition A.7.9. For V⊗
1 ,V⊗

2 (partial) symmetric monoidal ∞-categories, a symmetric
monoidal functor F : V⊗

1 → V⊗
2 is a morphism between them in the slice category

(Cat∞)/Fin∗ . Equivalently, it is a functor of the underlying ∞-categories that preserves
unit, tensor product and its braiding up to isomorphism. Such functors are the objects
of an ∞-category Fun⊗(V1,V2).

Similarly, a lax monoidal functor F is a map between the ∞-operads associated to V⊗
1

and V⊗
2 . This yields morphisms F (V ) ⊗ F (V ′) → F (V ⊗ V ′) that do not have to be

isomorphisms.

Example A.7.10. For C and arbitrary∞-category, the coCartesian ∞-operad C⨿ has the
same objects as C, and

MulC⨿(C1, . . . , Cn;C) :=
n∏

i=1

MapC(Ci, C) . (A.38)

Remark. This∞-operad is a symmetric monoidal∞-category i� C has �nite coproducts.

De�nition A.7.11. An ∞-operad O⊗ is called unital if there are no non-trivial 0-ary
multimorphisms, i.e. for all X ∈ O the space Mul(∅;X) is contractible.

Proposition A.7.12 ([HA, 2.4.3.9]). For O⊗ a unital ∞-operad and C⨿ a coCartesian
∞-operad, the natural inclusion

AlgO(C) ⊆ Fun(O, C) (A.39)

is an equivalence of ∞-categories.

Corollary A.7.13. For O⊗ a unital ∞-operad, O⨿ the coCartesian ∞-operad on its
underlying ∞-category O, the identity functor on O induces a canonical map of ∞-
operads O⊗ → O⨿.

Proof Sketch. This map is the identity on objects, and the ith component of the map of
multimorphism spaces

MulO⊗(C1, . . . , Cn;C)→
n∏

i=1

MapO(Ci, C) (A.40)

is induced by simultaneously precomposing with the unique 0-ary morphism in
MulO⊗(∅;Cj) for j ̸= i. The proof of the general proposition follows the same idea.

http://www.math.ias.edu/~lurie/papers/HA.pdf#theorem.2.4.3.9
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Corollary A.7.14 ([AFT14a, 1.20]). Let O⊗ be a unital ∞-operad, and f : D → O a
right �bration on the underlying∞-category (for example, the slice projection O/X → O
for X ∈ O). Then, the pullback diagram in Op∞ involving the canonical map of operads
D⨿ → O⨿ and the one from A.7.13

D⊗ D⨿

O⊗ O⨿

de�nes an ∞-operad D⊗ with underlying ∞-category D. Explicitly, the multimorphism
space MulD⊗(D1, . . . , Dn;D) is given by

MulD⊗(f(D1), . . . , f(Dn); f(D))×∏
i MapO(f(Di),f(D))

∏
i

MapD(Di, D) .

Proof. This is an immediate corollary of how limits in Op∞ are are calculated, in partic-
ular the underlying ∞-category of the pullback above is the pullback of the underlying
∞-categories. See [AFT14a, 1.20] for a proof of this fact, since this involves the actual
de�nition of ∞-operads as simplicial sets over Fin∗.

De�nition A.7.15. If we further assume O⊗ is a symmetric monoidal∞-category, we call
a multimorphism in MulD⊗(D1, . . . , Dn;D) pre-coCartesian if its image

f(D1)⊗ · · · ⊗ f(Dn)→ f(D)

in O⊗ is an isomorphism. This equips D⊗ with what we call a weak symmetric monoidal
structure. In particular, a map of∞-operads D⊗ → E⊗ into another symmetric monoidal
∞-category will be called symmetric monoidal if it sends pre-coCartesian morphisms to
isomorphisms.

A.8. Sifted Colimits

De�nition A.8.1. A morphism of simplicial sets f : L → K is called right co�nal if for
any ∞-category C, every diagram p : K → C and any C ∈ C, precomposing with f
induces a homotopy equivalence of Kan complexes

Nat(p, C) ≃ Nat(p ◦ f, C) , (A.41)

where C denotes the constant functors K → C or L→ C with value C, respectively.

Proposition A.8.2. In particular, if in the above situation p admits a colimit, then by
de�nition A.2.11 this is equivalent toMapC(colim p, C) = MapC(colim(p◦f), C). In other
words, right co�nal morphisms are precisely those that preserve (universal properties of)
colimits! Similarly, left co�nal morphisms are those that preserve limits.
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Remark. There are many equivalent characterizations of co�nality (see [KER, Tag
02NR]) that are often easier to check than ours, most prominently:

Theorem A.8.3 (Quillen's Theorem A, [KER, Tag 02NY]).
A morphism of simplicial sets F : C → D with D an ∞-category is

� left co�nal i�, for all D ∈ D, the �ber C/D := C × D/D is weakly contractible,

� right co�nal i�, for all D ∈ D, the �ber CD/ := C × DD/ is weakly contractible.

De�nition A.8.4. Here, a simplicial set K is weakly contractible i� the geometric real-
ization |K| is contractible, or equivalently (by the adjunction | − | ⊣ Sing), the space of
maps Hom(K,X) into any Kan complex X is contractible. Similarly, we de�ne weak ho-
motopy equivalences as those maps of simplicial set that become homotopy equivalences
after applying |−|, or Hom(−, X) for any Kan complex. They are the weak equivalences
in the Quillen model structure on sSet.

De�nition A.8.5 ([KER, Tag 02PB]). An ∞-category C is called �ltered if for each sim-
plicial set K, any map K → C can be extended to a map K▷ → C.

Proposition A.8.6. An ∞-category C is �ltered i� for any simplicial set K, the diagonal
map C → Fun(K, C) that sends C to the constant functor C : K → C is right co�nal.

This generalizes �ltered diagrams in ordinary categories; and colimits parametrized by
�ltered simplicial sets have similarly nice properties as �ltered colimits in ordinary cat-
egories. We introduce a slightly larger class of nice colimit diagrams:

De�nition A.8.7. A simplicial set K is called sifted if it is nonempty and the diagonal
morphism δ : K → K ×K is right co�nal. A colimit over a diagram p : K → C is called
sifted colimit if K is sifted (just like for �ltered colimits).

This notion behaves well with respect to algebraic (in particular, operadic) structures
because of the following observation:

Proposition A.8.8. Given∞-categories C,D, E , a functor ⊗ : C ×D → E preserves sifted
colimits separately in both arguments if and only if it preserves sifted colimits in C ×D.

Proof. For a colimit diagram p : K → C × D with K sifted, we can decompose it into
its projections p = (p1 × p2) ◦ δ with p1 = πC ◦ p : K → C and p2 = πD ◦ p. We say that
⊗ preserves sifted colimits if for any such K,

colim
K

(⊗p) = colim
K

(p1 ⊗ p2) ◦ δ
!
= ⊗(colim

K
p) = ⊗

(
colim

K
((p1 × p2) ◦ δ)

)
;

https://kerodon.net/tag/02NR
https://kerodon.net/tag/02NR
https://kerodon.net/tag/02NY
https://kerodon.net/tag/02PB
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and ⊗ preserves sifted colimits in both arguments separately i� for any p1 : K → C and
p2 : L→ D,

colim
K×L

(p1 ⊗ p2) = colim
K

colim
L

(p1 ⊗ p2)
!
= (colim

K
p1)⊗ (colim

L
p2) = ⊗

(
colim
K×L

(p1 × p2)
)
.

We are immediately �nished if we set L = K and use right co�nality of δ.

Remark. This generalizes to n-ary multiplications using [KER, Tag 02QM]. From this,
one can follow (see [HA, 3.2.3.1]) that sifted colimits of commutative algebra objects and
(lax) monoidal functors can be computed pointwise, while more general colimits must
be reduced to this case via free resolutions (see [HA, 3.2.3.3] and remark A.8 below).

De�nition A.8.9. A symmetric monoidal ∞-category V⊗ is called sifted complete if its
underlying∞-category admits sifted colimits, and the tensor product ⊗ preserves sifted
colimits in both arguments separately (or equivalently, in V × V by A.8.8).

Example A.8.10 ([AFT14a, 1.18]). The symmetric monoidal ∞-categories Ch(R)⊗,
D(R)⊗

L
, Sp∧, S×, Cat×∞ and the derived category of di�erentiable vector spaces

D(DVS)⊗̂ are sifted complete. Generally, if C admits �nite coproducts, then the co-
Cartesian symmetric monoidal structure is sifted complete. The ∞-category Ch(R)op
with ⊗ is not sifted, since the tensor product does not commute with limits over ∆
(called totalizations).

Proposition A.8.11 ([KER, Tag 02QP]). The opposite simplex category ∆op is sifted.

Proposition A.8.12. Every �ltered simplicial set is sifted.

Proof. Immediate from A.8.6, setting K = ∆0 ⨿∆0.

In fact, these two types of diagrams generate all sifted colimits:

Theorem A.8.13 ([HTT, 5.5.8.16]). For C any ∞-category, the following subcategories
of the presheaf category PSh(C) = Fun(Cop,S) are the same:

� The full subcategory spanned by presheaves that preserve �nite products.

� The smallest full subcategory that contains representable presheaves and is closed
under sifted colimits

� The smallest full subcategory that contains representable presheaves and is closed
under �ltered colimits and geometric realizations (i.e. colimits over ∆op)

We denote this category by Funπ(Cop,S) and call it the sifted cocompletion of C.

https://kerodon.net/tag/02QM
http://www.math.ias.edu/~lurie/papers/HA.pdf#theorem.3.2.3.1
http://www.math.ias.edu/~lurie/papers/HA.pdf#theorem.3.2.3.3
https://kerodon.net/tag/02QP
http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.5.5.8.16
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Remark. Compare this to the analogous statement for the Ind-completion (or idempotent
completion) of C, that consists of presheaves preserving �nite limits and is generated by
�ltered colimits.

Remark. If C is a 1-category with �nite products, then this is also known as the ani-
mation, or non-abelian derived category of the cocompletion of C under sifted ordinary
colimits (the class generated by ordinary �ltered diagrams and the full subcategory of
∆ spanned by [0] and [1]). For example, if C is the category of polynomial algebras
over a ring R, then its 1-sifted cocompletion is the whole category of R-algebras, and its
sifted cocompletion is the derived category of R-algebras (which therefore agrees with
the animation of the category of R-algebras).

However, as this construction uses simplicial objects instead of chain complexes (equiva-
lent via Dold-Kan), it allows for deriving non-additive functors, like the functor of taking
Kähler di�erentials (yielding the cotangent complex we used to de�ne the BV complex),
exterior/symmetric products, divided power algebras and others. Explicitly, if D has
sifted colimits, the derived functor of F : C → D is its Left Kan Extension along the
(corestricted) Yoneda embedding C ↪→ Ani(C).

A.9. Lax Limits and Colimits

Some (∞, 2)-category theory is introduced in this section to obtain intuition about lax
colimits in the (∞, 2)-categories CatCatCat∞ of∞-categories andOpOpOp∞ of∞-operads. It should
be skipped on a �rst reading since we use it very little (mostly to build intuition for our
conjecture 4.5.9 and for some proofs), it is very technical and we are extremely sketchy
to the point of merely conjecturing many statements.

De�nition A.9.1. Let K be a simplicial set, CCC an (∞, 2)-category, and p : K → CCC a map
of simplicial sets. We call laxlim(p) ∈ CCC the lax limit of p and a natural transformation
α : ∆1 × K → CCC with α|{0}×K = constlaxlim(p) the corresponding lax limit cone, if for
(and naturally in) every D ∈ CCC, composition with α induces an equivalence

MapL
CCC (D, laxlim(p)) ≃ MapL

Fun(∞,2)(K,C)(constD, p) . (A.42)

Here, MapL denotes the left-pinched mapping space since it does not agree with how
we usually de�ne Map, and Fun(∞,2) is the full subcategory of the ordinary functor
category on functors preserving invertible 2-morphisms. Dually, we de�ne lax colimits
and replacing the left by a right pinch yields oplax limits and oplax colimits.

Remark. This is relatively imprecise, since we have not even talked about compositions
in (∞, 2)-categories. While [KER, Tag 01W4] contains some further information, it is
still di�cult to give a formal de�nition in our setting.

https://kerodon.net/tag/01W4
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These constructions are well understood in Cat∞Cat∞Cat∞ � the following is a main theorem of
[GHN15] and [Ber20]:

Theorem A.9.2. Let F : C → Cat∞ be a functor classifying the coCartesian �bration
p : E → C in the sense of A.2.12, and let G : Cop → Cat∞ classify the Cartesian �bration
p : F → C. Then,

� laxcolimF ≃ E .

� The ordinary colimit colim F is the localization of E at the class of p-coCartesian
morphisms.

� laxlimF is equivalent to the ∞-category of sections FunC(C, E).

� limF is the full subcategory of FunC(C, E) spanned by sections that send all mor-
phisms in C to p-coCartesian morphisms.

� oplaxcolimG ≃ F ,

� colim G agrees with its localization at the p-Cartesian morphisms,

� oplaxlimG ≃ FunC(C,F),

� limG is the full subcategory on sections only hitting p-Cartesian morphisms.

Corollary A.9.3. Let C be an∞-category and ∆0 denote the constant functor C → Cat∞Cat∞Cat∞
on the terminal category. We then �nd:

C ≃ laxcolim
C

∆0 (A.43)

Proof. By A.9.2, it su�ces to notice that id : C → C is the coCartesian �bration classi�ed
by the functor ∆0.

Conjecture A.9.4. Let CCC be an (∞, 2)-category, C ∈ CCC and p : K → CCC a diagram. Then,
there are natural equivalences:

laxlim
k∈K

HomCCC(C, p(k)) ≃ HomCCC(C, laxlim
K

(p))

laxlim
k∈K

HomCCC(p(k), C) ≃ HomCCC(laxcolim
K

(p), C)
(A.44)

Let us talk about co�nality for a moment. We want to �nd an analogue of the following
result for (non-lax) colimits:

Proposition A.9.5 ([KER, Tag 02N5]). If f : A→ B is a weak equivalence of simplicial
sets and B is a Kan complex, then f is left (and right) co�nal.

https://kerodon.net/tag/02N5
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Proof. We need to show that for any left �bration q : B′ → B, the induced map
Fun/B(B,B

′)→ Fun/B(A,B
′) is a homotopy equivalence, which is an equivalent charac-

terization of co�nality. Since B is a Kan complex, B′ is as well and q is a Kan �bration,
so that we obtain a commutative diagram of Kan complexes

Fun(B,B′) Fun(A,B′)

Fun(B,B) Fun(A,B)

q◦−

−◦f

q◦−

−◦f

where the vertical arrows are Kan �brations since q is, and the horizontal arrows are
homotopy equivalences since f is a weak equivalence (by de�nition of those, since Kan
complexes are the �brant objects in the Quillen model structure on sSet). We are �nished
when we realize that the (homotopy) �bers of the vertical arrows must therefore also be
homotopy equivalent.

Conjecture A.9.6. Similarly, if f : A → B is categorical equivalence of simplicial sets
and B is an∞-category; then for any diagram p : B → CCC where CCC is an (∞, 2)-category,
f induces an isomorphism

laxcolim
A

(p ◦ f) ∼= laxcolim
B

(p) (A.45)

and similarly for the lax limit.

A lax colimit of a diagram in the (∞, 2)-category of ∞-operads Op∞ is called the
assembly of this diagram, it is studied in [HA] Sections 2.3.3 and 2.3.4.



B. Strati�ed Spaces

This chapter is intended as a short introduction to the kinds of strati�ed spaces we want
to consider in the main part of this work, with particular emphasis on their homotopy
theory. We discuss exit-path categories, constructible sheaves, generalizations of the
Seifert-van-Kampen theorem and (topological) exodromy. The last subject is put into
the context of many other theorems throughout mathematics that study, in a broad
sense, local systems on spaces via their monodromy representation.

B.1. Di�erent Notions of Strati�cations

De�nition B.1.1. Let (P,≤) be a poset. We can equip it with the Alexandrov topology,
where

� Open subsets are precisely the upwards closed subsets

� Closed subsets are precisely the downwards closed subsets

� Locally closed subsets are precisely the intervals

In particular for p ∈ P , the set P≥p = {q ∈ P |q ≥ p} is open, P≤p is closed and {p} is
locally closed.

De�nition B.1.2. A P -strati�ed space, usually called �ltered space, is a topological space
X equipped with a continuous map f : X → P , where P carries the Alexandrov topology.
The locally closed subspacesXp = f−1(p) are called strata ofX, and the closed subspaces
X≤p = f−1(P≤p) are called closed strata.

Example B.1.3. An (N,≤)-strati�ed space is a topological space X, together with a
�ltration

⋃
i∈NXi = X by closed subspaces Xi with Xi ⊆ Xj for i ≤ j.

De�nition B.1.4. A map of strati�ed spaces g : (X → P ) → (Y → Q) consists of a
continuous map X → Y and an order-preserving map P → Q (equivalently, continuous
with respect to the Alexandrov-topology) such that the following square commutes:

172
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X Y

P Q

We obtain a category Top/Alex, and we will call the isomorphisms strati�ed homeomor-
phisms. Also, restricting to a �xed poset P and continuous morphisms that cover the
identity map on P , we obtain a category Top/P .

De�nition B.1.5. An open embedding f : (X → P ) ↪→ (Y → Q) of strati�ed spaces is
a map of strati�ed spaces that induces an open embedding f : X ↪→ Y of topological
spaces, as well as open embeddings fp : Xp ↪→ Yf(p) for each p ∈ P .

De�nition B.1.6. For f : X → P a strati�ed space, de�ne its open cone C(X) := X×[0,∞)
X×{0}

and equip it with its natural strati�cation by P ◁ := P ∪ {−∞} that sends [x, t] 7→ f(x)
for t > 0, and the collapsed cone point to −∞.

De�nition B.1.7. A strati�ed space f : X → P is called conically strati�ed if for any
p ∈ P and any point x ∈ Xp, there exists a neighborhood x ∈ U with f(U) = P≥p such
that the space U with its restricted strati�cation U → P≥p is strati�ed homeomorphic
to a space of the form Y × C(L). Here, Y should be a (trivially strati�ed) topological
space and L a P>p-strati�ed space so that we can identity P≥p

∼= P ◁
>p.

Being conically strati�ed implies many useful statements about the (strati�ed) homotopy
type of a space, as we will see later. To capture the de�nition in a view words, it means
that our space should locally look like a cone. There is a similar, even more re�ned
notion we will often use in the main text, that mirrors the de�nition of a topological
manifold:

De�nition B.1.8. An n-basic is inductively de�ned to be a strati�ed space of the form
Ri × C(L), where i ≥ 0 and its link Z is a compact C0-strati�ed space of dimension
(n− i−1), inductively de�ned below. To start this induction, the only (−1)-dimensional
C0-strati�ed space is ∅ → ∅, and there are no basics of negative dimension.

De�nition B.1.9. A C0-strati�ed space of dimension n is a paracompact Hausdor� space
that is locally strati�ed homeomorphic an n-basic, in the sense of B.1.7. We denote the
category of them, together with strati�ed maps, as StratC

0

n ; and if we take only strati�ed
open embeddings of as morphisms, as SnglC

0

n . Finally, we denote the category of n-basics
with strati�ed open embeddings as morphisms by BscC

0

n .

Proposition B.1.10 ([AFT14b, 6.2.2]). Since every space in SnglC
0

n can be glued from n-
basics, we can obtain an embedding SnglC

0

n ↪→ PSh(BscC0

n ). In fact, open coverings con-
stitute a Grothendieck pretopology on BscC

0

n , and the functors of points of C0-strati�ed
spaces are sheaves over it (but not every sheaf is of this form).
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Example B.1.11. It follows that the only 0-basic is C(∅ → ∅) = ∗ → ∗, and the only
1-basics are R, C(∗ → ∗) = (R≥0 → {0 < 1}) and generally C({1, . . . , k} → ∗) =
R≥0 ×{0} · · · ×{0} R>=0 → ∗.

Example B.1.12.

� Since forming a cone always adds an element to the strati�cation poset, C0-
strati�ed spaces (X → P ) with P = ∗ must locally look like Ri, so they are
precisely topological manifolds. Similarly, one can see that strata of C0-strati�ed
spaces are always topological manifolds.

� C0 strati�ed spaces of dimension 0 are disjoint unions of points (with the trivial
strati�cation), and in dimension 1 we obtain undirected graphs strati�ed over
{0 < 1} by sending vertices to 0 and edges to 1.

� Let N ⊆ M be an embedded submanifold, and let us stratify M by {0 < 1} by
sending N to 0 and M\N to 1. This is a C0-strati�cation; an important special
case are knots S1 ↪→ R3.

� Irreducible complex varieties of pure dimension, with their analytic topology, have
a natural C0-strati�cation with only even-dimensional strata.

� The pinched torus S
1 × S1

⧸{0} × S1 and the double cone S
1 × R⧸S1 × {0} are C

0-
strati�ed of dimension 2; both consist of a singular stratum (the quotient point,
with link S1 × S1 in both cases) of dimension 0 and a regular stratum.

� The suspension ST 2 = [0,1]×T 2

{0,1}×T 2 of the torus is a C0-strati�ed space of dimension 3
with two singular points.

� The topological n-simplex |∆n| = {(x0, . . . , xn) ∈ [0, 1]n+1|x0 + · · ·+ xn = 1} pos-
sesses a natural {0 < · · · < n}-strati�cation, sending (x0, . . . , xn) to the maximal
i with xi ̸= 0. For example, |∆1| consists of the 0-stratum {(1, 0, 0)} and the
1-stratum given by the remaining half-open line. Alternatively, |∆n| can also be
strati�ed di�erently by considering it as a manifold with corners.

� Strati�cations that are not C0 include for example most CW-complexes (strati�ed
by their skeleta); and { 1

n
|n ∈ N} ∪ {0} ⊂ R strati�ed by sending everything to

1 ∈ {0 < 1}, except for 0 7→ 0.
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Example B.1.13. Topological n-Manifolds with corners, i.e. spaces that are locally home-
omorphic to Rn−i × Ri

≥0 for 0 ≤ i ≤ n, are C0-strati�ed over {0 < · · · < n} if we send
every corner to its dimension i (i.e. the interior to n, the boundary to n− 1, . . . ). This
follows from the fact that C0-strati�ed spaces are closed under forming products.

De�nition B.1.14. A C0-strati�ed space is called a topological pseudomanifold if its top-
dimensional stratum is dense, and there is no stratum of codimension 1. This allows,
for example, the introduction of an orientation class.

Unfortunately, C0-strati�ed spaces behave worse than topological manifolds in several
aspects, making it convenient to introduce a smoothness condition. Traditionally, one
uses Whitney, Thom-Mather and several other kinds of strati�cations for this purposes;
but we follow a di�erent notion introduced in [AFT14b] that is both easy to work with
algebraically, but in our point of view also geometrically clearer. We however only sketch
its de�nition, since we will not use the technical details in the main text. Just like in the
de�nition of a smooth manifold, the idea is to specify what it means for a map between
basics to be smooth, and from that to build the notion of a smooth atlas.

De�nition B.1.15. Let f : Rn × C(W ) → Rm × C(Z) be a map of basic C0-strati�ed
spaces that sends the cone tip to the cone tip, in the sense that it can be restricted
to f |Rn : Rn × ∗ → Rm × ∗. We say that f is C1 along the cone locus if the map
R>0 × TRn × C(W )→ TRm × C(Z) given by

(t, v, p, [s, u]) 7→
(
t,
f |Rn(tv + p)− f |Rn(p)

t
, c 1

t
(f(p, [ts, u]))

)
(B.1)

can be continuously extended to t = 0 (necessarily uniquely). Here, cλ is the map that
scales the R-component of C(Z) by λ, and v is a tangent vector in TpRn ∼= Rn. We
denote this extension at t = 0 by Df : TRm × C(W ) → TRn × C(Z). Further, we
inductively de�ne that f is Ck along the cone locus if Df is Ck−1 along its cone locus;
and f is conically smooth along the cone locus if this holds for every k ∈ N.

De�nition B.1.16. An n-dimensional C0-strati�ed space (X → P ) is called conically
smooth if it is equipped with an (equivalence class of) conically smooth atlas AX , and
a strati�ed open embedding f : (X,AX)→ (Y,AY ) between conically smooth strati�ed
spaces is called smooth if f ∗AY is equivalent to AX . Denote the 1-category of conically
smooth strati�ed spaces and open embeddings by Sngln.

De�nition B.1.17. A conically smooth atlas on an n-dimensional C0-strati�ed space
(X → P ) is a collection AX = {(Ui, ϕi : Ui ↪→ X)}i∈I where Ui are conically smooth
n-basics and ϕi are strati�ed open embeddings, such that

� The (Ui) form an open cover of X
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� and for any (U, ϕ), (V, ψ) ∈ AX and x ∈ ϕ(U) ∩ ψ(V ), there is a conically smooth
n-basic W equipped with conically smooth open embeddings of n-basics α : W ↪→
U, β : W ↪→ V such that ϕ ◦ α = ψ ◦ β and x ∈ ϕ ◦ α(W ) = ψ ◦ β(W ).

Two atlases are equivalent if their union is an atlas. For f : X ′ → X a strati�ed open
embedding of strati�ed spaces, we obtain a pullback atlas f ∗AX on X ′ consisting of
those ϕ : U → X ′ such that f ◦ϕ is compatible with AX . Similarly, we can form product
atlases.

De�nition B.1.18. An n-basic Ri × C(Z) is called conically smooth if the link Z is a
compact conically smooth strati�ed space of dimension n− i−1, equipped with an atlas
AZ . Since the dimension decreases, this makes sense inductively. A conically smooth
open embedding of n-basics f : U = Ri × C(Z) ↪→ V = Rj × C(Z) is a strati�ed open
embedding such that

� If f preserves the cone locus, it is conically smooth along it as de�ned above, its
di�erential Df is injective, and apart from the cone locus, it preserves the smooth
structure induced from Z in the sense that f ∗A|V−Rj = A|f−1(V−Rj).

� If f does not preserve the cone locus, since it is a strati�ed map, this means that it
factors through f : U ↪→ Rj ×R>0×Z ↪→ V . We require that U ↪→ Rj ×R>0×Z
is compatible with the atlas induced on the right side by AZ .

To start the induction, there are no conically smooth basics of negative dimension, and
there is a unique (−1)-dimensional conically smooth strati�ed space ∅ with a unique
atlas. Denote the 1-category of conically smooth n-basics and open embeddings by
Bscn.

De�nition B.1.19. A conically smooth map f : X → Y between conically smooth strati-
�ed spaces is a map of strati�ed spaces such that for all ϕ : U ↪→ X and ψ : V ↪→ Y in
the respective atlases with f(ϕ(U)) ⊆ ψ(V ), the composition ψ−1 ◦ f ◦ ϕ is a conically
smooth map of basics. A conically smooth map of basics f : Ri × C(Z) → Rj × C(W )
is a map of strati�ed spaces such that

� If f sends the cone locus to the cone locus, it is conically smooth along the cone
locus Ri as in B.1.15, and by induction, f |Ri×R>0×Z is conically smooth;

� If f does not hit the cone locus, the factorization f : Ri ×C(Z)→ Rj ×R>0 ×W
by induction is conically smooth.

Example B.1.20.

� A map f : (Rn → ∗)→ (Rm → ∗) is conically smooth i� it is smooth.
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� A map f : (Rn × R≥0 → [1]) → (Rm → ∗) is conically Ck i� it is Ck in the
interior R>0

∼= R and Ck along the cone locus. The latter means that the map
Df : TRn × R≥0 → TRm given by

(v, p, s) 7→ lim
t→0+

(
f(p+ tv, 0)− f(p, 0)

t
, f(p, ts)

)
(B.2)

exists and is Ck−1 along the cone locus, in particular there is a one-sided derivative
along the boundary. Finally, f is conically smooth i� it is conically Ck for all k > 0.

� Conically smooth strati�ed spaces that are trivially strati�ed are the same thing
as smooth manifolds.

� Manifolds with corners are conically smooth when equipped with their canoni-
cal strati�cation. More generally by [NV21], every Whitney strati�ed space has
a canonical conically smooth atlas, in particular every complex variety of pure
dimension is conically smooth.

Remark. One of the nice properties of conically smooth spaces is that basics become
more rigid than in the C0 case; for example for (X → P ) conically smooth,

� The canonical map Aut(X)→ Aut(C(X)) is a homotopy equivalence,

� A map of basics is an isomorphism in Bscn, which we de�ne in 4.2, i� it is an
isomorphism in Bscn,

� ForX compact, the exit-path category SingP (X) we introduce shortly is equivalent
to a �nite ∞-category.

The �rst two statements are part of [AFT14a, 4.3.1], the last one is from [Vol22].

Let us capture the most important �avors of strati�ed spaces in a diagram, where arrows
denote an extension in generality. Note that the variants of smooth strati�ed spaces are
always equipped with extra data like an atlas, so the respective arrows are not fully
faithful.

strati�ed spaces C0-strati�ed topological pseudomanifolds

Thom-Mather conically smooth

Whitney complex varieties
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B.2. Exit Paths

The (weak) homotopy type of a topological space X is described by its singular simplicial
set, or fundamental ∞-groupoid, Sing(X) that we de�ned in A.1.11. In fact, good
topological spaces and ∞-groupoids are more or less the same thing according to the
homotopy hypothesis.

We want to �nd a similar simplicial model for the strati�ed homotopy type of a strati�ed
space (X → P ). Since a strati�cation equips X with a sense of ordering, or direction,
we would expect that this model has non-invertible edges, ie. it should not be a Kan
complex. In fact, there is a correspondence (akin to the homotopy hypothesis) between
∞-categories and so-called directed spaces, which we could regard strati�ed spaces as a
special case of. We will however take a di�erent approach.

Remember that vertices of Sing(X) are points of X, edges are paths, 2-simplices are
homotopies and so on. What we would expect for strati�ed spaces is that vertices of
their model SingP (X) should still be points of X, but edges should be paths that "move
in the direction of the strati�cation". Let us formalize this:

De�nition B.2.1. We introduce a functor rstrat : ∆→ Top/Alex that sends [n] to (|∆n| →
[n]) with the natural strati�cation of B.1.12. Using the fact that Top/Alex has all colimits,
and the nerve-realization paradigm A.1.7, we obtain an adjunction

Top/Alex sSet
Singstrat

|−|strat

We call the simplicial set Singstrat(X) with n-vertices given by Singstrat(X)n :=
HomTop/Alex

((|∆n| → [n]), (X → P )) the exit path category of X.

To be more explicit,

� Vertices of Singstrat(X) are points in X,

� For vertices x, y ∈ X, edges between them in Singstrat(X) are paths |∆1| → X
that cover an order-preserving map [1] → P , i.e. exit-paths in X that start in a
lower stratum and immediately exit into a higher stratum in which they stay,

� 2-simplices are homotopies between exit-paths that, according to the strati�cation
of ∆2, increase in strata,

� Higher simplices are higher homotopies.

In particular, for p ≤ p′ ≤ p′′ in P and exit-paths γ : x → y starting in Xp and exiting
into Xp′ , γ′ : y → z starting in Xp′ and exiting into Xp′′ , and γ′′ : x→ z starting in Xp

and exiting into Xp′′ , a 2-simplex starting at γ and γ′ and ending at γ′′ is a homotopy
between the concatenation γ′ ∗γ and γ′′ that, apart from beginning and end, completely
lies in Xp′′ .
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Remark. Be aware that Singstrat(X) generally does not have to be an∞-category, despite
the name. The reason is that paths γ′ and γ as above don't necessarily need to have a
composite, i.e. a third path γ′′ equipped with a 2-simplex as above. The condition that
the homotopy needs to lie in Xp′′ may be to strong.

This resolves half of our problem � we can use Singstrat(X) as a simplicial model for X.
What special properties does this simplicial set possess?

Construction B.2.2 ([DW21, 2.9]). For P a poset, regard it as a thin category and denote
by N(P ) ∈ sSet its nerve, which is an ∞-category with no non-trivial isomorphisms.
There is a canonical continuous map from the geometric realization φP : |N(P )| → P :
For every non-degenerate simplex of N(P ) corresponding to a strictly order-preserving
morphism [n] → P , ie. a chain (p0 < · · · < pn) ⊆ P , we map the associated simplex
{(x0, . . . , xn) ∈ [0, 1]n|

∑
xi = 1} to P via

φP (x0, . . . , xn) := max{i ∈ {0, . . . n} | ti ̸= 0}} . (B.3)

In particular, |N(P )| is naturally strati�ed over P and for P = [n], this agrees with the
strati�cation in B.1.12.

Remark. It is a nice exercise to show that this is a well-de�ned continuous map, un-
derstand the strati�cation in more examples, and to describe the adjoint map N(P )→
Sing(P ).

Observation B.2.3. Postcomposing with, and pulling back along the map φP induces an
adjunction between slice categories:

Top/P Top/|N(P )|−×P |N(P )|

φP ◦−

De�nition B.2.4. Given a simplicial set (K → N(P )) ∈ sSet/P equipped with a map
to the nerve of P , we can form the geometric realization (|K| → |N(P )|) ∈ Top/|N(P )|.
Together with ϕP ◦ − this yields a composition

sSet/N(P ) Top/|N(P )| Top/P

|−|

SingP

φP ◦−

−×P |N(P )|

where both functors admit right adjoints. The right adjoint SingP of the geometric
realization (which we identify with the composition of both right adjoints) is constructed
as the pullback
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SingP (X) Sing(X)

N(P ) Sing(P ) .

Remark. Both of these statements follow from standard theorems on the interaction of
adjoints and slice categories, and pasting in the latter case.

Proposition B.2.5. For (f : X → P ) ∈ Top/P , the constructions Singstrat(X → P ) ∼=
SingP (X) are naturally isomorphic. Similarly, for (K → P ) ∈ sSet/P , the underlying
topological spaces of |K|strat and |K → P |P agree.

Proof. While this can be deduced from abstract nonsense, for the �rst case this is clear
by construction of SingP : The pullback in sSet = Fun(∆op, Set) is computed pointwise,
so SingP (X) consists of precisely those simplices σ of Sing(X) that lie over a simplex of
N(P ), meaning that they can only go in the direction the edges in N(P ) point towards,
i.e. upwards in the strati�cation.

For the geometric realizations, note that both of them as well as the slice projections
sSet/P → sSet, Top/P → Top preserve colimits, so it is enough to show this on ∆n → P .
But the underlying space of both realizations by de�nition is just |∆n| in this case.

Remark. We have thus learned that the exit-path category Singstrat(X) ≃ SingP (X) is
equipped with a canonical map to P , and how to calculate the strati�ed realization.

Theorem B.2.6 ([HA, A.6.4]). If (X → P ) is a conically strati�ed space, the exit path
category SingP (X) ∈ sSet is a quasicategory.

De�nition B.2.7. A functor F : C → D between ∞-categories is called conservative if
it re�ects isomorphisms. This means that if f is a morphism in C such that F (f) is an
isomorphism in D, then f is an isomorphism.

De�nition B.2.8. For P a poset, the∞-category SP of abstract strati�ed homotopy types
over P is the full subcategory of the slice category Cat∞/N(P ) on conservative functors.

Proposition B.2.9. For (X → P ) ∈ Top/P , the natural map SingP (X) → N(P ) is
conservative. In particular, if (X → P ) is conical, SingP (X) ∈ SP .

http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.6.4
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Proof. Since P is a poset, the only isomorphisms in N(P ) are the identities. Therefore,
all we need to check is that for each p ∈ P , the �ber SingP (X) ×N(P ) {p} is an ∞-
groupoid. From the de�nition of SingP (X), we see that morphisms in this �ber are
paths in X that stay entirely in Xp, without any conditions from the strati�cation. This
means that they are invertible. In fact, by using the same argument for all simplices
in SingP (X), we see that SingP (X)×N(P ) {p} ≃ Sing(Xp) which is a Kan complex (see
also [HA, A.7.5]).

Now, we �nally develop the strati�ed homotopy theory we have promised.

De�nition B.2.10. Given strati�ed spaces (X → P ) and (Y → Q), strati�ed maps
f, g : X → Y are called strati�ed homotopic if there is a strati�ed map

H : (X ×∆1 → Q× [1])→ (Y → Q) (B.4)

where ∆1 is equipped with the above strati�cation, such that H|X×{0} = f and
H|X×{1} = g. Further, f is called a strati�ed homotopy equivalence if there is a strati�ed
map f ′ : Y → X such that f ◦ f ′ and f ′ ◦ f are strati�ed homotopic to the respective
identity maps.

De�nition B.2.11 ([Hai18, 2.1.2]). The class of Joyal-Kan equivalences is smallest class
of weak equivalences in sSet/N(P ) containing both

� Morphisms (K → N(P )) → (L → N(P )) where K → L is a Joyal-equivalence,
i.e. a weak equivalence in the Joyal model structure on sSet (a Joyal-equivalence
between ∞-categories is an equivalence of ∞-categories),

� For ∆1 → N(P ) a constant map, the inclusions ({0} → N(P )) ↪→ (∆1 → N(P ))
and ({1} → N(P )) ↪→ (∆1 → N(P )).

Proposition B.2.12 ([Hai18, 2.5.4]). For f : K → L a map of simplicial sets over N(P ),
if we assume that the �bers of K and L over each p ∈ P are Kan complexes, then f is
a Joyal-Kan equivalence i� it is a Joyal equivalence.

Theorem B.2.13 ([Hai18, 2.5.11]). The class WJK of Joyal-Kan equivalences, together
with the class of monomorphisms as co�brations, equips sSet/P with the structure
of a simplicial model category. Its underlying ∞-category, i.e. the localization
N(sSet/P )[W

−1
JK ] in the sense of A.2.3, is equivalent to SP .

Theorem B.2.14 ([Hai18, 3.2.3]). Let Topex
/P be the full subcategory of P -strati�ed spaces

on the spaces (X → P ) where SingP (X) is a quasicategory (in particular, it contains
conically strati�ed spaces by B.2.6); and let Wex be the class of morphisms in it that are
sent to Joyal-Kan equivalences by SingP . Then, the functor SingP induces an equivalence
of ∞-categories

SingP : N(Topex
/P )[W

−1
ex ]

≃−→ N(sSet/P )[W
−1
JK ] ≃ SP . (B.5)

http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.7.5
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In the main text, we use the following corollaries of this result:

Corollary B.2.15. For (X → P ) a conically strati�ed space, the counit

(| SingP (X)|P → P )→ (X → P ) (B.6)

is in Wex. While the class Wex is not very explicit, it can further by characterized as in
[DW21, Section 3.2]. In fact, if X is a triangulable conically strati�ed space, this counit
can even be made into a strati�ed homotopy equivalence by [DW21, 5.4, 5.9].

Corollary B.2.16. Given a simplicial set (K → P ) ∈ sSetP such that the �bers of K
are Kan complexes, a conically strati�ed space (X → P ) and a strati�ed homotopy
equivalence (|K|P → P ) ≃ (X → P ), the adjoint map (K → P )→ (SingP (X)→ P ) is
a categorical equivalence of underlying simplicial sets.

The latter statement is useful for actually calculating SingP (X). After this technical
discussion, let us develop some examples. Recall that we always assume CW complexes
are locally �nite.

De�nition B.2.17. A CW complex X is called regular i� the inclusions ϕ : Dn → X of
n-cells into X are homeomorphisms onto their image. For arbitrary CW complexes, this
is only true in the interior of Dn, and being regular means that this gluing has to be
"non-degenerate" along the boundary ϕ∂ : Sn−1 → skn−1(X) as well.

Proposition B.2.18. If X is a regular CW complex and we denote by IX the set of cells
in X, then

� IX carries a natural partial order,

� There is a canonical strati�cation X → IX sending each point to the unique cell
that contains it in its interior (unless the point is a 0-cell itself, in which case it is
sent to this 0-cell),

� This strati�cation is conical (here, we need X to be locally �nite),

� The exit-path category SingIX (X) → IX is equivalent to the identity map (it
does not matter whether we talk about Joyal-Kan or categorical equivalences by
B.2.12).

Proof. First, note that a regular CW complex X is in particular normal. This means
the set of cells IX carries a partial order where e1 ≤ e2 i�, equivalently,

� e1 is contained in the closure e2,

� e1 ∩ e2 ̸= ∅,
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by [TT18a, 3.1]. This yields a conical strati�cation on X by [TT18b, 1.7] and a remark
in [Lej21, Section 4.2]. To show that the map SingIX (X) → IX is an equivalence, we
proceed by showing it is essentially surjective and fully faithful.

Essentially surjective: In the proof of B.2.9, we saw that the �ber of this map over a
cell is just the singular simplicial set of the open cell itself (or, in dimension 0, a point),
in particular contractible and non-empty.

Fully faithful: Let e1 and e2 be cells in X, and x ∈ e1, y ∈ e2. If e1 ≰ e2, the mapping
space MapSingS(X)(x, y) is also empty since there can't be a path γ : [0, 1] → X from x
to y that lies over the arrow e1 → e2 in S, as it would have to somehow jump from e1
to e2 even though e1 ∩ e2 = ∅, violating continuity.

If e1 ≤ e2, so e1 lies in the boundary of e2, we need to show that MapSingIX (X)(x, y)
is contractible. As in the proof of [HA, A.6.10], we can identify this with Sing(Px,y)
with Px,y the space of paths γ : [0, 1] → X from x to y such that γ((0, 1]) ⊆ e2. This
only works because we know the strati�cation is conical so SingIX (X) is an∞-category.
However γ([0, 1]) ⊆ e2, the image of the gluing map Dn → X of e2, which by regularity
is a homeomorphism onto its image.

Thus, we can identify Px,y with the space of maps γ : [0, 1] → Rn such that γ(0) = y′

for some �xed y′ with |y′| = 1 that corresponds to y, γ(1) = x′, and |γ(t)| < 1 for all
0 < t ≤ 1. This can clearly be contracted to the linear path, since the open unit ball is
convex.

Corollary B.2.19. If K is a simplicial complex in the sense of 5.7.1 and we strat-
ify its geometric realization |K| by the poset IK of simplices, the exit-path category
SingIK (|K|)→ IK is equivalent to the identity IK → IK .

Proof. By de�nition of a simplicial complex and its geometric realization, |K| is a regular
CW-complex with poset of cells IK .

Example B.2.20.

� For a trivially strati�ed space X → ∆0, the exit-path category agrees with the
homotopy type Sing∆

0

(X) = Sing(X).

� Using the same argument as in B.2.18, one shows Sing[1](R≥0) ≃ ∆1.

� As a right adjoint, Singstrat commutes with products.

� By [AFR15, 3.3.12], if r : (X → P ) → (X → Q) is a re�nement, i.e. a map of
strati�ed spaces determined by the identity on X and an order-preserving surjec-
tion P → Q, then the induced functor SingP (X)→ SingQ(X) is a localization (loc.
cit. only works in the conically smooth case, but this should hold more generally).

http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.6.10
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� For Dn → [1] strati�ed as a manifold with boundary, choose the triangulation ∆n.
Then,

Sing[1]Dn ≃ (Sing[n] ∆n)[W−1] ≃ P({1, . . . , n})[W−1] (B.7)

where W is the class of face inclusions in ∆n that do not involve the boundary,
and P denotes the power set ordered by inclusion.

� By [AFT14b, 6.1.4], SingP (C(X)) ≃ SingP (X)◁ in the conically smooth case. In
particular, the exit-path category of a basic is

SingP
◁

(Ri × C(L)) ≃ Sing∆
0 Ri × SingP

◁

(C(L)) ≃ (SingP (L))◁ . (B.8)

� By [Vol22], the exit-path category of a compact conically smooth strati�ed space
is equivalent to a �nite ∞-category.

B.3. Constructible Sheaves

On a topological space X, we can de�ne special classes of sheaves with values in a
presentable ∞-category V that locally do not change:

De�nition B.3.1. If Γ∗ : V → Sh(X,V) denotes the left adjoint of the global sections
functor, then we call the sheaves Γ∗(V ) for any V ∈ V constant sheaves.

De�nition B.3.2. Given F ∈ Sh(X,V), if there is an open cover (Ui) of X such that
F |Ui

is constant for every i, we call F locally constant. The full subcategory on locally
constant sheaves will be denoted by Sh lc(X,V).

De�nition B.3.3. For X → P a strati�ed space, we call a sheaf F ∈ Sh(X,V) con-
structible if for each p ∈ P , the restriction F |Xp is locally constant. The full subcategory
on these will be denoted Shcbl(X,V) when the strati�cation is clear.

De�nition B.3.4. Similarly, we de�ne constant hypersheaves as those that arise as hy-
percompletions of constant sheaves (or equivalently, via the left adjoint of the global
sections functor of Sh(X)hyp); locally constant hypersheaves as those hypersheaves where
the hypercompletions of F |Ui

for some open cover are constant hypersheaves; and con-
structible hypersheaves as hypersheaves whose restrictions to strata are locally constant
hypersheaves after hypercompleting them.

Warning. Being a locally constant hypersheaf is not equivalent to being locally constant
and hypercomplete.

To check whether a given sheaf is locally constant or constructible, we can use the
following structure theorem:
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Theorem B.3.5 ([PT22] 5.22). Let X → P be a conically strati�ed space and V a
presentable stable ∞-category (alternatively, let it be compactly generated). Then, for
a sheaf F ∈ Sh(X;V), the following are equivalent:

� F is a constructible hypersheaf

� For all open subsets U ⊆ V ⊆ X such that the induced map SingP (U)→ SingP (V )
is an equivalence, the restriction F (V )→ F (U) is also an equivalence

� For each conical neighborhood Z × C(Y ) in X, any open subsets U ′ ⊆ V ′ ⊆ Z
such that U, V are weakly contractible, and all 0 < ϵ < ϵ′, application ot F to the
inclusions

U × C(Y ) ⊆ V × C(Y )

Z × C<ϵ(Y ) ⊆ Z × C<ϵ′(Y )

yields isomorphisms. Here, C<ϵ(Y ) denotes the open subset of the cone where the
real parameter is < ϵ.

Remark. If X is C0-strati�ed, every sheaf is hypercomplete by A.5.9, so this becomes a
characterization of constructible sheaves.

In the cases of conically smooth strati�ed spaces and topological manifolds, we can give
a more re�ned characterization:

Proposition B.3.6. For (X → P ) a conically smooth strati�ed space, a sheaf F ∈
Sh(X;V) with values in a presentable stable or compactly generated ∞-category is
constructible i� for isotopic basics B ⊆ B′ ⊆ M , by which we mean that the inclusion
map j : B → B′ is sent to an isomorphism under Bsc(M) ∼= Bsc/M → Bsc/M , the image
of j under F is an isomorphism in V as well. In particular, a sheaf on a smooth manifold
is locally constant i� it sends every disk inclusion to an isomorphism.

Proof. We showed in 4.3.6 that a sheaf on X is the same thing as a factorization algebra
in Vop with symmetric monoidal structure induced by the product in V . Note that this
is not a cyclic argument. In other words, a sheaf is a functor Bscop/M → V compatible
with disjoint unions. Now, by the exodromy correspondence B.5.11 and 4.2.1, a sheaf
is constructible i� it factors through Bsc/M → Bsc/M , compare also [AFT14b, 6.1.8].
But using 4.1.10, this is equivalent to saying that it localizes isotopy equivalences of
basics.

Proposition B.3.7. By an analogous proof, a sheaf on a topological manifoldM is locally
constant i� it sends disk inclusions to isomorphisms. We only need V to be presentable
in this case, since the criterion on V in [PT22, 5.17] is satis�ed because M only has a
single stratum.
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B.4. Seifert-van-Kampen

To show the Weiss descent property of strati�ed factorization algebras in section 4.3,
we will need a great generalization of the Seifert-van-Kampen theorem. We �rst remind
the reader of the classical statement:

Theorem B.4.1. (Classical Seifert-van-Kampen) Let (X, x) be a path-connected pointed
topological space, and U, V ⊆ X path-connected such that x ∈ U ∩V , the intersection is
again path-connected, and U ∪V = X. Then the following diagram is a pushout square
in the category of groups:

π1(U ∩ V, x) π1(U, x)

π1(V, x) π1(X, x)
⌟

De�nition B.4.2. Let X be any topological space, Open(X) its poset of open subsets,
and C an arbitrary 1-category. Then a functor U : C → Open(X) is called a Seifert-van-
Kampen cover, or shortly SFK cover, if for any x ∈ X, the category Cx, which is the full
subcategory on C ∈ C with x ∈ U(C), has weakly contractible nerve as in A.8.4. Put
in di�erent words, this means that the geometric realization of its nerve |N•(Cx)| is a
contractible CW-complex.

Theorem B.4.3. (Generalized Seifert-van-Kampen, [HA, A.3.1]) If, in the above notation,
U : C → Open(X) is a SFK cover, then in the∞-category of spaces, the following holds:

Sing(X) ∼= colim
C∈C

Sing(U(C)) (B.9)

Proof of B.4.1 using B.4.3. To recover the classical statement from the above general-
ization, we �st claim that the diagram U ← U ∩ V → V in Open(X) is a SFK cover,
parametrized by the "walking pushout" category

C = (∗ ← ∗ → ∗) . (B.10)

For any x ∈ X\(U ∩ V ), this is clear since N•(Cx) = ∆0. If x ∈ U ∩ V , then Cx = C, but
the geometric realization of N•(C) consists of two glued intervals, and is thus contractible.
Therefore, we know that Sing(X) = Sing(U)×Sing(U∩V ) Sing(V ) in S.

We can now apply the fundamental groupoid functor π1 = h on both sides (take the
homotopy category); it is the left adjoint ∞-functor of the inclusion of 1-groupoids into
∞-groupoids, so it preserves homotopy colimits and we obtain a groupoid-version of
SFK. But all involved spaces are path-connected, so we can replace the fundamental
groupoids by the classifying groupoids of the fundamental groups - this is clearly a
co�brant replacement of our diagram, and therefore both a homotopy pushout and an
ordinary pushout square.

http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.3.1
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Remark. For a more precise and general proof without model category theory, consult
[KER, Subsection 012K].

Theorem B.4.4. (Generalized Seifert-van-Kampen for strati�ed spaces, [HA, A.7.1])
Let (X → P ) be a conically strati�ed space, and U : C → Open(X) a SFK cover. Then,
in the ∞-category Cat∞,

SingP (X) ∼= colim
C∈C

SingP (U(C)) (B.11)

B.5. Monodromy and Exodromy

Many central statements across numerous di�erent areas of mathematics follow a com-
mon pattern; they are sometimes called Riemann-Hilbert correspondences or Galois
correspondences (although the scope of these terms varies a lot between authors). The
idea is that they should indicate a correspondence between some sort of sheaves or �-
brations on one side, and their transport representation along paths on the other side.
Let us start with a very physically relevant example.

B.5.1. Holonomy

Let M be a smooth manifold and G a Lie group.

De�nition B.5.1. The path groupoid P1(M) of M consists of objects being points in
M , and morphisms being smooth paths in M that have vanishing derivatives to all
orders at their end points (so that their concatenation is again smooth), modulo smooth
homotopies covering a vanishing area. It can be re�ned to a smooth groupoid, i.e. a
1-stack on the site of smooth manifolds.

De�nition B.5.2. The delooping BG of G, i.e. the one-object groupoid with the under-
lying group G as morphism space, can similarly be re�ned to a smooth groupoid.

Theorem B.5.3 ([BH10, Theorem 1]). Connections on the trivial principal G-bundle on
M (one can also generalize this to general G-bundles) are in 1-to-1-correspondence with
smooth functors

hol : P1(M)→ BG . (B.12)

Let us not spend too much time on the details of this statement (one has to work
over the site of smooth manifolds to capture the smoothness of hol), but focus on the
underlying idea: Every G-connection on M is uniquely determined by its holonomy
along smooth paths. Note that even for homotopic paths, the holonomy action along
them for a particular connection might di�er, so that even for contractible loops in M ,
the holonomy along them might be non-trivial.

https://kerodon.net/tag/012K
http://www.math.ias.edu/~lurie/papers/HA.pdf#theorem.A.7.1
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B.5.2. Monodromy

We can restrict to a subclass of connections whose holonomy action is homotopy invari-
ant, this are precisely the �at connections:

Theorem B.5.4. For FlatG(M) the groupoid with objects principal G-bundles on M
equipped with a �at connection, and morphisms of principal bundles (always isomor-
phisms) that preserve the connection as morphisms, there is an equivalence of categories

FlatG(M) ≃ Fun(π≤1(M),BG) (B.13)

where BG is now an ordinary category. We can bring this into contact with above
statement about holonomies by only looking at those hol : P1(M) → BG that send
homotopic paths to the same element of G.

Compare Proposition 1.4.1. We say that a �at connection is uniquely determined by its
monodromy representation, i.e. by the action of parallel transport along every homotopy
class of loops. In fact, we do not even need to be in the smooth setting for such a theorem
to hold; it is much more fundamental. Let us recall the following result from covering
theory:

Theorem B.5.5. Let X be a locally path-connected, semi-locally simply connected, path
connected topological space and denote by Cov(X) the category of coverings on it and
deck transformations, by Shlc(X) the category of locally constant 1-sheaves of sets on
X (also called local systems), and by π1(X) -Set the category of sets with an action of
the fundamental group. Then, the following correspondence holds:

Cov(X) ≃ Shlc(X) ≃ π1(X) -Set ≃ Fun(π≤1(X), Set) (B.14)

For X not path-connected, the category π(X) -Set is not equivalent to the rest since it
depends on a choice of base point, but apart from that the result still holds. Also, we
can replace the category of sets with any presentable 1-category.

Proof Sketch. The �rst equivalence is induced by constructing the éspace étalé of a
locally constant sheaf, which is always a covering, and inversely taking the sheaf of
sections of a covering. The last equivalence is also easy to understand, since for X
path-connected, the groupoid π≤1(X) is also connected. It is therefore equivalent to the
one-object category associated to the group π1(X), and functors from it into Set are
speci�ed by the image of this object, together with an induced π1(X)-action.

Finally, we explain how to associate a monodromy representation m : π≤1(X)→ Set to
any locally constant sheaf F ; the converse uses the existence of a universal covering. To
each point x ∈ X, we associate the stalk m(x) := Fx; so for each path γ : [0, 1] → X
from x to a point y ∈ X, we need to �nd a transport map m(γ) : Fx → Fy that is
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compatible with composition and homotopy invariant. We will construct m(γ)(sx) for a
�xed sx ∈ Fx.

Choose connected open subsets (Ui) in X that cover γ([0, 1]) such that F |Ui
is a constant

sheaf for each i ∈ I. Since [0, 1] is compact, we can reduce to a �nite number U0, . . . , UN

of them such that x ∈ U0 and y ∈ UN , see the picture. Note that F |Ui
is even a constant

presheaf since Ui is connected, so we can canonically identify all stalks in Ui. This allows
us to iteratively transport sx through all of the �nitely many Ui until we reach UN and
a germ m(γ)(sy) ∈ Fy.

Figure B.1.: Parallel transport from x to y by covering the path with small open sets

x y

A similar result also holds in the ∞-setting:

Theorem B.5.6 ([HA, A.4.19]). Let X be a topological space that is locally of singular
shape (this is a di�cult property, but topological manifolds and CW complexes are
examples). Then,

Sh lc(X) = Fun(Sing(X),S) . (B.15)

More generally, if V is a presentable ∞-category, then Sh lc(X;V) ≃ Fun(Sing(X),V).

Remark. One can generalize this to spaces X that are locally weakly contractible, if one
instead talks about locally constant hypersheaves. We discuss this in B.5.11 below.

Remark. Since every Kan complex is the homotopy colimit of its points, we can rewrite
this as

Sh lc(X) = Fun(colim
Sing(X)

∗,S) ≃ lim
Sing(X)

S . (B.16)

http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.4.19
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This can be interpreted as saying that the category Set acts as a classifying space for
covering maps, and the ∞-category of spaces S acts as a classifying space for local
∞-systems. Analogous monodromy statements can be found all over mathematics:

Theorem B.5.7. For M a smooth manifold and G a Lie group, the isomorphism
classes of principal bundles are in 1-to-1-correspondence with homotopy classes of maps
[M,BG]. In particular, vector bundles are (via their associated principal bundles) in
correspondence with [M,BO(n)]. Explicitly, the principal bundle associated to a map
f : M → BG is obtained by pulling back the universal principal bundle EG → BG
along f .

Theorem B.5.8 ([Lur11, Lecture 21]). Let R be an associative ring spectrum (an E1-
algebra in Sp), X a topological space, and LModR the stable ∞-category of R-module
spectra. Then,

Sh lc(X,LModR) ≃ LModR∧ΩX . (B.17)

In particular, if R = HR0 is the Eilenberg-MacLane spectrum of an ordinary ring R0, this
allows us to obtain global invariants from sheaves with values in its derived ∞-category
D(R0) ≃ LModHR0 , for example the L-groups Lq(R0[π1(X)]) that are important in
surgery theory.

Theorem B.5.9 (Fundamental Theorem of Galois Theory, Variation). Let k be a �eld
with separable closure ksep, and Gal(ksep|k) = πét(k) its absolute Galois group which
agrees with its étale fundamental group. Then, there is an equivalence of categories

SAlgopk ≃ πét(k) -Set (B.18)

between separable k-algebras and discrete actions of the absolute Galois group. Finite-
dimensional algebras correspond to actions on �nite sets.

The Riemann-Hilbert-Correspondence between perverse sheaves and regular holonomic
D-modules, and variations of it, are also of this type. More examples related to derived
stacks, including a topos-theoretic description of how such situations arise, can be found
in 1.4. In particular, using the notation there, let us state the

Theorem B.5.10 (Categorical Geometric Langlands, Best Hope Conjecture [Yooa]).
For G a reductive algebraic group with Langlands dual group Ǧ, and C a smooth
projective curve, the derived category of D-modules on the moduli space BunG(C) =
Map(C,BG) is equivalent to the derived category of quasicoherent sheaves on the moduli
space of Ǧ-local systems over C:

D(BunG(C)) ≃ QCoh(FlatǦ(C)) (B.19)



B.5 Monodromy and Exodromy 191

This statement is provably wrong, but modi�cations of it are a central object of study
in the Langlands Program. In particular, the covariant phase space methods we develop
in the �rst chapter are useful for this purpose, see [EY15].

As a �nal example, let us point out that the Grothendieck construction A.2.12 can be
put in a form resembling such a correspondence (in fact, its proof relies in de�ning a
notion of parallel transport in ∞-categories). Recall from A.2.13 that for C a small
∞-category,

RFib(C) ≃ Fun(Cop,S) (B.20)

where just as for classifying spaces, the right �bration corresponding classi�ed by a given
monodromy representation f : C → S is constructed via pulling back the universal right
�bration S∗ → S along f . Similarly,

Cart(C) ≃ Fun(Cop, Cat∞) (B.21)

is induced by pulling back the universal coCartesian �bration Cat∞,obj → Cat∞ along a
functor Cop → Cat∞.

B.5.3. Exodromy

Our next goal is to generalize the monodromy correspondence B.5.6 to constructible
sheaves on strati�ed spaces. Since the abstract homotopy type of a strati�ed space
is described by its exit-path category, which is (on conically strati�ed spaces) an ∞-
category and not a Kan complex like Sing(X), we expect that there is some directionality
involved in the notion of parallel transport that classi�es a constructible sheaf. In the
classical setting, remember how the monodromy correspondence between locally constant
sheaves and representations of the fundamental groupoid was proven by using the local
constancy to transport germs along paths inside small open subsets.

Now, suppose we are given an exit path γ : [0, 1] → X such that x := γ(0) ∈ X1 and
γ((0, 1]) ⊆ X2, as well as a constructible 1-sheaf F ∈ Shcbl(X) and a germ s ∈ Fx.
By de�nition of the stalk, there is a small open neighborhood U0 around y such that s
stems from a section of F (U0), meaning that we can parallel transport s from y to any
point in this neighborhood, in particular to some γ(ϵ) with ϵ > 0. From here on, we can
work with F |X2 which is locally constant and parallel transport further until we reach
γ(1) =: y, as indicated by the blue open sets in the picture below.

If our path however starts at y and ends in the lower stratum X1 at z, we might run into
a problem as shown by the red sets. Since we can only parallel transport a germ inside
of open sets where the respective sheaf is constant, we might never reach X1 as there
does not have to be an open neighborhood around z where F |X≤2

is constant. We realize
that constructible sheaves can only be transported along exit paths, an idea leading us
to the exodromy correspondence:
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Figure B.2.: Parallel transport is only possible from lower to higher strata

y

x

z

X

X1

2

Theorem B.5.11 (Topological Exodromy, [HA, A.9.3] and [PT22]).
Let (X → P ) be a paracompact conically strati�ed space that is locally of singular
shape, where P satis�es the ascending chain condition. Also, let V be either a presentable
stable, or a compactly generated ∞-category. Then,

Shcbl(X;V) ≃ Fun(SingP (X),V) . (B.22)

More generally, if X is a conically strati�ed space with locally weakly contractible strata
and P arbitrary, a similar result holds for constructible hypersheaves:

Shhypcbl(X;V) ≃ Fun(SingP (X),V) (B.23)

Here, a topological space is called locally weakly contractible if every point possesses
an open neighborhood U with trivial homotopy groups (in other words, Sing(U) is
contractible).

Remark. The term exodromy stems from applications of this concept to study étale
sheaves in algebraic geometry, see [BGH18]. However, the original (topological) state-
ment for ordinary constructible sheaves is due to unpublished work by MacPherson.

Remark. We may use A.9.3 and A.9.4 to rewrite this in analogy with B.16 as

Shcbl(X;V) ≃ Fun(laxcolim
SingP (X)

∆0,V) ≃ laxlim
SingP (X)

V . (B.24)

In section 2.5, we will add to the terms holonomy, monodromy and exodromy another
concept that could be calledmultidromy, which captures the parallel transport properties
of locally constant (or constructible, by 5.1.4) factorization algebras.

http://www.math.ias.edu/~lurie/papers/HA.pdf#atheorem.A.9.3
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