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Abstract

In surgery theory, the obstruction to �nding a manifold that is h-cobordant to a given
Poincaré complex is an element of the quadratic L-group of locally constant sheaves
Lq
n(Z[π1X]), specifying when global Poincaré duality on this complex can be lifted to a

local duality. In the search for a similar statement for strati�ed spaces, a logical pro-
gression would be to look for the obstruction in an L-group of constructible sheaves.
Motivated by this thought, the goal of this thesis is to de�ne L-groups of several vari-
ations of sheaves, built from Verdier self-dual sheaves in the respective class modulo
algebraic bordism, and develop �ber sequences involving the corresponding L-spectra
that allow for their computation. This is carried out in the piecewise linear and topolog-
ical setting, on simplicial complexes and regular CW complexes. The results we obtain
exhibit a surprising similarity to statements about Browder-Quinn L-groups that arise
in strati�ed surgery theory.

Zusammenfassung

In der Chirurgietheorie ist die Obstruktion dazu, eine Mannigfaltigkeit zu �nden die
h-kobordant zu einem gegebenen Poincaré-Komplex ist, ein Element der quadratischen
L-Gruppe von lokal konstanten Garben Lq

n(Z[π1X]); informell gesagt misst dieses wann
wir die globale Poincaré-Dualität auf dem Komplex zu einer lokalen Dualität hochheben
können. Wenn wir über Verallgemeinerungen dieser Aussage auf strati�zierte Räume
nachdenken, scheint es naheliegend, diese Obstruktion in einer L-Gruppe von konstru-
ierbaren Garben zu suchen. Davon motiviert ist das Ziel dieser Arbeit die De�nition von
L-Gruppen diverser Klassen von Garben, bestehend aus Äquivalenzklassen von Verdier
selbst-dualen Garben modulo algebraischen Bordismen, und das Entwickeln von Faserse-
quenzen der entsprechenden L-Spektra welche zur Berechnung dieser Gruppen herange-
zogen werden können. Wir vollziehen dies sowohl im topologischen als auch im PL-
Kontext, weiter betrachten wir Simplizialkomplexe und reguläre CW-Komplexe. Unsere
Resultate weisen überraschende Parallelen zu ähnlichen Aussagen über die klassischen
Browder-Quinn L-Gruppen auf, welche in der strati�zierten Chirurgie-Theorie eine Rolle
spielen.
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Introduction

A fundamental invariant of a �nite-dimensional vector space is its dimension. It is
extended to perfect complexes of vector spaces by the Euler characteristic, which takes
values in the integers and is invariant under quasi-isomorphisms. For R-modules over
a commutative ring R, this is further re�ned by the Grothendieck group, as well as
higher K-groups, of the perfect derived category Dperf(R): There is a canonical map
K0(D(R))→ Z sending the class [P ] of a perfect complex P to its Euler characteristic,
however generally the K0-group will contain more information than this.

Just as algebraic K-theory generalizes the dimension of a vector space, the goal of al-
gebraic L-theory (also called hermitian K-theory) is to generalize the signature of a
quadratic form on a �nite-dimensional vector space. This is done by �rst de�ning
quadratic forms on chain complexes, and then dividing the space of chain complexes
equipped with a quadratic form that exhibits them as self-dual by the relation of alge-
braic bordism.

Their main application lies in surgery theory, as was clari�ed in [WR99]. Given a
compact oriented topological n-manifold M , Poincaré duality says that the integration
pairing on C∗(M ;Z) is non-degenerate, exhibiting C∗(M,Z) ≃ Hom(C∗(M,Z),Z)[−n]
as self-dual up to a shift so we obtain a class in Ls(Z). If n = 4k this recovers the
signature of M , but for n = 4k + 1 we obtain the new deRham invariant.

Conceptually, Poincaré duality follows from the fact that the constant sheaf Z on M
is Verdier self-dual up to a shift by n, as ωX = DZ ∼= Z[−n]. It therefore de�nes an
element of the visible symmetric L-group Lvs

n (M,Z) of Verdier self-dual locally constant
sheaves on M , called the visual symmetric signature generalizing the ordinary signature
if M is not simply connected. Stemming from this observation, the visual quadratic
L-group Lq

n(Z[π1M ]) appears in the surgery exact sequence, containing the obstruction
to �nding a manifold homotopy equivalent/ h-cobordant to a given Poincaré complex
X, as it controls when the global Poincaré duality on X lifts to a local duality, i.e. can
be expressed using Verdier duality as just sketched.

If we however generalize from a topological manifold to a topological pseudomanifold
X, which is in particular equipped with a strati�cation, the sheaf Z will generally not
be Verdier self-dual anymore. Given that suitable conditions are satis�ed, namely we
are working with a so-called Intersection Poincaré space, there exists a formidable re-
placement: The intersection homology sheaf ICm(X;Z) of middle perversity m. This
is however not a locally constant, but a constructible sheaf, meaning that it is locally
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constant on strata of X. From this observation, we are lead to the guess that L-groups
of constructible sheaves on X might contain the appropriate surgery obstruction in this
case, or are at least related to it.

The main goal of this thesis is to de�ne symmetric and quadratic versions of such groups,
and understand some of their proporties allowing a partial justi�cation of the above
guess, as well as their calculation in some examples. We will not only do this for topo-
logically strati�ed spaces, but also in the piecewise linear case, for simplicial complexes
and (regular) CW complexes. Our main technical tool is the theory of ∞-categories
and homotopy-coherent algebra, since this allows us to divert many complications from
our speci�c application into this well-developed apparatus. In particular, many results
from classical sheaf theory extend to greater generality in this context. Algebraic L-
theory in the setting of stable∞-categories with quadratic functors (to be more speci�c,
Poincaré∞-categories) was �rst introduced in Lurie's Lecture notes [Lur11], and further
developed in the series of papers [CDH+20a], [CDH+20b], [CDH+21] by nine di�erent
authors.

Apart from these works, our approach was motivated by �ber sequences for Browder-
Quinn L-spectra as discussed in [Bro75], [AP17], [Wei94] that seemed similar to the
sequences we derive in Corollary 6.5.5. During the creation of this work, we learned
about the similar idea of building Witt groups of (constructible) Verdier self-dual sheaves
modulo algebraic bordism in [Woo08] and [SW20] in the classical setting, and our results
can be regarded as a generalization and further re�nement, even though the techniques
we use to obtain them are di�erent. In fact, the possibility of an extension of these
results using the hermitian K-theory of stable ∞-categories was already a remark in
[Vol22, Remark 4.9], which we carry out in this work.

In Chapter 1, we lay the technical groundwork in Higher Category Theory and Higher
Algebra, in particular we introduce ∞-categories, ∞-sheaves, stable ∞-categories and
spectra, (symmetric) monoidal∞-categories, algebra and module objects, and brave new
algebra over ring spectra. Our goal is to make this text as self-contained as possible, the
reader is only assumed to have a good knowledge of algebraic topology and (ordinary)
category theory (including Kan extensions and model categories).

Equipped with these fundamentals, we introduce the algebraic L-theory of Poincaré ∞-
categories in Chapter 2, as far as it is needed for the subsequent chapters. Also, we
discuss the special cases of derived ∞-categories of ordinary rings, and perfect modules
over ring spectra.

Chapter 3 �nishes the theoretical background by de�ning several ways to decompose
stable ∞-categories and Poincaré ∞-categories. This will later form the categorical
counterpart of decomposing a space into strata.

We begin with the actual applications in 4, constructing Poincaré∞-categories of sheaves
on simplicial complexes and piecewise linear spaces. This has the technical advantage
of being fairly combinatorial, and the results are better behaved than in the topological
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world. We generalize Lurie's work by allowing for a strati�cation on our spaces, and show
how the L-spectra of constructible sheaves can be iteratively decomposed into strata.

Things become more complicated in the topological case, so we �rst discuss the case
without a strati�cation in 5. This involves de�ning Verdier duality and the six-functor
formalism for ∞-sheaves, and a study of locally constant sheaves and their monodromy
representations.

Finally, Chapter 6 extends our results on strati�ed PL spaces to the topological setting; it
requires the introduction of a good deal of strati�ed homotopy theory and the exodromy
correspondence. We �nish with a conclusion comparing the di�erent settings.

What is new?

A large part of this text consists of introductions to the overwhelming amount of back-
ground material we need as well as to other expositions, so new developments are mostly
relegated to the later sections 3.4, 3.5, 4.5, 4.6, 5.4, 5.5, 6.4, 6.5 and 6.6 which in turn
mostly consist of new results, unless otherwise speci�ed. Apart from these chapters, we
also want to highlight

� A version of the classical 9-Lemma for (split) (Poincaré-)Verdier sequences 3.3.8,

� A biduality statement for Verdier duality on hypersheaves with perfect stalks and
costalks 5.2.12.

Finally, many of the other proofs we give are optimized to our setting, worked out
side-remarks from Lurie's notes, or classical proofs that we adapted the ∞-setting.

Notation and Conventions

� We denote the natural numbers including zero by N0, and excluding zero by N+

to avoid confusion.

� A topological space is locally compact if any open neighborhood of any point con-
tains a compact neighborhood, i.e. we are using the strong version of this notion.

� CW complexes are always locally �nite.

� Unless stated otherwise, we use cohomological grading for chain complexes. The
grading increases from left to right, and the shift acts as C[1]−1 = C0.

� We work with Grothendieck pretopologies instead of Grothendieck topologies.

� In an adjunction, the upper arrow is always the left adjoint.
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� We denote Verdier duals of functors by a shriek !, exceptional right adjoints by a
minus and exceptional left adjoints by a plus. This distinction from the classical
notation using a ! for all of them is necessary since we will have to work with
Verdier duals of exceptional adjoints like f+!, and even further adjoints that we
denote in the following sequence:

· · · ⊣ f++ ⊣ f+ ⊣ f+ ⊣ f ∗ ⊣ f∗ ⊣ f− ⊣ f− ⊣ f−− ⊣ . . .

� Most of the time, we ignore size issues for ordinary and∞-categories; for the situa-
tions where they are important we �x a small, a large and a very large Grothendieck
universe.

� The term "∞-categories" always refers to (∞, 1)-categories; and "ordinary cate-
gories" refers to 1-categories. We generally do not equip categorical constructions
with an ∞-symbol in front of them, since we almost exclusively work in the ∞-
setting and want to avoid cluttered notation. The reader is safe to assume we are
referring to these higher notions, unless explicitly stated otherwise.

� Our model of choice for∞-categories are quasi-categories, as developed in [Lur09a].
In particular, higher categories are always weak, not strict.

� An∞-category is called (co)complete if it admits small (co)limits, and bicomplete
if it admits both. We often suppress the "small" in this statement, but it is always
implicitly assumed.

� A functor is left exact if it preserves �nite limits, and right exact if it preserves
�nite colimits. Similarly, precomposing with left co�nal maps leaves limits and
precomposing with right co�nal maps leaves colimits invariant.

� We use the word "essential" if a speci�c property should be completed to a non-evil
notion, for example the essential image of a functor F : C → D are those D ∈ D

that are isomorphic to an object in the image. In 3, we often keep this implicit to
not clutter notion, see the remarks there.

� By a non-full subcategory of an ∞-category, we always mean a subcategory that
is spanned by a subset of objects and morphisms, but still contains all of the n-
morphisms between those for n ≥ 2. We never leave out those higher morphisms.

� We usually denote (symmetric) monoidal ∞-categories as a pair (V,⊗) of an ∞-
category and a product operation, even though more data are actually involved:
The associated functor Fin∗ → Cat∞ is usually denoted by v, and the classifying
coCartesian �bration by V⊗ → Fin∗.
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1 Higher Category Theory

In this chapter, we develop the background on ∞-categories that is needed for our
further discussion; in particular stable ∞-categories, spectra (equipped with homotopy
coherent algebraic structure) and higher sheaf theory. We mostly follow [Lur18a] and
[Lur17], while describing the structures of interest in a way that keeps technicalities and
amount of background material as low as possible.

1.1 ∞-categories

We assume the reader is familiar with basic category theory (e.g. limits, adjunctions,
slice categories), enriched categories and Kan extensions. Let us still, for comparison,
repeat the de�nition of an ordinary category:

De�nition 1.1.1. A (small) category C consist of

� A set of objects,

� For any two objects X, Y ∈ C a set HomC(X, Y ) of morphisms between X and Y ,

� For all X, Y, Z ∈ C an associative composition map

◦ : HomC(Y, Z)× HomC(X, Y )→ HomC(X,Z) , (1.1)

� For any X ∈ C an identity morphism idX ∈ HomC(X,X) that does not change
morphisms under composition.

Remark. Being small refers to the fact that objects and morphisms are sets (in a �xed
universe), we will also encounter many cases where this is not the case. Still, let us avoid
set-theoretic problems unless they are actually important.

De�nition 1.1.2. A category if called a groupoid if every morphism f : C → D in it is
invertible, i.e. there exists a g : D → C such that f ◦ g = idD and g ◦ f = idC .

Example 1.1.3. � Examples of categories can be found all over mathematics, e.g.
the category Set of sets and maps between them, the category Top of topological
spaces and continuous maps, the category Ab of abelian groups and homomor-
phisms or the category Cat of categories and functors.

1



� There are also important examples of groupoids: For each group G, we can con-
struct a groupoid BG with one object ∗ and HomBG(∗, ∗) = G, where composition
is given by the group operation and inverses exist because G has inverses.

� For X a topological space, we may also introduce the fundamental groupoid π≤1X
with objects the points ofX, and morphisms the homotopy classes of paths between
the respective points. Composition is given by concatenation of paths, and inverses
exist since paths can be followed in the inverse direction.

Some of these examples seem to possess further information that we were not able to
capture:

� Given two functors F,G : C → D, the category Cat allows for a space of nat-
ural transformations Nat(F,G). In other words, there are morphisms between
morphisms, and these can also be composed.

� It is a bit strange that π≤1X contains a large amount of objects, uncountably many
for almost all manifolds; but the morphisms only consist of homotopy classes of
paths, instead of actual paths. Why is that? Note that concatenation of paths is,
in itself, not associative, but only so up to a reparametrization (i.e. a homotopy).
If we want to retain information about individual paths, we therefore need to add
information about homotopies into the mix.

Both of these problems can be resolved by 2-categories, also called bicategories. They
should consist of a set of objects, together with a set of morphisms between any two
objects and a set of 2-morphisms between any two morphisms that have a common
source and target. Also, they feature composition operations for morphisms and 2-
morphisms, as well as associativity constraints and identity (2-)morphisms. Composi-
tion of 1-morphisms should only be associative up to an invertible 2-morphisms (the
associator), and identity 1-morphisms should only act as identities up to invertible 2-
morphisms as well; we see this in the second example since concatenation of paths is
not strictly associative. We therefore always speak about weak 2-categories, instead of
strict 2-categories where associativity and identity conditions hold on the nose. Finally,
the invertible 2-morphisms in the above de�nition should be considered as extra data
in a 2-category, and they must themselves satisfy higher coherence relations, like the
pentagon identity (see [Lur18a, Tag 007Q] for a precise de�nition).

� The (strict) 2-category CatCatCat consists of (small) categories as objects, functors as
1-morphisms and natural transformations as 2-morphisms.

� The (weak) 2-category π≤2X of a topological space X consists of points of X
as objects, paths in X as morphisms, and homotopy classes of homotopies as 2-
morphisms (we need to think about homotopy classes again to satisfy the strict
associativity for 2-morphisms). This is even a 2-groupoid, since morphisms and
2-morphisms are invertible.

2
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But now, the second example su�ers from a similar issue concerning homotopy classes as
before. This points us toward a straightforward idea: Why do we not de�ne 3-categories,
4-categories etc., as well as fundamental n-groupoids π≤3X, π≤4X, . . . consisting of ob-
jects, morphisms, 2-morphisms, 3-morphisms and so on? The reasons why this is not a
priori a good idea:

� We need to add composition operations for each type of morphism, that can inter-
act with each other (horizontal composition, whiskering) and satisfy associativity
and identity constraints up to higher isomorphisms � that also need to be part of
our data! Also, these higher isomorphisms must satisfy their own coherence rela-
tions up to even higher isomorphisms, which are subject to even higher coherence
relations and so on. Even the de�nition of a (weak) 3-category is so complicated
that it is extremely hard to work with � of course, things are a lot simpler for strict
n-categories.

� Even if we could de�ne an n-category (even n-groupoid) π≤nX for each n ∈ N,
this still would not resolve our problem since the n-morphisms are still given by
homotopy classes of maps.

Surprisingly, it is possible to resolve both issues at once by �guratively going two steps
forward and one step back: Things surprisingly become a lot simpler when we do not
look at n-categories, but at n-groupoids, where m-morphisms for all 1 ≤ m ≤ n are
invertible. Letting n go towards∞, there should be for each topological space X an∞-
groupoid π≤∞X that knows about points, paths, homotopies, homotopies of homotopies
etc. in X. Since homotopies from the constant path to itself are just embedding of
S2 into X, and similarly for the other levels, this means that π≤∞X knows about all
homotopy groups and hence, at least if X is a CW complex (by Whitehead), the full
homotopy type of X. Thus, ∞-groupoids, which contain n-groupoids as special cases,
are intimately related to (CW) topology and homotopy theory � but their de�nition
should still be "algebraic", which can be achieved by working with simplicial complexes
as models. A bit of ordinary category theory is necessary to understand it:

De�nition 1.1.4. We de�ne the presheaf category of a given small category C as
PSh(C) := Fun(Cop, Set), note that it is never small unless C = ∅. There is always
a fully faithful, limit-preserving functor h : C → PSh(C), the Yoneda embedding, which
sends C 7→ HomC(−, C).

Theorem 1.1.5 (coYoneda Lemma). For C a (small) category, any presheaf F ∈ PSh(C)
may be written as a colimit of representable ones (i.e. those that lie in the image of the
Yoneda embedding):

∀C ′ ∈ C : F (C ′) = colim
C∈C/F

HomC(C
′, C) =

� C∈C
HomC(C

′, C)× F (C) (1.2)

3



Remark. C/F denotes the generalized slice category (also called comma category)
C ×PSh(C) PSh(C)/F , which by the Yoneda lemma agrees with the category of elements�
F (i.e. the category of pairs (C, a) with C ∈ C and a ∈ F (C)). The latter coend ex-

pression is also called the Ninja Yoneda Lemma [Lor15], it tells us that the Hom-functor
acts as a delta distribution in the coend. We will not use it further, but it is helpful in
the proof.

Proof. We start by recalling the usual Yoneda Lemma:

F (C ′) = Nat(HomC(−, C ′), F ) (1.3)

For G ∈ PSh(C) any other presheaf, above colimit is characterized by

Nat(colim
C∈C/F

HomC(−, C), G) ∼= lim
C∈C/F

Nat(HomC(−, C), G) = lim
C∈

�
F
G(C) (1.4)

As the last limit is taken in Set, we may describe it as the set of families
(bC,a ∈ G(C))C∈C,a∈F (C) such that for any morphism f : C → C ′ in C, we have the
compatibility bF (C′),F (f)(a) = G(f)(bC,a). Rewriting this, we see that ηC : F (C)→ G(C)
sending a 7→ bC,a assemble into a natural transformation F ⇒ G. In other words, the
limit agrees with Nat(F,G), as claimed.

Technical Remark. While this was quite cumbersome, proving the coend expression is
a lot easier (and the colimit expression can ultimately be derived from it, using how
weighted colimits/ Kan extensions can be written as coends). Let S ∈ Set, then:

HomSet

(� C∈C
HomC(C

′, C)× F (C), S

)
∼=

�
C∈C

HomSet (HomC(C
′, C)× F (C), S) ∼=

∼=
�
C∈C

HomSet (HomC(C
′, C),HomSet(F (C), S)) ∼=

∼= Nat (HomC(C
′,−),HomSet(F (−), S)) ∼= HomSet(F (C ′), S)

Corollary 1.1.6. Let C,D be small categories, and let D contain all small colimits.
Then, precomposing with the Yoneda embedding h induces an isomorphism

Funcolim(PSh(C),D) ∼= Fun(C,D) , (1.5)

where Funcolim denotes the colimit-preserving functors and the inverse is given by Yoneda
extension, i.e. Left Kan Extension Lanh. In other words, any colimit-preserving functor
on the presheaf-category of C is determined by its action on C, which seems clear since
we have shown that C generates PSh(C) under colimits.

Intuitively, we should think of C as a category of model objects, and of PSh(C) as the
category of objects that can possibly be modeled, or tested, by objects in C. The Yoneda
extension allows us to de�ne a functor on the simple models, and immediately extend
it to this much larger category. After this preparation, let us introduce the most-used
theorem in this chapter, which tells us that the extended functor we obtain always
possesses a right adjoint:
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Theorem 1.1.7 (Nerve-Realization Paradigm). Let r : C→ D be a functor, C be small,
and D admit all (small) colimits. This functor induces an adjunction

PSh(C) D
|−|

N

where the Yoneda extension | − | := Lanh r is called the associated realization functor,
and N(D) := HomD(r(−), D) the associated nerve. In fact, any adjunction containing
a presheaf category arises in this way.

Proof. The left Kan extension exists because D has all colimits, we show that | − | ⊣ N .
For D ∈ D, F ∈ PSh(C), we must construct a natural isomorphism

HomD(Lanh r(F ), D) ∼= Nat(F,HomD(r(−), D)) . (1.6)

Both sides send colimits in the argument F to limits, and by the coYoneda lemma above
the presheaf F is a colimit of representable presheaves. Without loss of generality, we
may therefore assume that F = HomC(−, C) is representable. But then

HomD(Lanh r(F ), D) ∼= HomD(r(C), D) ∼= Nat(Hom(−, C),HomD(r(−), D)) , (1.7)

where we use 1.1.6 in the �rst equality (the universal property of presheaf category and
Yoneda extension), and the Yoneda lemma in the second.

Now, let us apply this to construct models for ∞-groupoids and ∞-categories:

De�nition 1.1.8. The simplex category ∆ consists of the nonempty �nite totally or-
dered sets [n] = {0 < 1 < 2 < · · · < n}, for n ∈ N0, as objects; and order-preserving
maps as morphisms.

De�nition 1.1.9. A simplicial set is a functor X : ∆op → Set. Let us write sSet :=
PSh(∆) for their category. We denoteXn := X([n]), and the Yoneda embedding h([n]) =
Hom∆(−, [n]) =: ∆n.

By the coYoneda-Lemma, elements of sSet are colimits of representable presheaves ∆n,
and the presheaf category is in some sense freely generated by such colimits. Morphisms
between the ∆n are, since the Yoneda embedding is fully faithful, the same thing as
morphisms in ∆, i.e. order-preserving maps. These can be written as compositions of
face maps that leave out one number, like [1] → [2] via 0 7→ 0, 1 7→ 2; and degeneracy
maps that double one number, like [2]→ [1] via 0 7→ 0, 1 7→ 1, 2 7→ 1. Geometrically, we
should imagine [n] and ∆n as n-simplices, i.e. n-dimensional triangles/pyramids with
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Figure 1.1: Objects of ∆ regarded as topological simplices

vertices labeled by the numbers 0 to n, so that these maps can be identi�ed with face
inclusions, and regarding an n-Simplex as a degenerate (n + 1)-simplex (e.g. regarding
a line as a triangle with an angle of 0°).

Due to the fact that presheaves are free gluings of these representables, we expect that
simplicial sets are abstract gluings of simplices along their faces, in other words a slightly
generalized version of simplicial complexes:

Example 1.1.10. � ∆n for any n ≥ 0 are simplicial sets.

� The boundary ∂∆n is the sub-simplicial set of ∆n that is obtained when erasing
the interior. For example, ∂∆1 : ∆op → Set sends each [n] ∈ ∆ to the order-
preserving maps [n] → [1] that are not surjective � there are precisely two of
those, corresponding to ∂∆1 ∼= ∆0 ⨿∆0.

� The horn Λn
i , for 0 ≤ i ≤ n, is the sub-simplicial set of ∆n that is obtained when

erasing both the interior and the face opposite to the vertex i.

Figure 1.2: Example of a simplicial set

Example 1.1.11. To gain a better understanding for the nerve-realization paradigm,
let us de�ne the barycentric subdivision sd(K) of a simplicial set K. We start by de�ning
a functor rsd : ∆ → sSet sending [n] the the nerve of the partially ordered set P>0([n])
consisting of nonempty subsets of [n] ordered by inclusion. If we imagine [n] as an n-
simplex, rsd([n]) can be imagined as describing its subdivision, as it e.g. contains one
vertex for every non-degenerate simplex of ∆n, which we can imagine as sitting in the
middle of that simplex. Since sSet has all colimits, we obtain an adjunction
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sSet sSet
sd

Ex

where sd acts as above on every simplex in a simplicial set, and glues the result together
in the way the original simplices had been glued together. By de�nition, n-simplices
in Ex(K) are Ex(K)n = HomsSet(sd(∆

n), K), which we may as simplices in K that
are allowed to be folded around corners or edges. One can show that while Ex(K)
is weakly homotopy equivalent (as in 1.2.16) to K, it is more �exible because of this
folding, in particular the in�nite composition Ex∞ is a �brant replacement functor in
the Joyal-model structure as claimed at the end of this section.

Example 1.1.12. Let us de�ne a functor rtop : ∆→ Top sending [n] to the topological
n-Simplex |∆n| := {(x0, . . . , xn) ∈ [0, 1]n+1 |x1 + · · · + xn = 1}, with the action on
morphisms that we geometrically expect. Since Top has all colimits, we may employ the
nerve-realization paradigm to obtain an adjunction

sSet Top
|−|

Sing

where |−| is called geometric realization and Sing(X) = HomTop(|∆•|, X) is the singular
simplicial set of a topological space X.

De�nition 1.1.13. A Kan complex is a simplicial set K that satis�es the horn �ller
property: Any map of simplicial sets Λn

i → K can be �lled, i.e. extended, to a map
∆n → K such that the following diagram commutes:

Λn
i K

∆n

∃

Theorem 1.1.14 (Homotopy hypothesis, [Lur18a, Tag 012Y]). For any topological
spaceX, the singular simplicial set Sing(X) is a Kan complex. The adjunction |−| ⊣ Sing
induces an equivalence of categories between CW-complexes and Kan complexes. In fact,
it even induces a Quillen equivalence between sSet (with the Quillen model structure)
and Top that induces above equivalence on homotopy categories.

Kan complexes are homotopy types!
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This resolves our �rst problem: Kan complexes should be the same thing as∞-groupoids,
if we regard their vertices as objects, edges as morphisms, n-simplices as n-morphisms.
We say that a morphism h in a Kan complex K is a composition of morphisms f, g if
there is a 2-simplex σ ∈ K2 such that, identifying σ with a map ∆2 → K via the Yoneda
lemma, restriction of this map to the boundary component {0 < 2} agrees with h, while
the restrictions to {0 < 1} and {1 < 2} agree with f and g, respectively. We say that σ
witnesses h as a composition g ◦ f .

Such a composition exists for any morphisms f : X → Y and g : Y → Z as can be seen
by �lling up Λ2

1; but since this �lling is not required to be unique, the composition of
morphisms is not uniquely de�ned. However, using higher horn �llers, one can show it
is unique up to a contractible space of choices. Composition of higher morphisms, as
well as associativity, are witnessed by higher horn �llers; and identity n-morphisms are
induced by the degeneracy maps. In particular, by �lling up the other horns Λ2

0 and
Λ2

2 where one edge is degenerate, we see that every morphism in a Kan complex has an
inverse.

We have also solved our problem concerning fundamental ∞-groupoids if we set
π≤∞(X) := Sing(X). Because of the homotopy hypothesis, our wish that this should
know about the entire homotopy type of a CW-complex comes true. But what about
∞-categories?

Example 1.1.15. Let rcat : ∆ → Cat be the functor that sends the partially ordered
set [n] to the corresponding thin category with objects 0, . . . , n. Again, we can apply
the nerve-realization paradigm to obtain an adjunction

sSet Cat
h

N

where hX is called the homotopy category of X. The nerve functor N is fully faithful,
so categories are a special case of simplicial sets; but NC is a Kan complex i� C is a
groupoid.

The problem is that if C is not a groupoid, then the horns Λ2
0 and Λ2

2 will not always
have �llers, since these would require the existence of inverse morphisms (in the case of
degenerate simplices). We therefore must relax the horn �ller condition:

De�nition 1.1.16. A simplicial set X is called quasi-category if it satis�es the weak
horn �ller condition: Any inner horn Λi

n → X with 0 < i < n can be extended to ∆n.

Λn
i K

∆n

∃
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We will interchangeably also use the terms ∞-category or (∞, 1)-category for this con-
struction; the di�erence in terminology is useful to distinguish the explicit simplicial
model we have constructed from the abstract, ontological concept of a higher category
that we tried to motivate in the beginning. In particular, morphisms in an (∞, 1)-
category can be non-invertible, while one can show that all n-vertices in a quasi-category,
for n > 1, are invertible in some sense � this is what the 1 in the name refers to. Clearly,
every Kan complex is a quasi-category; also the nerve of an ordinary category is one
(in fact, ordinary categories are precisely those quasi-categories where the choice of an
inner horn �ller is always unique).

But what about (∞, 2)-categories? To �nd a common generalization of (∞, 1)-categories
and 2-categories, we should as a �st step �nd a fully faithful functor from 2-categories
into simplicial sets, as we did for 1-categories.

De�nition 1.1.17 ([Lur18a, Tag 009T]). The Duskin nerve of a 2-category is de�ned
via the nerve-realization paradigm; applied to the functor r2-cat : ∆ → Cat2, which is
given by composing rcat with the inclusion of categories into 2-categories. It is fully
faithful, and the Duskin nerve of a (2, 1)-category is a quasi-category.

However, the Duskin nerve of a 2-category with non-invertible 2-morphisms can never be
a quasi-category. One can however proceed as above, and de�ne a class of simplicial sets
that contains Duskin nerves to model (∞, 2)-categories. This is a lot more complicated
than for quasi-categories, see [Lur18a, Tag 01W6].

There are also notions for (∞, k)-categories, with k ∈ N0, but these generally follow a
slightly di�erent philosophy in their de�nition � see [Lur09b] for more. Also, there are
currently two di�erent notions of (∞,∞)-categories, via a projective or an inductive
limit in k; and both are still poorly developed. We only need k = 0, 1 in this text.

k \ n −2 −1 0 1 2 . . . ∞
0 point boolean set groupoid 2-groupoid ∞-groupoid
1 " " poset category (2, 1)-category (∞, 1)-category
2 " " " 2-poset 2-category . . . (∞, 2)-category
. . . . . .
∞ " " " " (∞,∞)-category ?

The inclusion functors in vertical and horizontal direction in this chart have adjoint
functors that we will make use of regularly. We already know that the nerve functor
from categories to (∞, 1)-categories, and the Duskin nerve from 2-categories to (∞, 2)-
categories, have left adjoints (the homotopy category and the homotopy 2-category).
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De�nition 1.1.18. Given an (∞, 1)-category C, we can forget all non-invertible 1-
morphisms, obtaining its underlying∞-groupoid C≃. Similarly, given an (∞, 2)-category
CCC, we can forget all non-invertible 2-morphisms, yielding an (∞, 1)-category Pith(CCC)
called its pith. These functors are right adjoint to the respective inclusions.

Left adjoints are harder to construct, but also of interest.

� By localizing (as de�ned in 1.2.3) an ∞-category at all 1-morphisms, one obtains
a Kan complex, a process called Quillen �brant replacement (equivalently one can
apply Kan's Ex∞-functor we de�ned above).

� Similarly, a sort of localization of an (∞, 2)-category at all 2-morphisms is called
Joyal �brant replacement.

In fact, both of these constructions can be applied to arbitrary simplicial sets; they are
�brant replacements in the Quillen and Joyal model structures on sSet, respectively.

1.2 Higher Category Theory

Since ∞-categories and ordinary categories both contain objects and (possibly non-
invertible) morphisms, the only di�erence between them is the existence of invertible
higher morphisms, i.e. homotopies, homotopies of homotopies and so on, that act as co-
herence data for composition, associativity and identity constraints for the 1-morphisms
in an ∞-category. It seems reasonable to assume that, as long as work in a homotopy
coherent manner, most concepts from ordinary category theory should translate to ∞-
categories without much change (similarly, concepts from 2-categories should translate
to (∞, 2)-categories). Let C,D be ∞-categories, then we can de�ne:

De�nition 1.2.1. The ∞-category of functors Fun(C,D) is the internal Hom between
them in sSet. In other words, Fun(C,D)n = HomsSet(C × ∆n,D). Morphisms in this
functor ∞-category are called natural transformations, and invertible morphisms are
called natural isomorphisms.

De�nition 1.2.2. Functors F : C → D and G : D → C de�ne an equivalence of ∞-
categories if their compositions F ◦ G and G ◦ F are both naturally isomorphic to the
respective identity functors.

Proposition 1.2.3. For C and ∞-category and W a set of morphisms in it, there is
another ∞-category C[W−1], called the localization of C at W , equipped with a functor
C → C[W−1] such that for any ∞-category D, precomposing with it induces a fully
faithful functor

Fun(C[W−1],D) ↪→ Fun(C,D) (1.8)

10



with essential image spanned by those functors F : C → D that send each morphism
in W to an isomorphism. By this universal property, C[W−1] is uniquely determined
up to equivalence (unlike for ordinary categories, where it can be made unique up to
isomorphism).

De�nition 1.2.4. For C,D ∈ C, the morphism space

Map(C,D) := {C} ×C Fun(∆
1,C)×C {D} (1.9)

is always a Kan complex. It is homotopy equivalent to the left and right pinched mor-
phism spaces {C} ×C C/D and CC/ ×C {D}.

Warning. For (∞, 2)-categories they are di�erent; one has to work with the left pinched
morphism space (which is an (∞, 1)-category).

Proving the statements we make (e.g. that the functor category is again an∞-category)
uses a lot of simplicial combinatorics that we will not discuss; see [Lur18a] for more. In
particular, we freely use:

� Join and slice constructions for simplicial sets, like C/C above. Note that there are
two simplicial models for those, that are equivalent as ∞-categories.

� The opposite simplicial set Cop.

� Special kinds of morphisms between simplicial sets, for example trivial �brations,
Kan �brations, left and right �brations, Cartesian and coCartesian �brations, and
many more. The last four will be motivated in 1.2.20.

Example 1.2.5.

� If C is the nerve of an ordinary category, then MapC(C,D) is a discrete space.

� For X a topological space and x, y ∈ X, the mapping space MapSing(X)(x, y) is the
space of paths from x to y in X.

We have learned that morphism spaces of ∞-categories are Kan complexes. Are ∞-
categories the same thing as categories enriched over Kan complexes? This can not
literally be true, since enriched categories have strict composition maps, while compo-
sition in an ∞-category is, as we have seen, only de�ned up to a contractible space of
choices. But it is essentially true:

De�nition 1.2.6. Denote by sSet -Cat the ordinary category of sSet-enriched categories,
and by rcube : ∆→ sSet -Cat the functor that sends [n] to a simplicially enriched category
with objects 0, . . . , n and morphisms between i, j ∈ [n] given by

Homrcube([n])
(i, j) := N(P ({i, i+ 1 . . . , j}),⊆) ∈ sSet . (1.10)
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Putting this into words, we take the nerve of the ordinary category associated to the
poset of subsets of the set {i, i + 1 . . . , j}, ordered by inclusion. For intuition: This
simplicial set is just a (i− j + 1)-dimensional cube.

Theorem 1.2.7. Applying the nerve-realization paradigm 1.1.7 to rcube yields an ad-
junction

sSet sSet -Cat
Path

Nhc

where Nhc(C)n = Fun(rcube([n]),C) is called the homotopy coherent nerve of the simpli-
cially enriched category C. This is a Quillen equivalence with respect to certain model
structures on both sides, yielding an equivalence of the homotopy categories: Quasi-
categories are the same thing as Kan-enriched categories!

Remark. Since Kan complexes are the same thing as (good) topological spaces, one
could via a change of enrichment also say that quasi-categories are the same thing as
topologically enriched categories.

Proposition 1.2.8 ([Lur18a, Tag 01YL]). Similarly, if C is a simplicially enriched cate-
gory where all morphism spaces are quasi-categories, then its homotopy coherent nerve is
an (∞, 2)-category. Every (∞, 2)-category can be obtained this way up to equivalence of
(∞, 2)-categories. However, one can not proceed like this to obtain all (∞, 3)-categories.

Proposition 1.2.9 ([Lur18a, Tag 01LG]). For C a category enriched over quasi-
categories and X, Y ∈ C, there is an equivalence of the internal Hom with the left
pinched mapping spaces in the (∞, 2)-category Nhc(C):

HomC(X, Y ) ≃ HomL
Nhc(C)

(X, Y ) ≃ HomR
Nhc(C)

(X, Y )op (1.11)

In particular, if C is even enriched over Kan complexes, this is a homotopy equivalence

HomC(X, Y ) ≃ MapNhc(C)
(X, Y ) . (1.12)

Example 1.2.10.

� Let Kan be the Kan-enriched category with objects Kan complexes, and mor-
phisms spaces HomKan(K,L) := Fun(K,L), which is indeed a Kan complex. The
homotopy coherent nerve S := Nhc Kan is the ∞-category of spaces. Its rôle in
higher category theory is the same as the rôle of Set in ordinary category theory;
one might argue it is the most important ∞-category.

� S∗ := S/∆0 is the ∞-category of pointed spaces. Equivalently, it is the homotopy
coherent nerve of the Kan-enriched slice category Kan/∆0 .
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� Denote by Sfin the full subcategory of S on Kan complexes with �nitely many
non-degenerate simplices, and similarly Sfin

∗ .

� Let QC be the category enriched over quasi-categories, where objects are quasi-
categories and HomQC(C,D) := Fun(C,D). The homotopy coherent nerve CatCatCat∞ :=
Nhc(QC) is the (∞, 2)-category of all ∞-categories.

� If we denote by QC≃ the Kan-enriched category with objects quasi-categories, and
morphisms given by the Kan complexes HomQC≃(C,D) := Fun(C,D)≃, then the
homotopy coherent nerve is Cat∞ := Nhc QC≃ ≃ Pith(CatCatCat∞), the ∞-category of
all ∞-categories.

� The homotopy coherent nerve of the quasi-category-enriched slice category
CatCatCat∞,obj := NhcQC/∆0 is the (∞, 2)-category of lax-pointed ∞-categories. We will
denote its pith ∞-category by Cat∞,obj.

After these very foundational de�nitions, let us introduce some universal constructions
for ∞-categories:

De�nition 1.2.11. Let K ∈ sSet, and p : K → C be a morphism of simplicial sets,
that we interpret as a diagram in the ∞-category C. Denote by K◁ the left cone on K,
formed by adding an initial object to it (i.e. taking the join ∆0 ⋆ K). The limit cone of
this diagram, if it exists, is a morphism p : K◁ → C with p(−∞) := lim(p), that induces
for all C ∈ C a homotopy equivalence

Map(C, lim(p)) ≃ Nat(C, p) (1.13)

where C : K → C it the constant diagram on C. Note how this agrees with the ordinary
limit if C is a 1-category. Oppositely, we can de�ne a colim(p) by extending p to K▷

such that
Map(colim(p), C) ≃ Nat(p, C) . (1.14)

Special cases of this construction yield (as in ordinary category theory) products, co-
products; pullbacks, pushouts; �nal, initial and zero objects; kernels, cokernels. While
coproducts and products can be treated with similar intuition as in ordinary categories,
pullbacks and pushouts behave like homotopy pullbacks and pushouts. For exam-
ple, (co)limits in S are precisely homotopy (co)limits of topological spaces by [Lur09a,
4.2.4.1]; and kernels in the ∞-category chain complexes are mapping cones, see 1.5.4.
To make this distinction clear, kernels are also called �bers in this setting, and cokernels
are called co�bers.

Lemma 1.2.12. Just as every set is a colimit (coproduct, since the indexing category
is discrete) over its elements regarded as one-element sets; every Kan complex K is the
colimit over the functor ∆0 : K → S constant on ∆0.
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Proof. We need to show that the induced mapMapS(K,C)→ Nat(∆0, C) is a homotopy
equivalence for each C ∈ S. We have de�ned S as the homotopy coherent nerve of the
Kan-enriched category Kan of Kan complexes, so the former mapping space is given by
the Kan complex Fun(K,C). On the right,

Nat(∆0, C) ≃ Fun∆0,C(∆
1,Fun(K, S)) ≃ Fun(K,Fun∆0,C(∆

1, S)) ≃ Fun(K,MapS(∆
0, C))

where in the beginning and end we use one of the equivalent de�nitions for the mapping
space, and in the middle identify both sidese as the same full subcategory of Fun(∆1 ×
K, S). We are �nished once we noticeMapS(∆

0, C) = Fun(∆0, C) ≃ C since on simplices
Fun(∆0, C)n = HomsSet(∆

0 ×∆n, C) = Cn by the Yoneda lemma.

We need to be a bit more careful when de�ning co�nal functors and �ltered (co)limits:

De�nition 1.2.13. A morphism of simplicial sets f : L → K is called right co�nal if
for any ∞-category C, every diagram p : K → C and any C ∈ C, precomposing with f
induces a homotopy equivalence of Kan complexes

Nat(p, C) ≃ Nat(p ◦ f, C) , (1.15)

where C denotes the constant functors K → C or L→ C with value C, respectively.

Proposition 1.2.14. In particular, if in the above situation p admits a colimit, then by
de�nition 1.2.11 this is equivalent to MapC(colim p, C) = MapC(colim(p◦f), C). In other
words, right co�nal morphisms are precisely those that preserve (universal properties of)
colimits! Similarly, left co�nal morphisms are those that preserve limits.

Remark. There are many equivalent characterizations of co�nality (see [Lur18a, Tag
02NR]) that are often easier to check than ours, most prominently:

Theorem 1.2.15 (Quillen's Theorem A, [Lur18a, Tag 02NY]).
A morphism of simplicial sets F : C→ D with D an ∞-category is

� left co�nal i�, for all D ∈ D, the �ber C/D := C×D/D is weakly contractible,

� right co�nal i�, for all D ∈ D, the �ber CD/ := C×DD/ is weakly contractible.

De�nition 1.2.16. Here, a simplicial set K is weakly contractible i� the geometric real-
ization |K| is contractible, or equivalently (by the adjunction | − | ⊣ Sing), the space of
maps Hom(K,X) into any Kan complex X is contractible. Similarly, we de�ne weak ho-
motopy equivalences as those maps of simplicial set that become homotopy equivalences
after applying |−|, or Hom(−, X) for any Kan complex. They are the weak equivalences
in the Quillen model structure on sSet.
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De�nition 1.2.17 ([Lur18a, Tag 02PB]). An ∞-category C is called �ltered if for each
simplicial set K, any map K → C can be extended to a map K▷ → C.

Proposition 1.2.18. An ∞-category C is �ltered i� for any simplicial set K, the di-
agonal map C → Fun(K,C) that sends C to the constant functor C : K → C is right
co�nal.

This generalizes �ltered diagrams in ordinary categories; and colimits parametrized by
�ltered simplicial sets have similarly nice properties as �ltered colimits in ordinary cat-
egories.

Using the mapping space construction in a similar way, one can de�ne adjunctions, Kan
extensions, and so on. Almost all the usual formulae for limits and colimits still hold.
Generally, almost all theorems from category theory still hold, like the Yoneda lemma,
colimits commuting with colimits, uniqueness of colimits and adjoints and so on.

There are notions of accessible, presentable (sometimes also called locally presentable),
and compactly generated ∞-categories mimicking the ordinary notions. Intuitively, an
∞-category is accessible i� it is somehow controlled by a small collection of (compact)
objects, even though it is not small itself (e.g. how the ordinary category of R-vector
spaces is the Ind-completion of the category of �nite-dimensional R-vector spaces); it
is presentable i� it is accessible and has all colimits (automatically also all limits), and
compactly generated i� it is accessible and some further size conditions are imposed on
how it is controlled by this small class of objects. For more details, compare 3.2.14 and
the Remark thereafter.

In fact, presentable ∞-categories turn out to be "the same thing" as combinatorial
model categories! Higher category theory therefore trivializes many cumbersome model
category calculations. Another strong appeal are useful representability criteria:

Theorem 1.2.19 (Adjoint Functor Theorem, [Lur09a, 5.4.2.5]). A functor F : C → D

between presentable ∞-categories has

� a right adjoint i� it preserves (small) colimits,

� a left adjoint i� it preserves (small) limits and κ-small �ltered colimits for some
regular cardinal κ.

In fact, the �rst claim only requires D to be essentially locally small.

Finally, let us give a short comment on why higher category is so technically di�cult (and
why loc. cit. is almost 1000 pages long). Giving a functor between two ∞-categories,
and checking that it is indeed a functor, can be extremely di�cult to do explicitly, for
example it is very hard to see why the mapping space construction we gave above is
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functorial in its arguments. However, to even de�ne a Yoneda embedding, see that
limits are functorial and so on, we need to understand this. There is a very elegant,
roundabout way to de�ne the mapping space functor:

Theorem 1.2.20 (Grothendieck construction, [Lur09a, Section 3.2]). For a �xed ∞-
category C, functors F : C → Cat∞ are essentially the same thing as ∞-categories M

equipped with a functor p : M → C that is a so-called coCartesian �bration (we de�ne
those in a moment). More explicitly, the �ber of p over an object C ∈ C is equivalent to
the∞-category F (C), and the action of F on morphisms in C is encoded via a version of
parallel transport that lifts morphisms of C to a certain class of morphisms in M, called
p-coCartesian morphisms. Conversely, one can obtain p from F as the pullback

p : M := Cat∞,obj×Cat∞C
pr2−→ C . (1.16)

Similarly, functors F : Cop → Cat∞ are essentially the same thing as Cartesian �brations
over C, i.e. functors p : M → C such that pop : Mop → Cop is a coCartesian �bration.
To give a precise version of these statements, [GHN15, A.32] shows that there is an
equivalence of ∞-categories

Fun(C,Cat∞) ≃ Cat coCart
∞ /C (1.17)

where Cat coCart
∞ /C is the non-full subcategory of the slice category over C on the coCartesian

�brations, and functors preserving coCartesian morphisms. This equivalence is functorial
in C.

Remark. The total spaceM of the coCartesian �bration associated to a functor C→ Cat∞
is classically also called its category of elements. We could interpret this result as saying
that the category Cat∞ acts as a classifying space for coCartesian �brations. Let us
sketch how those are de�ned; we also recommend [Lur18a, Tag 01J2] for more on the
Grothendieck construction.

De�nition 1.2.21. A map of simplicial sets f : K → L is called an

� inner �bration if for each 0 < i < n

� right �bration if for each 0 < i ≤ n

� left �bration if for each 0 ≤ i < n

� Kan �bration if for each 0 ≤ i ≤ n

with n ∈ N0, any commuting square of the form

Λn
i K

∆n L
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has a horn �ller/ lift as indicated. It is called a trivial Kan �bration if even the inclusion
∂∆n ↪→ ∆n can be �lled in this manner.

Example 1.2.22. For K any simplicial set, the terminal map K → ∆0 is an inner
�bration i� K is an∞-category; it is a left/ right/ Kan �bration i� K is a Kan complex;
and it is a trivial Kan �bration i� K is a contractible Kan complex.

Example 1.2.23. If f : K → L is an inner �bration and L is an ∞-category, then K is
so as well, since the terminal map factors as K → L→ ∆0 and the composition of inner
�brations is still an inner �bration (applying the lifting condition twice).

De�nition 1.2.24. A map of simplicial sets U : M → C is a coCartesian �bration if
it is an inner �bration, and for any vertex X ′ ∈ M and any edge e : U(X ′) → Y in C,
there is a vertex Y ′ ∈ M and a U -coCartesian edge e′ : X ′ → Y ′ such that U(e′) = e.
In other words, any edge in C can be lifted to a U -coCartesian edge in M in covariant
direction.

If we assume that C is an∞-category (andM automatically as well), an edge e′ : X ′ → Y ′

in M is called U -coCartesian i� for each W ′ ∈M, the commuting square

MapM(W
′, X ′) MapM(W

′, Y ′)

MapC(U(W ′), U(X ′)) MapC(U(W ′), U(Y ′))

U

e′◦−

U

U(e′)◦−

is a pullback square in S (not just of simplicial sets).

Remark. Our de�nition of U -coCartesian edges is wrong if C is no∞-category or U is not
an inner �bration (in particular, postcomposition does not make sense in any simplicial
set). It is equivalent to the correct de�nition in our case by [Lur18a, Tag 01TL].

Corollary 1.2.25 (Grothendieck Construction over Spaces). For a �xed∞-category C,
functors C → S are essentially the same thing as left �brations over C, with a similar
explicit description of this correspondence as above. Oppositely, functors Cop → S are
the same thing as right �brations.

Remark. This would be immediate if we could show that a left �bration is precisely
a coCartesian �brations where all �bers are Kan complexes, and similarly for right
�brations. See [Lur18a, Tag 01UM] for this.
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Remark. One can deduce that for an ∞-groupoid K, the ∞-categories Fun(K, S) ≃
S/K are equivalent. This relies on a model categorical argument; given an arbitrary
map of Kan complexes M → K, we can always replace it by a left �bration that is
weakly homotopy equivalent to M . This induces an equivalence between S/K and its
full subcategory spanned by the left �brations, so we can apply 1.2.25. Note that this
argument would break down for K an arbitrary ∞-category, where we would have to
work with this subcategory.

Example 1.2.26. One can show that for C an ∞-category and C ∈ C, the projection
CC/ → C out of the slice category is a left �bration [Lur18a, Tag 018F]. The associated
functor C→ S sends D to the �ber CC/×C{C} ≃ MapC(C,D), so it can be used together
with the analogous observation for the right �bration C/C → C to de�ne the mapping
space functor.

1.3 Sheaves and ∞-Topoi

De�nition 1.3.1. Let C be an ∞-category, then denote by PSh(C) := Fun(Cop, S) its
presheaf category, and by h : C→ PSh(C) the fully faithful Yoneda embedding.

As in ordinary category theory, we often want to restrict our attention to a full subcat-
egory of PSh(C) that contains sheaves, which are presheaves that satisfy descent with
respect to a particular notion of covering.

De�nition 1.3.2. A Grothendieck pretopology τ on C consists of, for every U ∈ C, a set
of coverings Covτ (U) whose elements are families (Ui → U)i∈I with Ui ∈ C, such that
the following hold:

� Given an isomorphism U ′ → U , the one-element family (U ′ → U) is a covering.

� For any morphism V → U , the pullbacks (Ui×U V → V )i exist and form a covering
again.

� If for any i, the family (Uij → Ui)j is a covering, then the composition (Uij → U)ij
is a covering.

Technical Remark. While every Grothendieck topology, as in [Lur09a, 6.2.2.1], is a
Grothendieck pretopology, the latter or usually much smaller. However, every pretopol-
ogy speci�es a unique topology by de�ning the covering sieves as those that contain a
whole covering family, see [Pst18, A.5]. We will therefore work with this simpler notion.

De�nition 1.3.3. An ∞-site Cτ is an ∞-category C equipped with a Grothendieck
pretopology τ . Since covering families are invariant under isomorphisms (combining the
�rst and third axiom), it is enough to specify the pretopology on the homotopy category.
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De�nition 1.3.4. Given a covering (Ui → U), we de�ne its �ech nerve C(Ui → U) ∈
Fun(∆op,PSh(C)) as the simplicial diagram

. . .
⊔

i,j,k h(Ui) ×
h(U)

h(Uj) ×
h(U)

h(Uk)
⊔

i,j h(Ui) ×
h(U)

h(Uj)
⊔

i h(Ui)

which by functoriality of h possesses a canonical morphism to h(U).

De�nition 1.3.5. A sheaf on an ∞-site C is a presheaf F : Cop → S that is local with
respect to these morphisms; that is for every covering (Ui → U),

lim
∆op

MapPSh(C)(C(Ui → U), F )
!
= MapPSh(C)(hU , F ) = F (U) . (1.18)

In other words, we require

F (U) = lim
∆op

( ∏
i F (Ui)

∏
i,j F (Ui ×U Uj) · · ·

)
. (1.19)

Technical Remark. We denote the full subcategory on them by Sh(Cτ ), leaving out the
topology if it is clear. This is equivalent to the de�nition in [Lur09a] by [Pst18, A.8,
A.9].

Theorem 1.3.6 ([Lur09a, 6.2.2.7]). For any ∞-site C, there is a shea��cation func-
tor (−)sh, which can be constructed as a trans�nite composition of a plus construction
(mimicking the classical double-plus-construction) is left adjoint to the canonical inclu-
sion

Sh(C) PSh(C) .
i

(−)sh

This leads to a general axiom for ∞-categories that "look like" categories of sheaves:

De�nition 1.3.7. An ∞-topos X is an ∞-category that can be written as a left exact
accessible localization of a presheaf category. In other words, there must exist a (small)
∞-category C and an adjunction

X PSh(C)
i

L

such that i is fully faithful and preserves κ-�ltered colimits for some regular cardinal κ,
and L preserves �nite limits.
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Technical Remark. The accessibility condition (preserving κ-�ltered colimits) is equiva-
lent to ensuring X is again presentable. It is currently not known whether it is automatic
(as it is in the case of n-topoi).

Remark. This de�nition is extrinsic, since it tells us how to construct ∞-topoi, but not
how to check if a speci�c ∞-category is one. There are also several intrinsic de�nitions,
for example the Giraud-Rezk-Lurie axioms.

Warning. Not every left exact accessible re�ective localization of a presheaf category
arises as sheaves with respect to a Grothendieck category! It is not even known whether
any ∞-topos can be written as sheaves on an ∞-site at all.

Example 1.3.8. Since identity functors are always left exact accessible localizations,
presheaf categories are always ∞-topoi. In particular, S = PSh(∗) is an ∞-topos. Also,
for any ∞-site Cτ , the sheaves Sh(Cτ ) form an ∞-topos using the adjunction 1.3.6.

Example 1.3.9. For X an ∞-topos and C an object in it, the slice topos X/C is again
an ∞-topos.

De�nition 1.3.10. A geometric morphism between ∞-topoi is an adjunction

X Y
f∗

f∗

where f ∗ preserves �nite limits. Let us denote the subcategory of Cat∞ on ∞-topoi and
geometric morphisms by LTop.

Proposition 1.3.11. S is the terminal object of LTop. This means that every∞-topos
X is equipped with an essentially unique adjunction

X Y
Γ∗

Γ*

In particular, for ∗ the terminal object, Γ∗ = MapX(∗,−) and if X = Sh(C) over a∞-site,
Γ∗(K) = (C 7→ K)sh. Also, note that since Γ∗ preserves colimits and every Kan-complex
is the colimit over its points, Γ∗ can be understood via its value on ∆0.

De�nition 1.3.12 ([Pst18, A.10 and A.12]). Given ∞-sites C and D, a morphism of
sites is a functor F : C→ D that sends coverings to coverings.

Further, F has the covering lifting property if for any U ∈ C and (Vi → F (U)) covering
family in D, there is a covering (Uj → U) in C such that for every j one can �nd an i
such that one can factor F (Uj)→ Vi → F (U).
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Proposition 1.3.13 ([Pst18, A.11 and A.13]). For any morphism of sites F : C → D,
precomposition F∗ := − ◦ F preserves sheaves and, together with shea��cation of the
Left Kan Extension along it F ∗ = (−)sh ◦ LanF , induces an adjunction

Sh(D) Sh(D) .
F∗

F ∗

If F has the covering lifting property, then F∗ commutes with shea��cation, in particular
it preserves colimits and admits another left adjoint F− : Sh(C)→ Sh(D).

Let D be an arbitrary ∞-category.

De�nition 1.3.14. A functor F : Cop → D is a D-valued sheaf on C if, for any D ∈ D,
the composition MapD(D,F (−)) : Cop → S is a sheaf on C. We denote the subcategory
on them by Sh(C,D) ⊆ Fun(Cop,D).

Remark. Again, explicitly we impose that for any cover (Ui → U), we have �ech descent:

F (U) = lim
∆op

( ∏
i F (Ui)

∏
i,j F (Ui ×U Uj) · · ·

)
. (1.20)

In particular, this limit should exist in D.

Proposition 1.3.15 ([Lur18b, 1.3.1.7]). If D has all limits, there is an equivalence

Sh(C,D) ≃ Funlim(Sh(C)op,D) , (1.21)

where Funlim denotes the subcategory of Fun on the limit-preserving functors.

This description can be further re�ned when we restrict to the class of presentable ∞-
categories, which generalizes the class of (locally) presentable ordinary categories. To put
it loosely, an ∞-category is presentable if is accessible, that is, generated under colimits
by a small subcategory of compact objects; and it has all colimits (and automatically
all limits).

Theorem 1.3.16 ([Lur17, 4.8.1.17]). For C and D any presentable ∞-categories, one
can de�ne their tensor product C ⊗ D := Funlim(Cop,D) that is again a presentable
∞-category, and a natural functor C×D→ C⊗D such that for any presentable E,

Funcolim(C⊗D,E) ≃ Funcolim,colim(C×D,E) . (1.22)

Here, Funcolim,colim denotes functors that preserve colimits in both variables.
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Remark. Even though it does not seem that way, C⊗D is symmetric in C and D because
of this universal property. Alternatively, a limit-preserving functor from Cop → D is
a colimit-preserving functor C → Dop, which by the Adjoint-Functor-Theorem 1.2.19
possesses an (essentially unique) right adjoint Dop → C automatically preserving limits.

Corollary 1.3.17. For D a presentable ∞-category, Sh(C,D) ≃ Sh(C)⊗D.

Corollary 1.3.18. If D is a presentable (and/ or stable) ∞-category, then Sh(C,D) is
presentable (and/ or stable) as well.

Proof. For D presentable, Sh(C,D) = Sh(C)⊗D is presentable by 1.3.16.

IfD is stable, then Fun(Cop,D) is stable because limits and colimits in a functor category
are computed pointwise, so we need to show that the sheaves form a stable subcategory
in the sense of 1.5.7. This follows since the shea��cation functor is left exact, so that the
category of sheaves is in particular closed under �bers and contains the zero object.

1.4 Sheaves on Topological Spaces

Let us apply this machinery to the probably most interesting case:

De�nition 1.4.1. For X a topological space and D a complete ∞-category, equip the
thin category of open subsets Open(X) with the Grothendieck pretopology τ where
covering families are open coverings. We denote

Sh(X) := Sh(Open(X)τ ) , Sh(X;D) := Sh(Open(X)τ ;D) . (1.23)

Remark. In particular, a functor F : Openop(X) → D is an ∞-sheaf if for any open
cover (Ui ⊆ U),

F (U) = lim
∆op

( ∏
i F (Ui)

∏
i,j F (Ui ∩ Uj) · · ·

)
. (1.24)

There are several di�erent ways to intuitively make sense of this descent condition.
First of all, note the similarity with the �ech complex which also involves comparing
sections at higher intersections of the Ui. One can show that for every ordinary sheaf
F0 ∈ Sh(X;Z), the derived sections RΓ(−, F0) ∈ Sh(X;D(Z)) form an ∞-sheaf; by
1.5.18 we will see that the descent condition in this case is equivalent to the statement
that sheaf cohomology of F0 agrees with the �ech hypercohomology of RΓ(−, F0) on
any cover (which follows from the �ech-to-sheaf-cohomology spectral sequence). In fact,
Sh(X;D(Z)) and the derived category of ordinary sheaves D(Sh(X,Ab)) almost agree
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as discussed in 5.1.9, the only di�erence appears for very "in�nite-dimensional" spaces
and is remedied by the notion of hypercompletion we de�ne shortly.

As a second example, suppose we are given a collection of topological spaces (Xi)i∈I and
open subsets U (i)

j ⊆ Xi for i, j ∈ I, together with homeomorphisms ϕij : U
(i)
j
∼= U

(j)
i such

that ϕjk ◦ ϕij = ϕik on the respective intersections. Then, we can glue the spaces Xi

together along the gluing maps ϕij. Note how this involves triple intersections, unlike the
ordinary sheaf condition which only compares sections on intersections of two open sets
in a covering. A similar descent via triple intersections holds for the functors of points
of stacks in algebraic geometry. Since descent for ∞-sheaves involves intersections of
arbitrary order, they are sometimes called higher stacks.

Proposition 1.4.2. A continuous map of topological spaces f : X → Y induces a
geometric morphism

(f∗ ⊣ f ∗) : Sh(X)→ Sh(Y ) . (1.25)

In particular, for F ∈ Sh(X) and x ∈ X with inclusion x : {x} → X we can de�ne the
stalk x∗F of F at x.

Proof. This follows immediately from 1.3.13, since the inverse image f−1 : Open(Y ) →
Open(X) is a morphism of sites by de�nition of continuity.

An∞-topos X can be understood as an exotic world to do topology in; in particular the
terminal ∞-topos S describes usual topology (of CW complexes), and the topoi Sh(X)
describe (if X is paracompact and Hausdor�) topology relative to X. In particular, one
can de�ne homotopy groups of objects in every ∞-topos. However, not all results from
usual topology still hold � in particular, the theorem of Whitehead can break down:

De�nition 1.4.3. A morphism f : X → Y in an ∞-topos X is called ∞-connected if
it induces an isomorphism on all homotopy groups internal to X (we do not de�ne what
this means).

Proposition 1.4.4 ([Lur17, A.3.9]). A morphism f : F → G in Sh(X) is ∞-connected
i� for any x ∈ X, it induces an isomorphism on stalks x∗f : x∗F

∼=→ x∗G.

Proof Sketch. The ⇒ direction is immediate since the pullback x∗ preserves homotopy
groups and hence ∞-connected morphisms, but in S we can apply the Whitehead theo-
rem. For the⇐ direction, we need to show that f induces isomorphisms on all homotopy
groups πiF → πiG. Those are however ordinary sheaves, so an isomorphism on stalks is
already an isomorphism.
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De�nition 1.4.5. Let X be an ∞-topos, then an object X ∈ X is hypercomplete if it
is local with respect to ∞-connected morphisms, meaning that for any ∞-connected
f : C → D, precomposing with f induces a homotopy equivalence

− ◦ f : MapX(D,X)
≃→ MapX(C,X) . (1.26)

Theorem 1.4.6. The full subcategory on the hypercomplete objects Xhyp is again an
∞-topos, the hypercompletion of X. The inclusion Xhyp ⊆ X is in fact a geometric
morphism, so that any X ∈ X has an associated hypercompletion Xhyp.

The functor (−)hyp is a re�ection on the subcategory of LTop on the hypercomplete
∞-topoi, in the sense that for Y hypercomplete, the spaces of geometric morphisms
MapLTop(Y,X)

∼= MapLTop(Y,X
hyp) agree.

De�nition 1.4.7. For C an∞-site, we call aD-valued sheaf F ∈ Sh(C,D) hypercomplete
if for any D ∈ D, the composition MapD(D,F ) ∈ Sh(C) is hypercomplete. Denote their
full subcategory by Shhyp(C,D).

De�nition 1.4.8. We call hypercomplete D-valued sheaves on X hypersheaves, and
denote their category by Shhyp(X,D)

Proposition 1.4.9. If X is paracompact Hausdor� and of �nite covering dimension,
every sheaf on X is hypercomplete.

Proof. This is very technical and only added for lack of reference. [Lur09a, 7.1.1.1]
assures that we can �nd a basis Ui for the topology of X, such that every Ui is itself
open, paracompact Hausdor� and of �nite covering dimension; therefore [Lur09a, 7.2.3.6]
tells us that Sh(Ui) has �nite homotopy dimension. Since the Yoneda embeddings hUi

∈
Sh(X) generate Sh(X) under colimits and the slice topoi Sh(X)/Ui

≃ Sh(Ui), we even
know that Sh(X) is locally of �nite homotopy dimension. Because of [Lur09a, 7.2.1.12],
every ∞-topos that is locally of �nite homotopy dimension is hypercomplete.

1.5 Stable ∞-categories and Spectra

De�nition 1.5.1. A zero object 0 in an ∞-category C is an object that is both initial
and �nal; in other words for any C ∈ C,

MapC(C, 0) ≃ MapC(0, C) ≃ ∆0 (1.27)

are contractible. Since this is a universal property, a zero object is (if it exists) unique up
to a contractible space of choices. Also, for C,D ∈ C, the composition of the essentially
unique maps C → 0 → D speci�es a zero-morphism in every mapping space of C, so
they become pointed spaces.
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De�nition 1.5.2. If C has a zero object 0, and f : C → D is a morphism in C, then
its �ber fib(f) is the equalizer of f and the zero morphism 0 from C to D (just like the
kernel in ordinary category theory). Similarly, its co�ber cofib(f) is the coequalizer of
f and 0. Sequences of the form

fib(f)→C
f→ D

C
f→D→ cofib(f)

(up to isomorphism) are called �ber sequences and co�ber sequences, respectively.

De�nition 1.5.3. An ∞-category C is called stable if:

� It has a zero object 0,

� Every morphism in C has a �ber and a co�ber,

� Any co�ber sequence is also a �ber sequence.

One can show, using these axioms, that:

� A sequence is a �ber sequence i� it is a co�ber sequences

� All �nite limits and colimits exist in C

� A square is a pushout square i� it is a pullback square

� The loop space functor Ω : C → C sending C 7→ 0 ×C 0 is an equivalence of
categories, with inverse the suspension functor Σ : C 7→ 0⨿C 0.

� The homotopy category hC has a natural Ab-enrichment.

Theorem 1.5.4 ([Lur17, 1.1.2.14]). If C is a stable ∞-category, then the homotopy
category hC is a triangulated category. In particular, (co-)�ber sequences in C become
triangles in hC, co�bers become (functorial) mapping cones and Σ becomes the shift
functor [1].

The upshot: Stable ∞-categories are equipped to take over the rôle of triangulated
categories (and their dg enhancements), just like presentable∞-categories took over the
role of (combinatorial) model categories. This is extremely nice, since their de�nition is
just a homotopy coherent formulation of the axioms of an abelian category, in particular
very simple compared to Verdier's de�nition. Similarly, presentable stable ∞-categories
are one analogon of Grothendieck abelian categories.

Lemma 1.5.5. For f : C → D a morphism in a stable ∞-category C, the �ber and
co�ber fib(f)[1] ∼= cofib(f) agree up to a shift.

Proof. This follows from the commutative diagram
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fib(f) C 0

0 D cofib(f)

f

where all small squares are pushouts or equivalently pullbacks, so the big square is a
pushout as well.

Proposition 1.5.6. For F : C→ D a functor between stable∞-categories, the following
are equivalent:

� F is left exact, i.e. preserves limits parametrized by �nite simplicial sets

� F is right exact, i.e. preserves colimits parametrized by �nite simplicial sets

� F preserves the zero object and (co)�ber sequences

It is then called exact, and we obtain an ∞-category Catex∞ of stable ∞-categories and
exact functors as a (non-full) subcategory of Cat∞.

Proof. It su�ces to show that the last point implies the �rst, since the converse is clear
and the second point follows using a dual argument. By [Lur09a, 4.4.3.2], all �nite limits
are generated by the terminal object, equalizers and products. But equ(f, g) = fib(f−g)
and X ⊕ Y = fib(X

0→ Y [1]) as well as Y [1] = cofib(Y → 0) can all be expressed using
0 and (co)�bers, which F preserves.

Proposition 1.5.7 ([Lur17, 1.1.3.2]). A full subcategory D of a stable ∞-category C

that contains the zero object, and is closed under �bers and co�bers, is itself stable. We
call this a stable subcategory.

Proof. D has a zero object, �bers and co�bers since they can be calculated in C because
their universal properties restrict. For the same reason, �ber or co�ber sequences in D

are precisely �ber or co�ber sequences in C where every object lies in D, so the notions
coincide.

Proposition 1.5.8 ([Lur17, 1.1.3.1]). If C is a stable ∞-category and K a simplicial
set, then the ∞-category Fun(K,C) is also stable.

Proof. The limits and colimits involved in the de�nition of a stable ∞-category can be
calculated pointwise in Fun(K,C), as shown in [Lur09a, 5.1.2.2].

Proposition 1.5.9 ([Gro16]). An ∞-category C is stable i� it admits �nite limits and
colimits, and �nite limits and colimits commute.
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Let us construct a few examples.

De�nition 1.5.10. A simplicial abelian group is an ordinary functor in sAb :=
Fun(∆op,Ab). Forgetting about the group operation, it has an underlying simplicial set,
which can be shown to automatically be a Kan complex. Conversely, every X ∈ sSet
de�nes a simplicial abelian group ZX : ∆op → Ab by composing with the free Z-module
functor.

De�nition 1.5.11. For X a simplicial abelian group, let its Moore complex C∗(X)
be the chain complex (in homological convention) with Cn(X) = Xn concentrated in
non-negative degrees and di�erential induced by the face maps δi : Xn → Xn−1 in X:

∀c ∈ Xn : dc :=
n∑

i=0

(−1)iδiXn ∈ C∗(X)n−1 (1.28)

The normalized Moore complex N∗(X) is the subcomplex of C∗(X) spanned by the non-
degenerate simplices, where all contributions form degenerate simplices in the di�erential
are set to 0.

Both C∗ and N∗ are additive functors and preserve colimits. Therefore, N∗ is the left Kan
Extension along the (Ab-enriched) Yoneda embedding of its restriction to ∆ (by 1.1.6),
and therefore arises by applying the nerve-realization paradigm 1.1.7 to this restriction.
Hence, it has a right adjoint K : Ch(Z)≥0 → sAb sending C 7→ Hom(N∗(−), C). We
call K(C) the Eilenberg-MacLane space of C, in particular for A an abelian group,
K(A, n) := |K(A[n])| is the Eilenberg-MacLane space from topology.

Theorem 1.5.12 (Dold-Kan correspondence). The functors N∗ and K form an equiva-
lence of categories between non-negatively graded chain complexes and simplicial abelian
groups, Ch(Z)≥0 ≃ sAb. This can be generalized to any abelian category, instead of Ab.

Example 1.5.13. Applying C∗ to Z Sing(X) yields the singular chain complex of a
topological space X.

Construction 1.5.14. Let C be a di�erential graded (dg) category (a category enriched
over Ch(Z)). Truncating the morphism complexes at 0 and applying K yields a category
enriched over simplicial abelian groups, and forgetting the group structure yields a Kan-
enriched category because of 1.5.10. Finally, applying the homotopy coherent nerve
yields an ∞-category NdgC, called the dg-nerve of C.

Remark. There is an equivalent construction of the dg-nerve that is easier to compute;
the shortest way to de�ne it is to apply the nerve-realization paradigm to a functor that
realizes objects of ∆ as A∞-categories, see [Fao13]. This paper also shows that if C is a
pretriangulated dg-category, then Ndg(C) is stable.
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Example 1.5.15. For R any commutative ring, let Ch(R) be the dg-category of chain
complexes of R-modules. Denote by Ch(R) := Ndg Ch(R) its dg-nerve, the stable ∞-
category of chain complexes. Explicitly, its

� Objects are chain complexes of R-modules

� Morphisms are chain maps

� 2-morphisms are chain homotopies

� 3-morphisms are chain homotopies between chain homotopies, and so on.

Example 1.5.16. Localization (as in 1.2.3) of Ch(R) at the quasi-isomorphisms yields
the derived ∞-category D(R) of R. Similarly for the bounded variants Db(R), D+(R)
and D−(R), all of which are stable.

More generally, one can de�ne the derived ∞-category D(A) of any abelian category A

by inverting the quasi-isomorphisms in the∞-category of chain complexes in A. This is
particularly well-behaved for Grothendieck abelian categories, where D(A) actually is a
presentable ∞-category by [Lur17, 1.3.5.21].

Example 1.5.17. For R a ring, we denote by Dfp(R) the smallest full subcategory
of D(R) generated by R[0] by shifts and �bers, i.e. the smallest stable subcategory
containing R[0] as in 1.5.7. Similarly, we de�ne by Dperf(R) the smallest full subcategory
spanned by R[0] under shifts, �bers and direct summands (i.e. retracts by 2.1.11).

Remark. By [Lur17, 1.3.5.21], the derived ∞-category D(A) of a Grothendieck abelian
category possesses a canonical t-structure, i.e. two full subcategoriesD≥0(A) andD≤0(A)
such that

� For Y ∈ D≥0(A) and Z ∈ D≤0(A), the mapping space MapD(A)(Y, Z[−1]) is
contractible,

� Y [1] ∈ D≥0(A) and Z[−1] ∈ D≤0(A), and

� For X ∈ D(A), there exist X ′ ∈ D≥0(A) and X ′′ ∈ D≤0(A)[−1] and a �ber
sequence X ′ → X → X ′′.

Explicitly, D≥0(A) consists of chain complex concentrated in non-negative, and D≤0(A)
of chain complexes in non-positive degree (equivalently, with homology concentrated in
the respective degrees). The heart of this t-structure is

D(A)♡ := D≥0(A) ∩D≤0(A) ≃ A . (1.29)

Generally, the heart of any t-structure on a stable ∞-category is an abelian 1-category.
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Example 1.5.18. For A a Grothendieck abelian category, using 1.5.4 we see that
co�bers/ �bers in D(A) agree with the mapping cone/ cocone. Also, (co)products are
given by the direct sum. Every �nite limit or colimit can however be expressed using
these constructions (as there is a zero object), so in theory we know how to calculate
them. Spelling out the combinatorics, we see that they are calculated using the bar con-
struction (see [CG16, C.5.11] or [Rie14]). This is a well-known fact in model category
theory, where this construction calculates homotopy (co)limits.

Let us spell this out for a simplicial diagram F : ∆op → D(A), to better understand the
descent condition for ∞-sheaves with values in D(A). We can associate to F a �ech
double complex

. . . . . . . . .

0 F ([0])1 F ([1])1 F ([2])1 . . .

0 F ([0])0 F ([1])0 F ([2])0 . . .

0 F ([0])−1 F ([1])−1 F ([2])−1 . . .

. . . . . . . . .

where the vertical maps are the di�erentials in F ([n]), and the horizontal maps are
induced by alternating sums over the boundary maps. The ∞-limit, or homotopy limit,
over F is the total complex of this double complex (using the direct product should it not
be bounded). Similarly for homotopy colimits over ∆, using the direct sum. In short,
the descend condition for an∞-sheaf F : Open(X)op → D(A) on a space X assures that
for (Ui) a cover of U ,

F (U) ∼= Č((Ui), F ) (1.30)

is quasi-isomorphic to the �ech hypercohomology of F on the cover U . In particu-
lar, as we have discussed after 1.24, the �ech-to-sheaf-cohomology spectral sequence is
associated to this double complex.

Example 1.5.19. Let Sfin
∗ be the ∞-category of �nite pointed spaces from 1.2.10. De-

note by Exc∗(Sfin
∗ , S) the full subcategory of Fun(Sfin

∗ , S) on functors that are

� reduced, i.e. preserve the �nal object, and

� excisive, i.e. send pushout squares to pullback squares.
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This is the stable ∞-category Sp of spectra. Its homotopy category agrees with the
triangulated category of (symmetric) spectra. More generally, for C an∞-category with
�nite limits, we denote by Sp(C) the stable ∞-category of spectrum objects in C, also
called spectri�cation. It is de�ned as

Sp(C) := Exc∗(Sfin
∗ ,C) . (1.31)

De�nition 1.5.20. Denote by Ω∞ : Sp→ S the functor that evaluates a pointed excisive
functor Sfin

∗ → S at the pointed space S0.

Proposition 1.5.21 ([Lur17, 1.4.2.24]). The functors Ω∞ ◦ Σn : Sp → S∗ evaluating a
reduced, excisive functor Sfin

∗ → S∗ at the sphere Sn exhibit the stable ∞-category of
spectra as the limit of the following diagram in Cat∞:

Sp ≃ lim
N

(
· · · → S∗

Ω−→ S∗
Ω−→ S∗

)
. (1.32)

In other words, we obtain Sp from the ∞-category S∗ of pointed spaces by inverting the
suspension functor.

Remark. Given a sequence (Ei)i∈N of pointed spaces together with homotopy equiva-
lences ΩEi

∼= Ei−1 for all i > 0, we denote the corresponding spectrum under the above
correspondence by

E = [E0, E1, E2, E3, . . . ] . (1.33)

This is the usual way spectra are introduced (in fact since the above maps must be equiv-
alences, we are working with Ω-spectra; we are only interested in these �brant-co�brant
objects of the model category of spectra as they are the objects of the underlying ∞-
category). In particular this explains the name Ω∞, since Ω∞E = E0 = ΩE1 = ΩiEi for
all i is an in�nite loop space.

Example 1.5.22. For A an abelian group, the Eilenberg-MacLane space K(A, n) is the
unique space satisfying πkK(A, n) = A i� k = n, and 0 otherwise. By this uniqueness,
we must have ΩK(A, n) = K(A, n− 1) since Ω shifts the homotopy groups by one, so

HA := [K(A, 0), K(A, 1), K(A, 2), . . . ] (1.34)

is a spectrum, the Eilenberg-MacLane spectrum associated to A. We can replace A by a
chain complex using 1.5.12, see 1.7.1.

Corollary 1.5.23 ([Lur17, 1.4.4.4]). The stable ∞-category Sp is presentable, and the
functor Ω∞ : Sp→ S admits a left adjoint Σ∞+ de�ned as

Σ∞+ (X) = [X+,ΣX+,Σ
2X+, . . . ] (1.35)
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with X+ the space X with an added disjoint base point. Similarly, Ω∞ : Sp → S∗ has
a left adjoint Σ∞ where no extra basepoint needs to be added. The sphere spectrum is
de�ned as

S := Σ∞+∆0 = Σ∞S0 , (1.36)

equivalently it corresponds to the pointed excisive functor Sfin
∗ ↪→ S∗ given by the canon-

ical inclusion.

Remark. To be precise, Σ∞+ as de�ned above is no spectrum in our sense, since the
unit X+ → ΩΣX+ is generally no homotopy equivalence. We have to replace it by an
Ω-spectrum, in the model category language, for example

QΣ∞+X := [QX+, QΣX+, QΣ2X+, . . . ] (1.37)

with QX+ := colim
k∈N

ΩkΣkX+ the free in�nite loop space on X+.

De�nition 1.5.24. As a variant, we introduce the ∞-category of �nite spectra as the
colimit

Spfin := colim
N

(
Sfin
∗

Σ−→ Sfin
∗

Σ−→ . . .
)

(1.38)

which can be embedded into Sp using a Yoneda-argument [Lur17, Introduction to 1.4].
In fact, this is the smallest stable subcategory of Sp containing S.

To be more explicit about this embedding, a �nite spectrum may be thought of as a pair
(K,n) where n ∈ N and K is a �nite space. We identify it with the spectrum ΣnΣ∞+K,
and since Σ ⊣ Ω this can be checked to induce a fully faithful functor � see also the
classical discussion in [Sch12, Section 7.1].

De�nition 1.5.25. A point of a spectrum E is a point of the underlying space Ω∞E.
Equivalently, it is an S-point of E, since

MapSp(S,E) = MapSp(Σ
∞
+∆0,E) ≃ MapS(∆

0,Ω∞E) ≃ Ω∞E . (1.39)

Proposition 1.5.26 (Universal Property of Sp, [Lur17, 1.4.4.5]). For any presentable
stable ∞-category D, the functor Σ∞+ induces equivalences

Funlim(D, Sp) ≃ Funlim(D, S) ≃ D

Funcolim(Sp,D) ≃ Funcolim(S,D) ≃ D
(1.40)

where Funcolim and Funlim denote limit- and colimit preserving functors. Note that both
rows are equivalent by the adjoint functor theorem, and the last equivalence follows from
the universal property of the presheaf category PSh(∆0) ≃ S in 1.1.6.

Remark. One can de�ne Sp as the unique∞-category satisfying this universal property.
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De�nition 1.5.27. There is a notion [Lur09a, 6.5.1.1] of homotopy groups of objects
in general presentable ∞-categories, in particular in spectra. Using the description as a
sequential limit of S∗, one can show that for E = [E0, E1, . . . ] ∈ Sp they agree with the
stable homotopy groups

πnE := colim
m∈N

πn+m(Em) . (1.41)

Proposition 1.5.28 ([Lur17, 1.4.3.6]). There is a canonical t-structure on Sp, with Sp≤0
the full subcategory on those spectra E with contractible underlying space Ω∞E and Sp≥0
determined as its orthogonal full subcategory. By Whitehead, we could equivalently
de�ne Sp≥0 to consist of connective spectra, i.e. those whose homotopy groups π−nE = 0
for n > 0; and Sp≤0 as the coconnective spectra with πnE = 0. The heart Sp♡ ≃ Ab is
hence the category of abelian groups, as it spanned by spectra with a single non-vanishing
homotopy groups, i.e. Eilenberg-MacLane spectra.

Remark. All of the above results are still true if we replace S by any presentable ∞-
category C, and Sp with Sp(C).

The ∞-category Sp plays a similar role in the theory of stable ∞-categories as S plays
for general ∞-categories:

Proposition 1.5.29. For C a stable ∞-category and objects C,D ∈ C, the mapping
space MapC(C,D) can be re�ned to a mapping spectrum mapC(C,D) such that

Ω∞mapC(C,D) = MapC(C,D) . (1.42)

In other words, every stable ∞-category is enriched over spectra.

Proof Sketch. We can construct the spectrum mapC(C,D) as the in�nite loop space

[MapC(C,D),MapC(C,ΣD),MapC(C,Σ
2D), . . . ] (1.43)

which is clearly functorial in C and D, and has the underlying space MapC(C,D). It
is also compatible with composition, but since we have not de�ned enrichments of ∞-
categories we will not go into further details.

1.6 Ring and Module Spectra

De�nition 1.6.1. Let Fin∗ be the ordinary category (or via its nerve, ∞-category) of
�nite pointed sets ⟨n⟩ = {∗, 1, 2, . . . , n} with pointed maps. In particular, denote by
ρi : ⟨n⟩ → ⟨1⟩ the map that sends i 7→ 1 and all other elements to ∗, for i = 1, . . . , n.
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De�nition 1.6.2. A symmetric monoidal ∞-category with underlying∞-category V is
a functor v : Fin∗ → Cat∞ such that for each n, the functors v(ρi) are the projections
exhibiting v(⟨n⟩) as the product V×n.

Construction 1.6.3. For V a symmetric monoidal ∞-category, the unique morphism
u : ⟨0⟩ → ⟨1⟩ in Fin∗, and the morphism t : ⟨2⟩ → ⟨1⟩ sending ∗ 7→ ∗ and everything
else to 1, induce morphisms

1V : ∆0 → V , ⊗ : V× V→ V (1.44)

called the unit object and tensor product of V. Often, we therefore denote a symmetric
monoidal ∞-category by (V,⊗) for clarity. Other morphisms in Fin∗ induce higher
coherence relations on 1V and ⊗, in particular the morphism ⟨2⟩ → ⟨2⟩ interchanging 1
and 2 induces a symmetric braiding V ⊗W ∼= W ⊗ V .

Remark. By 1.2.20, the functor v above classi�es a coCartesian �bration commonly
denoted by p : V⊗ → Fin∗. The �ber of p over ⟨n⟩ ∈ Fin∗ is by de�nition equivalent to
V×n, and the parallel transports along the ρi induce the projections out of this product.

Remark ([Lur17, 4.1.2.5]). Similarly, amonoidal∞-category with underlying∞-category
V can be de�ned as a functor v : ∆op → Cat∞, such that the images of the boundary
maps ρi : [1] → [n] sending 0 7→ i − 1 and 1 7→ i, for i = 1, . . . , n, are the projection
maps exhibiting v([n]) ∼= V×n.

Construction 1.6.4 ([Lur17, 4.1.2.10]). There is a canonical cut functor c : ∆op → Fin∗
that sends [n] to ⟨n⟩, and a monotone map α : [n] → [m] to the map ⟨m⟩ → ⟨n⟩
that sends i ∈ ⟨m⟩ − {∗} to minα−1({i, i + 1, . . . ,m}) if this set is non-empty, and ∗
otherwise. Precomposition with this functor sends a symmetric monoidal ∞-category
to the underlying monoidal ∞-category.

Example 1.6.5.

� The trivial symmetric monoidal ∞-category is determined by the functor ∆0 :
Fin∗ → Cat∞ that is constant on ∆0. Its underlying ∞-category is clearly ∆0,
and it is classi�ed by the coCartesian �bration idFin∗ : Fin∗ → Fin∗. Similarly, we
de�ne the trivial monoidal ∞-category.

� For R a ring, the ∞-category of chain complexes Ch(R) is symmetric monoidal
with respect to the tensor product of chain complexes. Similarly for the derived
∞-category D(R) and the derived tensor product.

� Ch(R)op is also symmetric monoidal with respect to ⊗, similarly for any symmetric
monoidal ∞-category.
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� The∞-category of Sp is symmetric monoidal with respect to the smash product ∧,
which is the unique (by 1.5.26) tensor product preserving colimits in both variables
with the sphere spectrum S as the unit. On the homotopy category of symmetric
spectra, this agrees with the usual de�nition of the smash product; we will also
see a very abstract construction in a moment.

� Any ∞-category with �nite products is symmetric monoidal with respect to the
product, similarly for coproducts.

� For PrL the non-full subcategory of Cat∞ on presentable∞-categories and colimit-
preserving functors (i.e. by the Adjoint Functor Theorem 1.2.19, left adjoint func-
tors), the tensor product C ⊗ D := Funlim(Cop,D) we have introduced in 1.3.16
induces a symmetric monoidal structure, with unit object S as by the∞-categorical
analogon to 1.1.6.

� If we denote by Prst the full subcategory of PrL on presentable stable∞-categories,
the fact that functors into a stable ∞-category form a stable ∞-category them-
selves 1.5.8 tells us that the above symmetric monoidal structure restricts to Prst.
Its unit is the ∞-category of spectra Sp, since it satis�es the universal property
1.5.26.

De�nition 1.6.6. A morphism α : ⟨n⟩ → ⟨m⟩ in Fin∗ is called inert if every i ∈
⟨m⟩ − {∗} that is not the pointing ∗ has a unique preimage in ⟨n⟩. In other words,
α−1 : ⟨m⟩ − {∗} → ⟨n⟩ − {∗} is well-de�ned and automatically injective, determining α.
Conversely, a morphism α as above is called active if α−1({∗}) = {∗}. Any morphism in
Fin∗ can uniquely be factored as the composition of an active after an inert morphism.

De�nition 1.6.7. A morphism α : [n] → [m] in ∆ is called inert if it is injective and
embeds [n] into [m] as an interval, i.e. α(i) = α(0) + i. On the other hand, it is called
active if α(0) = 0 and α(n) = m. Again, any morphism in ∆ can be factored as an inert
after an active morphism (so in ∆op, we obtain a factorization as above).

Remark. Intuitively, inert morphism encode trivial operations in symmetric monoidal
∞-categories, for example the map ⟨2⟩ → ⟨1⟩ sending ∗, 2 7→ ∗ and 1 7→ 1 induces the
map V×2 → V projecting on the �rst component. On the other hand, active morphisms
encode the interesting operations, like the tensor product of n objects, the identity or
the braiding above. Similarly in the monoidal case, or for general ∞-operads.

De�nition 1.6.8. Let p : V⊗ → Fin∗ be a coCartesian �bration classifying a symmetric
monoidal ∞-category. A morphism f in V⊗ is called inert if p(f) is inert and f is
p-coCartesian (i.e. it encodes a non-trivial operation in V), and active if p(f) is active.
These again form a factorization system by [Lur17, 2.1.2.4].
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De�nition 1.6.9. For (V1,⊗), (V2,⊗) symmetric monoidal ∞-categories, a symmetric
monoidal functor F : V1 → V2 is a natural transformation between the corresponding
functors v1, v2 : Fin∗ → Cat∞. Equivalently, it is a functor of the underlying∞-categories
that preserves unit, tensor product and its braiding up to coherent isomorphism, as well
as the higher coherences encoded by higher compositions.

A lax monoidal functor F : V1 → V2 is a morphism F between the classifying coCartesian
�brations V⊗1 → Fin∗ and V⊗2 → Fin∗ in the slice category Cat∞ /Fin∗ that sends inert
morphisms in V1 to inert morphisms in V2. Using 1.2.20, we see that this induces a
symmetric monoidal functor i� F preserves all coCartesian edges, not just those over
inert morphisms in Fin∗.

Technical Remark. We could also de�ne lax monoidal functors without resorting to the
Grothendieck construction, they are given by (lax) natural transformations of the com-
posites v1, v2 : Fin∗ → Cat∞ ⊆ CatCatCat∞ regarded as functors of (∞, 2)-categories.

De�nition 1.6.10. Let us de�ne an ∞-category

Fun⊗(V1,V2) := MapFun(Fin∗,Cat∞)(v1, v2) (1.45)

of symmetric monoidal functors between V1 and V2. Similarly, denote by

Funlax(V1,V2) ⊆ MapCat∞ /Fin∗
(V⊗1 ,V

⊗
2 ) (1.46)

the full subcategory on lax monoidal functors (those preserving inert morphism), which
by the discussion above contains the full subcategory of functors preserving coCartesian
edges which is equivalent to Fun⊗(V1,V2).

Remark. The intuition for these classes of functors is the same as in the classical case.
A functor F : V⊗1 → V⊗2 is symmetric monoidal if (among higher relations) it preserves
the tensor product up to isomorphism,

F (X ⊗ Y ) ∼= F (X)⊗ F (Y ) . (1.47)

It is lax monoidal if there is a natural map F (X)⊗ F (Y )→ F (X ⊗ Y ), which does not
have to be an isomorphism and should be regarded as part of the data contained in F
(among higher relations). A lax monoidal functor is monoidal i� these maps are always
isomorphisms.

De�nition 1.6.11. Similarly, we de�ne monoidal functors between monoidal ∞-
categories v1, v2 : ∆op → Cat∞ as natural transformations; and lax monoidal functors as
morphisms between the classifying coCartesian �brations in the slice category Cat∞ /Fin∗

preserving inert morphisms. Again, a lax monoidal functor is monoidal i� it preserves
all coCartesian edges.
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De�nition 1.6.12. For (V,⊗) a symmetric monoidal ∞-category with symmetric
monoidal structure determined by p : V⊗ → Fin∗, a commutative algebra in V is a
lax monoidal functor A : idFin∗ → p in Cat∞ /Fin∗ , from the trivial commutative algebra
in Cat∞ to V. In other words, it is a section A : Fin∗ → V⊗ of p preserving inert mor-
phisms, in particular A(ρi) : A(⟨n⟩)→ A(⟨1⟩) is p-coCartesian for i = 1, . . . , n. But the
de�nition of a symmetric monoidal ∞-category entails that the coCartesian transports
along the ρi are the projections exhibiting v(⟨n⟩) = v(⟨1⟩)×n; and we have seen that
these the A(ρi) are coCartesian, so they exhibit A(⟨n⟩) = (A(⟨1⟩), . . . , A(⟨1⟩)) ∈ V×n.
If we abuse notation by denoting A(⟨1⟩) =: A, we obtain composition maps

A⊗ · · · ⊗ A = A⊗k → A (1.48)

for each k ≥ 1, inducing a unit and an algebra multiplication on A satisfying higher
coherences. We denote the ∞-category of commutative algebra objects in V⊗ by
CAlg(V) := Funlax(∆0,V).

De�nition 1.6.13. Similarly, we de�ne (associative) algebra objects in a monoidal ∞-
category (V,⊗) as lax monoidal functors from the trivial monoidal ∞-category to V.
Spelling this out yields, for each k ∈ N0 and ever total order on {1, . . . , k}, a morphism

A⊗ A⊗ · · · ⊗ A→ A (1.49)

with k factors of A := A([0]) on the left, together with compatibility conditions among
them. The ∞-category of algebra objects in V⊗ will be denoted by Alg(V).

De�nition 1.6.14. For A an algebra object in V, we de�ne the opposite algebra object
with reversed multiplication by conjugating the de�ning functor A : ∆op → V with the
functor rev : ∆ → ∆ sending [n] 7→ [n] and α : [n] → [m] to rev(α) : [n] → [m] with
rev(α)(i) := α(n − i). The functor Aop := rev ◦A ◦ rev is still an algebra object since
rev2 = Id∆ and it preserves inert morphisms in ∆op (which agree with inert morphisms in
∆op = (∆0)⊗ regarded as the trivial monoidal ∞-category). Explicitly, the composition
map

A⊗ A⊗ · · · ⊗ A = A⊗k → A (1.50)

in Aop, associated to a �xed total order on {1, . . . , k}, is the composition map in A
associated to the reversed total order.

De�nition 1.6.15. A ring spectrum is an associative algebra object in the symmetric
monoidal category of spectra (Sp,∧), regarded as a monoidal ∞-category using the cut
functor. A commutative ring spectrum is a commutative algebra object in (Sp,∧).

Example 1.6.16.

� For (V,⊗) an ordinary symmetric monoidal category, algebra objects in its nerve
regarded as a symmetric monoidal ∞-category coincide with the usual de�nition
of algebra objects, namely objects of V with unit and associative multiplication.
Similarly in the commutative case.
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� For C any∞-category and C ∈ C, the endomorphism space End(C) := MapC(C,C)
is an associative algebra object in (S,×), with multiplication determined by the
composition of endomorphisms.

� If C is even stable, this can be lifted to an endomorphism spectrum end(C) :=
mapC(C,C) which is an associative algebra object in (Sp,∧), in other words a ring
spectrum.

� For (V,⊗) a monoidal ∞-category, the unit 1V comes equipped with a multipli-
cation 1V ⊗ 1V ∼= 1V and similar higher multiplications, making it into the initial
algebra object. Similarly, the unit in a symmetric monoidal ∞-category is the
initial commutative algebra object.

� The category of algebra objects in the ∞-category (Cat∞,×) of ∞-categories
equipped with the Cartesian product is the category of monoidal ∞-categories,
with monoidal functors as morphisms. Similarly, commutative algebras in
(Cat∞,×) are precisely the symmetric monoidal ∞-categories.

� Since we have seen that Sp is the unit in Prst, it is naturally equipped with an
algebra structure as explained above. By the last point, this makes Sp into a
presentable stable symmetric monoidal∞-category itself, with multiplication given
by the smash product of spectra ∧ that preserves colimits in both variables. This
is of course very inexplicit, but agrees with the usual de�nition.

Proposition 1.6.17 ([Lur17, 4.1.2.10]). If A : Fin∗ → V⊗ is a commutative algebra
object in a symmetric monoidal ∞-category V de�ned by v : Fin∗ → Cat∞, then A ◦ c :
∆op → V⊗ is an algebra object in the underlying monoidal ∞-category of V de�ne by
v ◦ c : ∆op → Cat∞.

Now, let us de�ne modules over algebra objects. Just as the multiplication in an algebra
object A had to be de�ned via giving all maps of the form A⊗A⊗· · ·⊗A→ A⊗· · ·⊗A
over morphisms of ∆op, not just the multiplication A ⊗ A → A and unit 1V → A; we
have to specify not only the action M × A→ M to give a left module M , but maps of
the forms

A⊗ A⊗ · · · ⊗ A→ A⊗ · · · ⊗ A ,

M ⊗ A⊗ A⊗ · · · ⊗ A→M ⊗ A⊗ · · · ⊗ A ,

M ⊗ A⊗ A⊗ · · · ⊗ A→ A⊗ · · · ⊗ A .

This are precisely the edges of the simplicial set Fin∗×∆1 or ∆op × ∆1, depending on
whether we put an ordering on the multiplications in A or not.
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De�nition 1.6.18 ([Lur17, 4.2.2.2]). Given an algebra object A : ∆op → V in a symmet-
ric monoidal∞-category V⊗, a left module object over A is a functor M : ∆op×∆1 → V

such that

� M |∆op×{1} agrees with A

� For each [n] ∈ ∆op, the map M([n], 0)→ M([n], 1) induced by the identity on [n]
and the map M([n], 0) → M([0], 0) induced by [0] → [n] sending 0 7→ n exhibit
M([n], 0) ≃M([n], 1)×M([0], 0).

Similarly, one can de�ne right module objects over A by using the map [0]→ n sending
0 7→ 0 instead. Denote the full subcategory of Fun(∆op ×∆1,V) on left modules over A
by LModA(V), and the full subcategory on right modules by RModA(V), omitting V if
it is clear.

De�nition 1.6.19. Given a commutative algebra object A : Fin∗ → V in V, a module
object over it is a functor M : Fin∗×∆1 → V such that

� M |Fin∗×{1} agrees with A

� For each ⟨n⟩ ∈ ∆op, the map M(⟨n⟩, 0)→M(⟨n⟩, 1) induced by the identity on [n]
and the map M(⟨n⟩, 0)→M(⟨0⟩, 0) induced by the unique map ⟨n⟩ → ⟨0⟩ exhibit
M(⟨n⟩, 0) ≃M(⟨n⟩, 1)×M(⟨0⟩, 0).

There is no directionality involved in this de�nition since the map ⟨n⟩ → ⟨0⟩ is unique,
so left and right modules do not have to be distinguished. Denote the full subcategory
on A-modules by ModA(V) ⊆ Fun(Fin∗×∆1,V).

Remark ([Lur17, 4.5.1.6]). If we regard a commutative algebraA as an associative algebra
object in the underlying monoidal ∞-category to V, then LModA(V) ≃ ModA(V) ≃
RModA(V).

De�nition 1.6.20. Given a ring spectrum R, we de�ne the ∞-category of left module
spectra LModR as the category of module objects over it in (Sp,∧), and similarly the
category of left module spectra RModR.

Proposition 1.6.21 ([Lur17, 7.1.1.5]). The∞-categories LModR and RModR are again
stable, and the forgetful functor LModR → Sp sending M : ∆op×∆1 → Sp to the image
of (⟨0⟩, 0) in Sp is exact.

Example 1.6.22. Every object V of a monoidal∞-category V is both a left and a right
module over the unit 1V, with module actions induced by the isomorphisms 1V ⊗ V ∼=
V ∼= V ⊗ 1V. In particular, any spectrum is a module over the sphere spectrum S; and
every ring spectrum R is both a left and right module over itself, with module action
determined by the ring multiplication.
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Technical Remark. In particular, every presentable stable ∞-category is a module over
the unit object (Sp,∧), we say that it is tensored over spectra. If all involved ∞-
categories are presentable and all functors colimit-preserving, a tensoring is equivalent to
an enrichment by the Adjoint-Functor-Theorem, compare [GH15, Chapter 7]. Generally,
this is however false; a general stable ∞-category is enriched over spectra as explained
in 1.5.29, but only tensored over �nite spectra (see [CDH+20a, 5.1.1]) since the colimits
involved in tensoring with in�nite spectra may not exist.

De�nition 1.6.23. We de�ne the stable ∞-category of �nitely presented R-module
spectra LModfp

R as the smallest stable subcategory (as in 1.5.7) containing R. In other
words, it contains all module spectra that can be generated by R using �bers and shifts
(and consequently also direct sums).

Similarly, the stable ∞-category of perfect R-module spectra LModperf
R is the smallest

full subcategory containing R that is closed under �bers, shifts and direct summands
(i.e. if M = N ⊕ P ∈ LModperf

R , then N and P as well).

De�nition 1.6.24. For R, S ring spectra, a R-S-bimodule is a spectrum M equipped
with both a left module structure over R, and a right module structure over S. In
particular, there are multiplication maps of the form

R ∧ · · · ∧R ∧M ∧ S ∧ · · · ∧ S .

Denote the ∞-category of R-S-bimodules by

RBiModS ⊆ Fun(∆op ×∆1 ×∆op, Sp) .

Remark. We could by [Lur17, 4.3.2.7] also de�ne RBiModS ≃ RModS(LModR(Sp)) ≃
LModR(RModS(Sp)), and all of these characterizations work similarly in general
monoidal ∞-categories.

Technical Remark. What we call ring spectra are also referred to as E1- or A∞-ring
spectra in the literature, as they are modules over the E1-operad in (Sp,∧). Similarly,
commutative ring spectra are algebras over the E∞-operad.

The abstract de�nitions of (commutative) algebra objects and modules over them obtain
a nice geometric interpretation employing the theory of EM -algebras (also called locally
constant factorization algebras): To any manifold M with boundary we can associate
an ∞-operad EM describing how disjoint unions of charts in M may be embedded into
each other. In the case M = R this recovers the E1-operad, where the ordering of factors
in a tensor product corresponds to the ordering induced on disjoint open intervals in R;
in the case M = Rn with n → ∞ we recover E∞ since there is enough space to move
charts around each other almost freely.

For Rn with 1 < n < ∞ we obtain En-algebras where multiplication is symmetric, but
higher coherences break down, this allows e.g. for the de�nition of braided monoidal ∞-
categories AlgE2

(Cat∞). For M = R≥0, we obtain pairs of E1-algebras and left modules
over them. See [Zet23] for more.
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1.7 Brave New Algebra

In many aspects, ring spectra behave similarly to ordinary rings � many constructions
and statements from commutative algebra still hold, which is why their theory is called
brave new algebra. Both settings can be compared using:

Construction 1.7.1. Recall from 1.5.22 that the stable ∞-category of spectra Sp con-
tains the ordinary category of abelian groups Ab as a full subcategory (its heart), by
sending each A ∈ Ab to the associated Eilenberg-MacLane spectrum

[K(A, 0), K(A, 1), K(A, 2), . . . ] =: HA (1.51)

with homotopy groups concentrated in degree 0. Using the universal property of the
derived∞-category and its t-structure [Lur17, 1.3.3.2], this extends to a functorD(Z)→
Sp. For an arbitrary commutative ring R, compose it with the forgetful functor D(R)→
D(Z) (since forgetting the R-multiplication preserves quasi-isomorphisms) to obtain the
Eilenberg-MacLane functor

H : D(R)→ Sp . (1.52)

In particular, H(R[0]) is the Eilenberg-MacLane spectrumHR on the underlying abelian
group of R, and the module structure of elements of D(R) over R[0] translates into a
module structure over HR on the right since it turns out that H is lax monoidal.

Remark. An alternative, more explicit way to construct H would be to use the (Ab-
enriched) nerve-realization paradigm 1.1.7 to extend H : Ab→ Sp to simplicial abelian
groups, which by the Dold-Kan Correspondence are equivalent to Ch+(Z). Since the
homotopy groups πnHC agree with the homology groups of the complex C as the sim-
plicial sphere is identi�ed with the complex Z[n], we see by Whitehead that H sends
quasi-isomorphisms to homotopy equivalences and thus factors through D+(Z). Extend
to all of D(Z) using shifts.

Theorem 1.7.2 (Stable Dold-Kan Correspondence, [Lur17, 7.1.2.13]). For R an ordi-
nary commutative ring, the Eilenberg-MacLane functor induces an equivalence of ∞-
categories

D(R) ≃ LModHR (1.53)

that restricts to equivalences of the stable subcategories Dperf(R) ≃ LModperf
HR and

Dfp(R) ≃ LModfp
HR.

This statement may be seen as a conceptual reason for why derived categories are in-
teresting in the �rst place. Its proof relies on the following recognition criterion for
∞-categories of module spectra:
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De�nition 1.7.3. For C a stable ∞-category, an object C ∈ C is a compact generator
if it is compact, i.e. the functor

mapC(C,−) : C→ Sp (1.54)

it corepresents preserves �ltered colimits, and it generates C in the sense that for each
D ∈ C, if mapC(C,D) ∼= 0 ∈ Sp, then D ∼= 0.

Theorem 1.7.4 (Schwede-Shipley recognition criterion, see [Lur17, 7.1.2.1]). If C is a
presentable stable ∞-category with a compact generator X, and end(X) is the asso-
ciative ring spectrum of endomorphisms of X, then there is a canonical equivalence of
categories

C ≃ LModend(X) . (1.55)

Proof of 1.7.2. We already know that D(R) is stable and presentable by 1.5.16. The
complex R[0] concentrated in degree 0 is a compact generator since the it represents the
identity functor

MapD(R)(R[0],−) = RHom(R[0],−) = IdD(R) (1.56)

which is in particular faithful and preserves �ltered colimits. By the recognition criterion,
we thus know that D(R) ≃ LModend(R). But

πn end(R) = Ext−nR (R,R) =

{
R for n = 0,

0 otherwise
(1.57)

so we can identify end(R) ∼= HR, with multiplication given by the Yoneda product on
Ext groups, which in this case is just the product in R.

The perfect and �nitely presented cases follow from the very de�nitions of the respective
subcategories as the smallest ones generated by R[0] or HR respectively via shifts, �bers
and potentially direct summands.

This result explains one of the main ideas behind brave new algebra: Instead of trying
to understand derived categories, we could do algebra over general ring spectra which is
formally very similar to algebra over ordinary rings, but when restricted to Eilenberg-
MacLane spectra automatically lives in the derived world. Many de�nitions and results
from commutative algebra and algebraic geometry carry over to the theory of ring spec-
tra, for example localizations, étale maps, Kähler di�erentials, Henselian rings, schemes
and stacks. As long as we are working over a base (ordinary) ring containing Q, the
resulting geometry, called spectral algebraic geometry, is by [Lur17, 7.1.4.11] equivalent
to derived algebraic geometry over commutative di�erential graded algebras or simplicial
rings, but in non-zero characteristic, over general discrete rings or even ring spectra it is
di�erent and superior for some applications, like chromatic homotopy theory or elliptic
cohomology.

Let us develop some more elementary results on ring and module spectra.
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De�nition 1.7.5 ([Lur17, Section 4.4]). If A,B,C are ring spectra, we de�ne the relative
tensor product

⊗B : ABiModB × BBiModC → ABiModC (1.58)

using the two-sided bar construction

M ⊗B N := colim
∆

 . . .M ∧B ∧B ∧N M ∧B ∧N M ∧N

 (1.59)

where maps from the right to the left are induced by multiplication, and from the left
to the right by the unit in R. This operation is associative, with unit B regarded as a
B-B-bimodule.

Remark. Compare with the de�nition of the tensor product of ordinary bimodules as
the coequalizer coequ

(
M ⊗B ⊗N M ⊗N

)
, or with the Hochschild complex

that arises via the similar cyclic bar construction. One can also de�ne the relative tensor
product as a representing object for bilinear maps, just like the ordinary tensor product
of rings.

Proposition 1.7.6. The relative tensor product is equivariant with respect to the func-
tor (−)op : ABiModB

≃→ BopBiModAop applied to both arguments (and exchanging them)
or the target, in the sense that (M⊗BN)op ∼= N op⊗BopM op. In particular, if R is a com-
mutative ring spectrum so that we can regard any R-module as a left or right module,
i.e. as a bimodule, the relative tensor product

−⊗R − : ModR×ModR → ModR (1.60)

is symmetric in its arguments.

De�nition 1.7.7. The relative tensor product has adjoint internal Hom functors

HomC : BBiModC × ABiModC → ABiModB

AHom : ABiModB × ABiModC → BBiModC

equipping the mapping spectra mapRModC
(−,−) and mapLModA

(−,−) with bimodule
structures.

Remark. While we distinguish between AHom and HomA in this statement for clarity,
in the next chapters we will always use the latter, more common notation.

Proof. Since the smash product preserves colimits separately in each variable, and the
relative tensor product is de�ned as a colimit, it preserves colimits in each variable as
well (compare [Lur17, 4.4.2.15] for a more general statement). Hence, by the adjoint
functor theorem, the functorsM⊗B− and −⊗BN admit right adjoints AHom(M,−) and

42

http://www.math.ias.edu/~lurie/papers/HA.pdf#theorem.4.4.2.15


HomC(N,−) respectively, which are also functorial in M . In particular, BHom(B,−)
is adjoint to the identity functor for A = B, so it is isomorphic to the identity functor
itself. Similarly for HomB(B,−).

For M an A-C- and N a B-C-bimodule, the spectrum underlying HomC(N,M) is

mapRModB
(B,HomC(N,M)) ≃ mapRModC

(B ⊗B N,M) ≃ mapRModC
(N,M)

and similarly for AHom.

De�nition 1.7.8. For f : A → B a map of commutative ring spectra, precomposition
with f induced the change-of-coe�cients or restriction-of-scalars functor

(−)A : ModB → ModA (1.61)

which by [Lur17, 4.5.3.1] has a left adjoint, the extension-of-scalars functor

B ⊗A − : ModA → ModB (1.62)

which is symmetric monoidal.

Remark. Explicitly, if M : ∆op ×∆1 → Sp is a B-module, then MA : ∆op ×∆1 → Sp is
determined by MA|∆op×{0} = M |∆op×{0} and MA|∆op×{1} = B together with the natural

transformation M |∆op×{0}
M→ A

f→ B.

Similarly, for N an A-module, the B-module B ⊗A N is indeed de�ned as a relative
tensor product, where we view N as an A-S-bimodule and B as a B-A-module with
module structure

B ⊗B ⊗ . . . B ⊗ A⊗ · · · ⊗ A→ B (1.63)

de�ned by applying f to the factors of A and then multiplying in B.
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2 Algebraic L-Theory

In this chapter, we introduce the notion of Poincaré ∞-categories, which are stable
∞-categories equipped with a notion of quadratic forms. We associate L-groups and
L-spectra to them, generalizing several variations of classical L-theory as developed
for example in [Ran92]. Our constructions are originality due to Lurie's Lecture notes
[Lur11], and have been re�ned in the series of papers [CDH+20a], [CDH+20b], [CDH+21]
by several authors that we use as a main reference.

2.1 Bilinear and Quadratic Functors

As algebraic L-theory is classically all about classifying quadratic or symmetric forms
modulo algebraic bordism (i.e. dividing by Lagrangian subspaces), its formulation via
∞-categories will rely on categorifying these concepts. We follow a very straightforward
analogy: For us, stable ∞-categories should be regarded as a categori�cation of vector
spaces or modules.

Remember that functor F : C→ D between stable ∞-categories is called

� reduced if it preserves the zero object,

� excisive if it sends pushout squares to pullback squares,

� exact if it preserves �nite limits (or equivalently, �nite colimits).

Proposition 2.1.1. A functor F as above is exact i� it is pointed and excisive.

Proof. First of all, a square in a stable∞-category is a pushout i� it is a pullback. Since
terminal object and pullbacks are special cases of �nite limits, the if direction is clear.
For the only if direction, every �nite limit can be written using the terminal object and
pullbacks by dualizing [Lur09a, 4.4.2.5].

Under above comparison of stable∞-categories with vector spaces, reduced functors are
zero-preserving maps of vector spaces, excisive functors are a�ne maps, while exact func-
tors are linear maps. More generally, any smooth function between �nite-dimensional
real vector spaces can be Taylor expanded as the sum of a constant, a linear function,
a quadratic function and so on. Similarly, a functor between stable (and even slightly
more general) ∞-categories can be Taylor expanded:
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De�nition 2.1.2. Let p : (∆1)n → C be an n-cubical diagram in an ∞-category C that
possesses �nite limits, and let Kn be the simplicial set obtained from (∆1)n by removing
the point (0, . . . , 0) and all simplices containing it. p is called

� Cartesian if, identifying (∆1)n ∼= K◁
n, it is a limit cone,

� strongly Cartesian if for every 2-dimensional cubical face

f : {i1}×· · ·×{ik−1}×∆1×{ik+1}×· · ·×{il−1}×∆1×{il+1}×· · ·×{in} ⊆ (∆1)n

with 1 ≤ k < l ≤ n and ij ∈ {0, 1} for j ∈ {1, . . . , k̂, . . . , l̂, . . . , n}, the restriction
p ◦ f is a Cartesian square.

In particular (by a co�nality argument), strongly Cartesian squares are Cartesian. Sim-
ilarly, one can de�ne (strongly) coCartesian cubical diagrams.

De�nition 2.1.3. A functor F : C → D between ∞-categories C with �nite colimits
and D with �nite limits is called n-excisive if it sends strongly coCartesian (n+1)-cubes
in C to Cartesian (n + 1)-cubes in D. Again, by a co�nality argument, an n-excisive
functor is automatically (n+ 1)-excisive.

Remark. In stable ∞-categories, strongly coCartesian and strongly Cartesian cubes
agree; however one can also implement this de�nition and the Goodwillie calculus that
builds on it more generally, where this distinction is important.

Example 2.1.4.

� A functor F : C→ D is 0-excisive i� it sends every morphism to an isomorphism,
since for a 1-cube being strongly (co)Cartesian is a vacuous conditions, while being
Cartesian is equivalent to being an isomorphism.

� F is 1-excisive i� it is excisive.

These are the functors that replace polynomials of degree n for Taylor expansion. Of
interest for us will be a characterization of 2-excisive functors.

Let us �rst take a slight detour into the theory of quadratic forms: Fix R be a commu-
tative ring and M a (projective) R-module.

De�nition 2.1.5. A map b : M ×M → R is bilinear if for any m ∈ M , the induced
maps b(m,−) : M → R and b(−,m) : M → R are linear. We say that b is symmetric if
b(m,m′) = b(m′,m) for all m,m′ ∈M .

If we denote the dual of M by M∨ = HomR(M,R), then a symmetric bilinear map
b induces an adjoint map b♯ : M → M∨ sending m 7→ b(m,−), and b is called non-
degenerate if b♯ is an isomorphism.
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De�nition 2.1.6. An inhomogeneous quadratic form on M is a map q : M → R such
that q(0) = 0, and for any m,m′ ∈M the polarization bq(m,m′) := q(m+m′)− q(m)−
q(m′) is symmetric bilinear. It is a quadratic form if for any n ∈ N and m ∈ M , we
have q(nm) = n2q(m).

Proposition 2.1.7. If 2 ∈ R is invertible, then the map q 7→ bq from quadratic forms
to symmetric bilinear forms is a bijection.

Proof. To a symmetric bilinear form b : M ×M → R, we may conversely associate a
quadratic form qb(m) := 1

2
b(m,m) with polarization

bqb(m,m′) = qb(m+m′)− qb(m)− qb(m
′) =

b(m+m′,m+m′)− b(m,m)− b(m′,m′)

2
=

=
1

2
(b(m,m′) + b(m′,m)) = b(m,m′) .

In particular, this expression is bilinear; also qb(0) = 0 and q(nm) = n2q(m) hold so qb
is indeed quadratic. Finally,

qbq(m) =
1

2
(q(2m)− q(m)− q(m)) =

1

2
(4− 1− 1)q(b) = q(b) .

Proposition 2.1.8. Let 2 ∈ R still be invertible and q : M → R be an inhomogeneous
quadratic form with polarization b, then the di�erence l(m) := q(m)−qb(m) is a Z-linear
map and q is a quadratic form i� l vanishes.

Remark. This means that an inhomogeneous quadratic form can uniquely be decomposed
into a quadratic and a Z-linear form, and conversely it is clear that any sum of a quadratic
and Z-linear form is inhomogeneous quadratic.

Proof. Additivity of l follows from the calculation

l(m+m′) = q(m+m′)− 1

2
b(m+m′,m+m′) =

= q(m) + q(m′) + b(m,m′)− 1

2
(b(m,m) + b(m′,m′) + 2b(m,m′)) =

= q(m)− 1

2
b(m,m) + q(m′)− 1

2
b(m′,m′) = l(m) + l(m′) .

Further, l vanishes i� q = qb, but in this case qb(nm) = 1
2
b(nm, nm) = n2qb(m) making q

quadratic. Conversely, if q is quadratic, the di�erence l = q−qb satis�es l(nm) = n2l(m)
as well, but for n = 2 this means that l(n)+l(n) = l(n+n) = l(2n) = 22l(n) so 2l(n) = 0,
implying that l must vanish.

We will categorify these statements in the course of this section, allowing us to drop the
invertibility requirement on 2.
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Proposition 2.1.9 ([Nik20] 5.7). For P a �nitely generated projective R-module, let
B(P, P ) be the R-module of bilinear forms b : P × P → R, and equip it with the
S2-action determined by sending b 7→ b ◦ τ , where τ : P × P → P × P exchanges the
components. Then, the space of orbits (i.e. the coinvariants of this action)

B(P, P )S2 =
B(P, P )

R⟨b− b ◦ τ |b ∈ B(P, P )⟩
(2.1)

is isomorphic to the R-module Ϙ(R) of quadratic forms.

Proof. Given an orbit [b] ∈ B(P, P )S2 with representative b : P ⊗R P → R, we can
associate to it the map qb : P → R that sends p 7→ qb(p) := b(p, p). This clearly satis�es
qb(0) = 0 and qb(np) = n2qb(p), also its polarization b + b ◦ τ is bilinear. We need to
show that the construction b 7→ qb is injective and surjective. First, let us restrict to the
case where P is �nitely free with basis (ei)Ni=1, so b is determined by a quadratic matrix.

Injectivity : If qb(p) = b(p, p) = 0 for all p ∈ P , then for p′ ∈ P we have b(p, p′)+b(p′, p) =
b(p+ p′, p+ p′)− b(p, p)− b(p′, p′) = 0 so that b is antisymmetric. But this means that
we can write b = but − but ◦ τ where but is the upper triangular part of b regarded as a
matrix, so [b] = 0 in the coinvariants.

Surjectivity : Given any quadratic form q, we de�ne bq via the upper triangular matrix
with diagonal entry on the basis element ei given by q(ei, ei), and upper non-diagonal
entries determined by the polarization bq of q. Then,

q(
∑
i

λiei) = q(λ1e1) + q

(
N∑
i=2

λiei

)
+ bq

(
λ1e1,

N∑
i=2

λiei

)
= · · · =

=
∑
i

q (λiei) +
∑
i<j

bq (λiei, λjej) =
∑
i,j

bq(λiei, λjej) = qb
q

(∑
i

λiei

)

Now, for P �nitely generated, we may write it as the quotient π : P ′ → P ∼= P⧸N
of a �nitely free R-module P ′ to which we can apply the above argument. Since P is
projective, the short exact sequence

0→ N → P ′ → P → 0 (2.2)

splits, so P ′ ∼= P ⊕ N . By de�nition, quadratic forms on P are the same thing as
quadratic forms P ′ → R that factor through P ; and similarly bilinear forms on P are
precisely those homomorphisms P ′⊗P ′ → R that send P ⊗P ′ ⊕ P ′⊗P to zero. Such a
form b ∈ B(P, P ) can be written as b0− b0 ◦ τ for some b ∈ B(P, P ) i� b = b1− b1 ◦ τ for
b1 ∈ B(P ′, P ′), since we can just subtract from b1 its projection to the direct summand
P ′ ⊗ P ⊕ P ⊗ P ′. Our isomorphism constructed for the free P ′ thus identi�es the
respective subspaces of forms on P on both sides.
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Remark. Similarly, invariants of this action are precisely the symmetric bilinear forms,
and the canonical map B(M,M)S2 → B(M,M)S2 sending a symmetric bilinear form to
its orbit is an equivalence if 2 is invertible, as we have seen.

Our next step will be to categorify these de�nitions.

De�nition 2.1.10. Let C be an arbitrary ∞-category, and X, Y ∈ C. We call X a
retract of Y if there is a retraction diagram of the following form, exhibiting r ◦ i = idX :

Y

X X

ri

Proposition 2.1.11. If C is a stable ∞-category with X, Y ∈ C, then X is a retract of
Y i� there is an object X⊥ ∈ C such that we can write Y ∼= X ⊕X⊥. In other words,
retracts and direct summands are the same thing in the stable case.

Proof. If Y ∼= X⊕X⊥, then the canonical inclusion and projection mapsX i1→ X⊕X⊥ p1→
X associated to a biproduct exhibit X as a retract of Y .

Conversely, given maps X i→ Y
r→ X that compose to the identity, one can set X⊥ :=

fib(r) to obtain the commutative diagram

X⊥ X⊥

Y

X X

i′

r

r′

i

where the map r′ is obtained by applying the universal property of fib(r) to factor the
morphism (1 − ir) : Y → Y through X⊥. By the universal property of the biproduct,
these maps combine to a composition X ⊕X⊥ → Y → X ⊕X⊥. We need to show that
it agrees with the identity, and that the inverted composition Y → X ⊕X⊥ → Y does
so as well.

The �rst claim follows from r ◦ i = idX and r′ ◦ i′ = idX⊥ , where the latter equality
holds since r′ ◦ i′ is obtained by uniquely factoring (1− ir)i′ through X⊥, but ri′ = 0 be
de�nition.

For the second claim, it su�ces to show that i ◦ r+ i′ ◦ r′ = idY by the de�nition of the
sum of morphisms in a stable ∞-category. But i′r′ = 1− ir by de�nition of r′.
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Proposition 2.1.12. In the situation of 2.1.11, the complementing direct summand X⊥

is essentially unique.

Proof. Assume that we have an isomorphism α : X ⊕ Z → X ⊕ Z ′, that induces the
identity on X. To show that in this case Z ∼= Z ′, we write down the diagram

X X ⊕ Z cofib(i1)

X X ⊕ Z ′ cofib(i′1)

i1

α

i′1

where the left square commutes by assumption, and the right square by functoriality
of the co�ber. Using its universal property or a pasting argument, it is clear that
cofib(i1) ∼= Z and cofib(i′1)

∼= Z ′, and these are isomorphic since we have seen i1 ∼= i′1.

Let in the following C and D be stable ∞-categories.

De�nition 2.1.13. Given a reduced functor B̃ : C×C→ D andX, Y ∈ C, the inclusions
and projections of the biproduct X ⊕ Y induce morphisms

B̃(X,X)⊕ B̃(Y, Y ) −→ B̃(X ⊕ Y,X ⊕ Y ) −→ B̃(X,X)⊕ B̃(Y, Y ) (2.3)

that compose to the identity. This exhibits B̃(X,X)⊕ B̃(Y, Y ) as a direct summand of
B̃(X ⊕ Y,X ⊕ Y ), and we call its complement B(X, Y ) the polarization of B̃.

Proposition 2.1.14. The polarization B : C × C → D of a reduced functor B̃ is bire-
duced, i.e. B(0,−) and B(−, 0) are identical to the 0-functor. In fact, the construction
B̃ 7→ B is left and right adjoint to the inclusion of bireduced into reduced functors, in
particular it is functorial itself.

Proof. By de�nition, B̃(X ⊕ Y,X ⊕ Y ) = B̃(X,X) ⊕ B̃(Y, Y ) ⊕ B(X, Y ). If X = 0,
this means B̃(Y, Y ) = 0 ⊕ B̃(Y, Y ) ⊕ B(0, Y ) so by uniqueness of the complement,
B(0, Y ) ∼= 0. Conversely for Y = 0. The second claim is [CDH+20a, 1.1.3], in particular
the (co-)units of these adjunctions are given by the identity transformation on bireduced
functors, and the transformations B(X, Y ) → B̃(X, Y ) → B(X, Y ) which are induced
by the inclusions and projections out of the direct sums in B̃(X ⊕ Y,X ⊕ Y ).

De�nition 2.1.15. For Ϙ : Cop → Sp a reduced functor, the functor B̃ : Cop × Cop → Sp
determined by B̃(X, Y ) := Ϙ(X ⊕ Y ) is reduced. We can use 2.1.13 to construct its
polarization BϘ(X ⊕ Y ), which is also called the polarization of Ϙ.
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From this construction, it is automatic that there is an isomorphism ηX,Y : BϘ(X, Y ) ∼=
BϘ(Y,X) for all X, Y ∈ C since the direct sum ⊕ is symmetric in its arguments. In fact,
this isomorphism is natural inX, Y and there is a 2-simplex σ witnessing ηX,Y ◦ηY,X ∼= id.
Also, the whiskerings σ ◦ ηX,Y and ηX,Y ◦ σ are isomorphic 2-simplices, and there are
in�nitely many higher coherence relations of similar forms. A great advantage of our
∞-categorical approach is the following elegant way to phrase this:

De�nition 2.1.16. For C an ∞-category and G a group (or a monoid), an object with
G-action in C is a functor f : BG→ C, and the image X = f(∗) of the unique object of
BG in C is its underlying object.

The homotopy invariants XhG are the limit over the diagram f if it exists, and the
homotopy coinvariants XhG are the colimit over f .

Example 2.1.17. Let C be the derived category D(R) of a commutative ring R, and M
a (projective) R-module equipped with a G-action τg : M →M for g ∈ G. Then, using
1.5.18 the homotopy coinvariants of this action on M [0] ∈ D(R) can be calculated as

MhG =

(
· · · →

⊕
g,h∈G

M
d2−→
⊕
g∈G

M
d1−→M → 0→ . . .

)
(2.4)

with e.g. d1(mg) :=
∑

g(g − 1)mg, so its zeroth homology yields precisely the ordinary

coinvariants M⧸G. Note that the above is precisely the complex computing the group
homology of the G-module M . Similarly, the homotopy invariants MhG compute group
cohomology.

Construction 2.1.18. For G �nite and C a stable ∞-category, there is a canonical
norm map XhG → XhG, and the co�ber

X tG := cofib
(
XhG → XhG

)
(2.5)

is the Tate spectrum of X. We refer to [Lur17, 6.1.6] for a precise construction of this
map, since we will only need it in a special case where it simpli�es a lot (see the next
construction). Intuitively, an orbit in XhG is sent to the sum over all of its elements,
which is an invariant in XhG. In the case of a �nite group action on an R-module as
above, this agrees with the ordinary norm map, and the mapping cone construction for
the co�ber shows that the complex M [0]tG calculates Tate cohomology.

Remark. We will mainly deal with S2-actions and their (co)invariants, for S2 the sym-
metric group on two objects.
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Construction 2.1.19 ([CDH+20a] 1.1.10). If BϘ is the polarization of the reduced
functor Ϙ : Cop → Sp, there are canonical natural transformations

BϘ(X,X)hS2 → Ϙ(X)→ BϘ(X,X)hS2 (2.6)

in X whose composition is the norm map. They are induced by the codiagonal and
diagonal maps ∇ : X ⊕X → X and ∆ : X → X ⊕X, inducing

BϘ(X,X)→ Ϙ(X ⊕X)→ Ϙ(X)→ Ϙ(X,X)→ BϘ(X,X) (2.7)

where the �rst and last map are inclusion of and projection onto a direct summand, which
factor through the homotopy (co)invariants with respect to the S2-action exchanging the
summands of X. Alternatively, they are induced by the (co)units of the adjunctions in
2.1.14 when setting X = Y and taking homotopy (co)invariants.

De�nition 2.1.20. A functor B : C × C → D is called bilinear if for each C ∈ C, the
functors B(C,−) and B(−, C) are exact. In particular, it has to be bireduced.

Additionally, B is called symmetric bilinear it is a homotopy �xed point under the S2-
action on the∞-category of bilinear functors that exchanges both arguments. Explicitly,
B(X, Y ) ∼= B(Y,X) for all X, Y ∈ C, and this natural isomorphism satis�es higher
coherence relations.

Proposition 2.1.21 ([CDH+20a] 1.1.13). For C a stable∞-category, a reduced functor
Ϙ : Cop → Sp and BϘ its polarization, the following conditions are equivalent:

� Ϙ is 2-excisive.

� The functor ΛϘ : Cop → Sp mapping X to the �ber of the canonical map

ΛϘ(X) := fib
(
Ϙ(X)→ BϘ(X,X)hS2

)
(2.8)

is exact, and BϘ is bilinear.

� The functor X 7→ cofib (BϘ(X,X)hS2 → Ϙ(X)) is exact, and BϘ is bilinear.

If any of those conditions hold, Ϙ is called a quadratic functor, and the pair (C, Ϙ) is then
called a hermitian ∞-category. In this case, BϘ is automatically symmetric bilinear,
as it is de�ned as the polarization of Ϙ(X ⊕ Y ) which is of course symmetric, compare
[CDH+20a, 1.1.9].

Remark. The letter Ϙ ("Qoppa", pronounced "Koppa") stems from the early greek al-
phabet.
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De�nition 2.1.22 ([CDH+20a, 1.2.1]). A hermitian functor F : (C, Ϙ) → (D,Φ) be-
tween hermitian ∞-categories consists is an exact functor F : C → D, equipped with a
natural transformation Ϙ⇒ F ∗Φ := Φ ◦F op. Formally, we can construct an ∞-category
Cath∞ of hermitian ∞-categories and hermitian functors as the (cartesian) Grothendieck
construction of the functor

(Catex∞)
op → Ĉat∞ (2.9)

that associates to each stable ∞-category C its category of quadratic forms, de�ned as
a full subcategory on Fun(Cop, Sp). We need to work with large∞-categories Ĉat∞ since
Catex∞ is large.

Remark. The natural transformation η : Ϙ ⇒ Φ ◦ F op induces transformations BϘ ⇒
BΦ(F−, F−) and hence

MapC(C,DϘC
′)→ MapD(FC,DΦFC ′)

natural in C,C ′. Setting C = DϘC
′ and inserting idDϘC′ , we obtain τη : FDϘ ⇒ DΦF

op.

One can also go in the inverse direction:

Proposition 2.1.23 ([CDH+20a, 1.1.17, 1.3.5]). A symmetric bilinear functor B : Cop×
Cop → Sp induces two quadratic functors Cop → Sp:

� Ϙ
q
B(X) := B(X,X)hS2 is the spectrum of quadratic forms on X,

� Ϙ
s
B(X) := B(X,X)hS2 is the spectrum of symmetric forms on X.

Given any quadratic functor Ϙ : Cop → Sp with polarization BϘ, the natural transforma-
tions

Ϙ
q
BϘ
⇒ Ϙ⇒ ϘsBϘ (2.10)

from 2.1.19 are (co-)units exhibiting these constructions as the left and right adjoint of
the functor sending Ϙ 7→ BϘ.

Remark. Usually, there will be several quadratic functors with the same polarization B.
The above proposition may be interpreted as saying that ϘqB and ϘsB are the left and
right extremes in this set, while other quadratic functors lie between them in a way.

We will be interested in a more re�ned situation:

De�nition 2.1.24. A bilinear functor B : Cop×Cop → Sp is called right non-degenerate
if for any Y ∈ C, the functor B(−, Y ) : Cop → Sp is representable by an object DBY ∈ C

in the sense that
B(X, Y ) ∼= mapC(X,DBY ) (2.11)

The representing objects assemble (using the Yoneda Lemma) into an exact functor
DB : Cop → C, called the duality functor associated to B. Dually, B is left non-degenerate
if B(X,−) is always representable.
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De�nition 2.1.25. A symmetric bilinear functor B : Cop × Cop → Sp is called non-
degenerate if the underlying bilinear functor is right (or equivalently left) non-degenerate.
Also, a quadratic functor Ϙ is called non-degenerate if BϘ is, and we denote DBϘ by DϘ.

De�nition 2.1.26. For B a symmetric bilinear functor as above, the composition

mapC(Y,X) = mapCop(X, Y )→ mapC(D
op
B X,DBY ) ∼= B(Dop

B X, Y ) ∼=
∼= B(Y,Dop

B X) ∼= mapC(Y,DBD
op
B X)

induces a natural transformation id ⇒ DBD
op
B , called the evaluation map. If this is

a natural isomorphism, we call DB and B perfect. Similarly, a quadratic functor Ϙ is
perfect if BϘ is.

De�nition 2.1.27. A hermitian∞-category (C, Ϙ) is called Poincaré ∞-category if Ϙ is
perfect. A hermitian functor between Poincaré ∞-categories F : (C, Ϙ) → (D,Φ) with
associated natural transformation η : Ϙ ⇒ Φ ◦ F op is called duality-preserving if the
natural transformation τη : F ◦ DϘ ⇒ DΦ ◦ F op canonically induced by η is a natural
isomorphism.

The ∞-category of Poincaré ∞-categories Catp∞ ⊆ Cath∞ is the non-full subcategory
spanned by Poincaré ∞-categories and duality-preserving functors.

Technical Remark. The non-fullness might seem strange at �rst glance, but it is a shadow
of the fact that Cath∞ should actually be an (∞, 2)-category, while Catp∞ gets rid of some
lax information.

While we have used Ϙ to construct BϘ and DϘ, one could also go the other way around:

De�nition 2.1.28. A stable ∞-category with duality (C, D) is a stable ∞-category C

equipped with an exact anti-autoequivalence D : Cop → C such that IdC
∼= D◦Dop holds,

as well as higher coherences. To be precise, there is an action of S2 on Catex∞ sending
C 7→ Cop, and we require (C, D) to be a homotopy �xed point of this action.

Construction 2.1.29. Starting from a stable ∞-category with duality (C, D), one can
construct an associated symmetric bilinear functor B(−,−) := mapC(−, D(−)) : Cop ×
Cop → Sp which is automatically perfect. Via 2.1.23 one obtains associated quadratic
functors

Ϙ
q
D : Cop → Sp , C 7→ mapC(C,DC)hS2 ,

Ϙ
s
D : Cop → Sp , C 7→ mapC(C,DC)hS2 .
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Example 2.1.30 ([Nik20, 5.7]). For R a commutative ring, equip the stable∞-category
Dperf(R) with the functor

Ϙ
s
R : Dperf(R)→ Sp , M 7→ mapD(R)(M ⊗L M,R[0])hS2 (2.12)

and also de�ne ϘqR by replacing homotopy invariants with coinvariants. For M =
P [0] with P a �nitely generated projective R-module, mapD(R)(P [0] ⊗L P [0], R[0]) ∼=
HomR(P ⊗ P,R)[0] since we are already working with a projective resolution, so that

π0Ϙ
s
R(M) = H0(HomR(P ⊗ P,R)[0]hS

2

) = HomR(P ⊗ P,R)S
2

(2.13)

is the R-module of symmetric bilinear forms on M . Similarly, using 2.1.9 we see that
π0Ϙ

q
R(M) agrees with the R-module of quadratic forms on M .

To show that ϘsR and ϘqR are quadratic functors equipping Dperf(R) with the structure
of a Poincaré ∞-category, we calculate their polarization

BϘsR(M,N)⊕ ϘsR(M)⊕ ϘsR(N) ∼= ϘsR(M ⊕N) ∼= mapD(R)(M ⊗L M,R[0])hS2⊕

⊕
(
mapD(R)(M ⊗L N,R[0])⊕mapD(R)(N ⊗L M,R[0])

)hS2 ⊕mapD(R)(N ⊗L N,R[0])hS2

Since M ⊗L N ∼= N ⊗L M , and the non-cross terms cancel, we are left with

BϘsR(M,N) ∼= mapD(R)(M ⊗L N,R[0]) ∼= BϘqR(M,N) (2.14)

after performing the same calculation in the quadratic case. In particular, we can read
o� DϘsR(N) ∼= RHom(N,R[0]) ∼= DϘqR(N) where RHom is the internal Hom right adjoint
to −⊗L N , in other words the ordinary derived Hom functor. Clearly DϘqR is exact, and
it is known (compare 2.4.7) that DϘsR ◦DϘsR ≃ IdDperf(R) for perfect complexes. Since ϘsR
and ϘqR are clearly the two universal quadratic functors associated to DϘsR , which is a
duality functor by its construction, we are �nished.

Remark. This also works for Dfp(R) and several other subcategories of the derived cat-
egory, and for non-commutative rings. For more, see the section on module spectra and
apply the stable Dold-Kan correspondence.

2.2 L-Groups of a Poincaré ∞-category

Let (C, Ϙ) be a Poincaré ∞-category.

Proposition 2.2.1. For n ∈ N, the n-shifted quadratic form Ϙ[n] := Σn◦Ϙ makes (C, Ϙ[n])
into a Poincaré ∞-category as well.
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Proof. We can calculate B
Ϙ[n] = Σn ◦ BϘ and D

Ϙ[n] = Σn ◦DϘ from their de�nitions. As
Σn is exact, it preserves reducedness of Ϙ, bilinearity of BϘ and exactness of ΛϘ, making
Ϙ
[n] quadratic. Also since DϘ is exact, Σn

C ◦DϘ = DϘ ◦ Σn
Cop = DϘ ◦ (Ωn

C)
op and therefore

D
Ϙ[n] ◦Dop

Ϙ[n]
∼= DϘ ◦ Ωn ◦ Σn ◦Dop

Ϙ
◦ IdC so Ϙ is perfect.

De�nition 2.2.2. A quadratic object (C, q) in C is an object C ∈ C equipped with a
point q ∈ Ω∞Ϙ(C). We call q a quadratic form on C, and identify it with a map of
spectra S → Ϙ(C). Similarly, an n-dimensional quadratic object (C, q) of C shall be
de�ned as a quadratic object in (C, Ϙ[−n]).

De�nition 2.2.3. A quadratic object (C, q) in (C, Ϙ) induces a point in

q ∈ Ω∞Ϙ(C)→ Ω∞B(C,C) ∼= Ω∞map(C,DϘC) = MapC(C,DϘC) , (2.15)

where the arrow Ϙ(C) → Ϙ(C ⊕ C) → B(C,C) is again induced by the diagonal map.
If the corresponding map q♯ : C → DϘC is an isomorphism, we call (C, q) a Poincaré
object. Similarly, we de�ne n-dimensional Poincaré objects.

Example 2.2.4. LetM be a compact topological n-manifold; then for R a commutative
ring, the singular complex C∗(X;R) ∈ Dperf(R) is an n-dimensional Poincaré object,
with quadratic form induced by the Kronecker pairing making use of its fundamental
class. It is di�cult to show that C∗(X;R) is perfect; this is equivalent to the cohomology
groups of M being bounded and �nitely generated, which follows from the fact that as
an absolute neighborhood retract M is homotopy equivalent to a �nite CW complex.
Being a Poincaré object is then just restatement of Poincaré duality; the map

− ∩ [M ] : C∗(M ;R)→ D
Ϙ[−n]C∗(M ;R) = RHom(C∗(M ;R), R)[−n] = Cn−∗(M ;R)

(2.16)
representing the Kronecker pairing is a quasi-isomorphism. Note that RHom is the usual
internal Hom since C∗(M ;R) is free in each degree.

De�nition 2.2.5. The functor Ω∞Ϙ : Cop → S sends P ∈ C to the space of quadratic
objects with underlying object P . Applying 1.2.25, this functor classi�es a right �bration
He(C, Ϙ)→ C with �ber over P given by Ω∞Ϙ(P ). We call the total space the∞-category
of quadratic forms in C, and its largest subgroupoid Fm(C, Ϙ) := He(C, Ϙ)≃ the space of
quadratic forms in C.

Similarly, the full subgroupoid of this space spanned by the Poincaré objects is the space
of Poincaré objects Pn(C, Ϙ). By construction and functoriality of the Grothendieck con-
struction, Pn,Fm : Catp∞ → S are functorial with respect to duality-preserving functors.

Remark. In particular, it follows from the de�nition of Pn(C, Ϙ) that an isomorphism
between two quadratic objects (P, q) and (P ′, q′) is an isomorphism f : P → P ′, together
with a path from f ∗q′ to q in Ω∞Ϙ(P ). Here and in the following, by f ∗ we mean the
map Ϙ(f) : Ϙ(P ′)→ Ϙ(P ).
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De�nition 2.2.6. Let (P, q) be a Poincaré object in C. A Lagrangian of it is a morphism
f : L→ P in C, together with a path η : f ∗q → 0 in Ω∞Ϙ(L), where f ∗ := Ω∞Ϙ(f); such
that the sequence

L
f−→ P

q∼= DϘP
DϘf−→ DϘL (2.17)

is a �ber sequence in C, where we identify P and DϘP using the fact that (P, q) is a
Poincaré object. This involves in particular the vanishing of the composition of the
above maps, which we require to be witnessed by the path in MapC(L,DϘL) induced
by the path η in Ω∞Ϙ(L). If (P, q) admits a Lagrangian, it is called metabolic. We also
extend this de�nition to n-dimensional Poincaré-objects replacing Ϙ by Ϙ[−n].

Remark. We may rewrite this as requiring that η induces an isomorphism

L
η∼= fib(DϘP → DϘL) ∼= DϘ cofib(L→ P ) (2.18)

Example 2.2.7. For M a compact oriented topological n-manifold with boundary i :
∂M ↪→M , the pullback

i∗ : C∗(M ;R)→ C∗(∂M ;R) (2.19)

is a Lagrangian of the (n− 1)-dimensional Poincaré object C∗(∂M ;R) ∈ Dperf(R), with
η induced by capping with the relative fundamental class. This is a restatement of
Poincaré-Lefschetz duality, as we require the map

DϘC
∗(∂M ;R)[−n] = Cn−∗(∂M ;R) ≃ cofib(i∗) = C∗(M,∂M ;R) (2.20)

induced by η to be a quasi-isomorphism.

Example 2.2.8. Equip the zero object 0 ∈ C with its unique quadratic form, making
it into an n-dimensional Poincaré object for arbitrary n. A terminal map f : L→ 0 for
L ∈ C together with a path η : f ∗0 = 0→ 0 is a Lagrangian i� the sequence

L−→0−→DϘL[−n] (2.21)

is a �ber sequence, in other words the loop η ∈ ΩΩ∞Ϙ[−n](L) = Ω∞Ϙ[−n−1](L) →
MapC(L,DϘL[−n− 1]) induces an isomorphism

η : L
∼=−→ DϘL[−n− 1] (2.22)

making L into an (n + 1)-dimensional Poincaré object. Compare this with the last
example: A null-bordism of the empty n-manifold is the same thing as an (n + 1)-
manifold.

Proposition 2.2.9. The set of isomorphism classes of Poincaré objects π0 Pn(C, Ϙ) forms
a commutative monoid under the operation

[(P, q)]⊕ [(P ′, q′)] := [(P ⊕ P ′, q ⊕ q′)] . (2.23)

where the orthogonal sum q ⊕ q′ ∈ Ω∞Ϙ(P ⊕ P ′) ∼= Ω∞Ϙ(P )⊕ Ω∞Ϙ(P ′)⊕ Ω∞BϘ(P, P
′)

corresponds to (q, q′, 0). The classes of metabolic Poincaré objects form a commutative
submonoid π0 Pn

∂(C, Ϙ).
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Proof. This operation well-de�ned on isomorphism classes as it is clearly functorial, also
it is associative since the direct sum is. The zero Poincaré object 0 equipped with its
unique quadratic form acts as a unit since P ⊕ 0 ∼= P , and we know ⊕ is commutative.
Finally, the metabolic objects form a submonoid since 0 is metabolic, and the orthogonal
sum of two metabolic objects admits the direct sum of the respective Lagrangians as a
Lagrangian.

De�nition 2.2.10. Let (C, Ϙ) be a Poincaré∞-category, then we de�ne its n-th L-group
as the quotient of commutative monoids

Ln(C, Ϙ) :=
π0 Pn(C, Ϙ

[−n])

π0 Pn
∂(C, Ϙ[−n])

. (2.24)

Lemma 2.2.11. For C a stable ∞-category and C ∈ C, the sequence

C
∆−→ C ⊕ C

(idC ,− idC)−→ C (2.25)

is always a �ber sequence.

Proof. Via matrix multiplication (idC , idC)◦(idC ,− idC)
T = 0, we see that this sequence

composes to the zero map (witnessed by a canonical homotopy). We have to show that
the left square in the diagram

C C ⊕ C C

0 C 0

∆ π1

(idC ,− idC)

is a pushout, which by the pasting lemma and the fact that pushout and pullback squares
agree is equivalent to the right square being a pushout. Since the middle vertical map
agrees with π1−π2, by de�nition of addition and subtraction of morphisms we may shift
π2 to the right horizontal arrow, obtaining ∇ = π1 + π2. We reduce to showing that the
lower right square in the diagram below is a pushout, which again follows by iteratively
applying the pasting lemma.

0 C

C C ⊕ C C

0 C 0

i1

i2 ∇

π1
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Proposition 2.2.12. The commutative monoids Ln(C, Ϙ) are actually abelian groups.

Proof. The inverse to [(P, q)] is given by [(P,−q)] where −q arises from Ω∞Ϙ(P ) being
an in�nite loop space, in particular we can invert loops. To see this, use the Lagrangian
∆ : P → P ⊕ P given by the diagonal map. In the induced sequence

P
∆−→ P ⊕ P

q⊕(−q)∼= DϘ(P ⊕ P )
DϘ∆−→ DϘP , (2.26)

the right map (DϘ∆) ◦ (q⊕ (−q)) : P ⊕P → DϘP is isomorphic to q ◦ (idP ,− idP ) since
the diagonal map in Cop is the codiagonal in C, so the square

P ⊕ P P

DϘ(P ⊕ P ) DϘP

∇

q⊕q q

DϘ∆

commutes by de�nition of q ⊕ q. Therefore, we are �nished after we apply the previous
Lemma and the fact that q : P → DϘP is an isomorphism.

2.3 Tensor and Cotensor Poincaré Structures

Construction 2.3.1 ([CDH+20a, 6.3.2]). Given an arbitrary ∞-category J and a her-
mitian ∞-category (C, Ϙ), let us de�ne the cotensor hermitian ∞-category (C, Ϙ)J with
underlying stable ∞-category given by Fun(J,C). The corresponding quadratic functor
Ϙ
J : Fun(J,C)op → Sp is de�ned as

Ϙ
J(F ) := lim

i∈Jop
Ϙ(F (i)) (2.27)

which means that
BJ(F, F ′) = lim

i∈Jop
B(F (i), F ′(i)) . (2.28)

If Ϙ is non-degenerate, admitting a duality functor D : Cop → C, then

DJ(F )(i) := lim
(i→j)∈(Ji/)op

DF (j) (2.29)

is a duality functor for ϘJ, if all involved limits exist in C.

Proof. Seeing that BJ is the polarization of ϘJ is straightforward since limits commute
with direct sums (as those are also limits). Clearly, ϘJ is reduced and BJ is bilinear.
Similarly, we calculate

ΛJ(F ) = fib(Ϙ(F )→ BϘ(F, F )hS2) = lim
i∈Jop

ΛϘ(F (i)) (2.30)
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which is also exact. For the duality functor, rewrite

nat(F,DJ(F ′)) ≃
�
i∈J

map

(
F (i), lim

(i→j)∈(Ji/)op
DF (j)

)
≃

�
i∈J

lim
(i→j)∈(Ji/)op

BϘ(F (i), F ′(j))

It remains to show that this limit diagram (regarding the end as a limit) just calculates
the limit over Jop. As explained in the reference, one can rewrite it as a limit over the
double twisted arrow category TW(TW(C)), and using Quillens Theorem A 1.2.15 we
could show that:

� The projection TW(TW(J))→ Fun(∆1, J) to the ordinary arrow category, induced
by sending an object

i l

j k

to the diagonal i→ k which is covariant in i and k, is left co�nal.

� The diagonal J → Fun(∆1, J) sending an object to its identity morphism is left
co�nal.

From the explicit expression for DJ, and the fact that limits in a functor category are
calculated pointwise, it is clear that the duality functor is exact, so we are �nished.

Example 2.3.2. Even if J is �nite and (C, Ϙ) is a Poincaré ∞-category, the cotensor
(C, Ϙ)J need not be Poincaré. As an example, set J = (∗ → ∗ ← ∗) and let F : J→ C be
given by the diagram (A→ C ← B). Then,

DJF = (lim(A→ C)→ lim(F )← lim(B → C)) = (C
idC→ C

idC← C) (2.31)

since all involved limit diagrams contain C as a �nal object, and (DJ)2F ≃ (C
idC→ C

idC←
C) for the same reason. This is clearly not isomorphic to F .

Example 2.3.3. If J is the ordinary category (∗ ← ∗ → ∗) and (C, Ϙ) is Poincaré, then
Fun(J,C) consists of spans

L

P P ′

f f ′

and the dual is DJ(P ← L→ P ′) = (DP ← DP ×DL DP ′ → DP ′). In particular,

(DJ)2(P ← L→ P ′) = (D2P ← D2P ×D(DP×DLDP ′) D
2P ′ → D2P ′) ∼=

∼= (P ← P ×P⨿LP ′ P ′ → P ′) ∼= (P ← L→ P ′)

59



since pushout squares and pullback squares agree, so (C, Ϙ)J is again Poincaré. A span
as above is a Poincaré object i� it is equipped with a quadratic form q ∈ Ω∞(Ϙ(P )×Ϙ(L)
Ϙ(P ′)) = Ω∞Ϙ(P )×Ϙ(L) Ϙ(P ′) that induces compatible isomorphisms

P ∼= DP, P ′ ∼= DP ′, L ∼= DP ×DL DP ′ . (2.32)

More explicitly, a Poincaré object of this cotensor consists of two Poincaré objects

(P, q), (P ′, q′) in C and a span P
f← L

f ′
→ P ′ together with a path η : f ∗q → f ′∗q′

in Ω∞Ϙ(L) such that the induced map n : L → DP ×DL DP ′ ∼= D(P ⨿L P ′) from the
square below is an isomorphism, where η witnesses commutativity.

L P ′ DP ′

P

DP DL

f ′

f

q′

Df ′

q

Df

η

Equivalently, we could have required the map

fib(L→ P ) ∼= fib(P ′ → P ⨿L P ′)
Dn◦−→ fib(P ′ → DL) ∼=

∼= fib(DP ′ → DL) ∼= D cofib(L→ P ′) ∼= (D fib(L→ P ′))[−1]
(2.33)

to be an isomorphism.

De�nition 2.3.4. A Poincaré object (P ← L → P ′) as in the example above is called
a Lagrangian correspondence or algebraic bordism between P and P ′.

Lemma 2.3.5. A diagram (P ← L→ P ′) together with a path η : f ∗q → f ′∗q′ as above
is a Lagrangian correspondence i� the map −f ⊕ f ′ : L → P ⊕ P ′ equipped with an
induced path η′ : (−f ⊕ f ′)∗(q ⊕ q′)→ 0 is a Lagrangian.

Proof. Rewrite the de�ning property of a Lagrangian correspondence as

L ∼= DP ×DL DP ′ = (DP ⊕DP ′)×DL (DP ⊕DP ′) = fib(f ⊕ f ′ : DP ⊕DP ′ → DL)

where we switch the side of DP in the pullback, inducing a minus sign. Identify η with a
path −f ∗q+f ′∗q′ → 0, and note that the left agrees with (−f⊕f ′)∗(q⊕q′) by de�nition
of the orthogonal sum q ⊕ q′. Going through the above calculation, the induced path η′

exhibits −f ⊕ f as isotropic.

Example 2.3.6.

� By this Lemma, a Lagrangian correspondence (0← L→ P ) is a Lagrangian of P .
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� A Lagrangian correspondence from the zero Poincaré object to itself is a La-
grangian of 0, i.e. a 1-dimensional Poincaré object by 2.2.8.

� Let W be a compact oriented topological (n + 1)-manifold with boundary ∂W =
−M ⊔N where M,N are closed oriented topological n-manifolds, in other words
W is a bordism from M to N . Then, for R a commutative ring, the restrictions

C∗(M ;R)← C∗(W ;R)→ C∗(N ;R) (2.34)

of singular cochain complexes form a Lagrangian correspondence between n-
dimensional Poincaré objects in Dperf(R) by virtue of Poincaré-Lefschetz duality:
Capping with the relative fundamental class induces a quasi-isomorphism

C∗(W ;R)⧸C∗(M ;R) ≃ D
(
C∗(W ;R)⧸C∗(N ;R)

)
[1− n] (2.35)

where the right agrees with the relative singular chain complex Cn+1−∗(W,N ;R).

Remark. If J is the poset sd(∆n)op = ({S ⊆ {1, . . . , n}|S ̸= ∅},⊇) of simplices in ∆n

ordered by containment (not inclusion), we will see in a moment that (C, Ϙ)J is also
Poincaré, retaining the above example as a special case for n = 1. We can regard the
Poincaré objects in (C, Ϙ)J as higher algebraic bordisms in C, i.e. bordisms between
bordisms and so on. This will be exploited in the ρ-construction 2.5.2 to de�ne the
L-spectrum.

Construction 2.3.7 ([CDH+20a, 6.5.8]). Let J be a strongly �nite ∞-category, i.e.
with a �nite set of objects and �nite mapping spaces, and (C, Ϙ) a Poincaré∞-category.
We then dually de�ne the tensor hermitian ∞-category (C, Ϙ)J by equipping Fun(Jop,C)
with the quadratic functor

ϘJ(S) := colim
i∈J
Ϙ(S(i)) (2.36)

inducing the bilinear functor

BJ(S, S
′) ≃ colim

i∈J
B(S(i), S ′(i)) (2.37)

for S, S ′ : Jop → C. If Ϙ is non-degenerate with duality functor D : Cop → C, then

DJS(i) := colim
j∈J

D(S(j))Map(j,i) (2.38)

is a duality functor for ϘJ, where the involved �nite colimits always exist in a stable ∞-
category. We have also used the cotensoring of any stable∞-category over �nite spaces,
de�ned as CMap(j,i) := limf∈Map(j,i) C over the constant functor. This formula becomes
particularly simple if J is �nite poset, since the mapping spaces are either empty or
contractible in this case:

DJS(i) = colim
j∈J

{
D(S(j)) if j ≤ i

0 otherwise
(2.39)
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Proof. Analogous to the tensor hermitian ∞-category, once we check that DJ is the
correct duality functor. We calculate

nat (S,DJS
′) ∼=

�
i∈J

map

(
S(i), colim

j∈J
DS(j)Map(j,i)

)
The functor map(S(i),−) preserves limits, hence also �nite colimits by 1.5.6; similarly
for the end. We therefore may pull the colimit out, obtaining

colim
j∈J

�
i∈J

map(S(i), DS(j)Map(j,i)) ∼= colim
j∈J

lim
[i→i′]∈TW(J)op

map(S(i), DS(j))Map(j,i)

by universal property of the cotensoring. But (−)Map(j,i) = limf∈Map(j,i)(−), and we can
combine both limits into a limit over TW(Jj/)

op. The functor TW(Jj/)
op → Jj/ sending

a morphism to its target is right co�nal, and Jj/ has an initial object idj, so we are
�nished.

Remark. This can be extended to ∞-categories J that are not strongly �nite as done in
[CDH+20a, 6.4.1], which is however fairly complicated and we will not need it.

Proposition 2.3.8 ([Lur11, Lecture 19, Proposition 3]). Let J be the poset IopK of faces
of a �nite simplicial complex as de�ned in 4.1.1, ordered by containment (not inclusion),
and (C, Ϙ) a Poincaré ∞-category. Then, the cotensor hermitian ∞-category (C, Ϙ)J and
the tensor hermitian∞-category (C, Ϙ)J are both Poincaré; we then call them (co)tensor
Poincaré ∞-categories.

We will give a proof in the tensor case in 4.1.19, the cotensor case follows formally as
explained in the reference.

Remark. In this case, as indicated in the examples above, the cotensor hermitian ∞-
category describes data on simplicial complexes satisfying a Poincaré-Lefschetz-type
duality the boundary of each simplex, in a compatible way. In particular, the value
DJF (σ) on any simplex σ is obtained by "dividing out" the values of F at its boundary
faces. Dually, in the tensor hermitian ∞-category, DJS(σ) depends on the simplices
that σ is a face of, it is related to the relative homology H∗(|K|, |K|− |σ|). Therefore, it
can be used to model Verdier duality on simplicial complexes and PL spaces, see 4.1.18.

2.4 L-Groups of a Ring Spectrum

For this section, �x a commutative ring spectrum k ∈ CAlg(Sp) that we use as a ground
ring, and a ring spectrum R ∈ Alg(Modk) that is a k-algebra. For k = S this just means
that R is a ring spectrum, but e.g. for k = HZ this allows us to make statements about
di�erential graded algebras using the stable Dold-Kan correspondence 1.7.2.
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De�nition 2.4.1. The ∞-category LModR⊗kR of spectra with two compatible left R-
module structures admits an S2-action exchanging the two factors of R. An R-module
with involution is a homotopy �xed point of this action; in other words an (R ⊗k R)-
module M together with an isomorphism of spectra σ : M → M that is linear over the
exchange isomorphism τ : R ⊗k R → R ⊗k R in the sense that σ : M ∼= τ∗M is an
isomorphism of R-modules. Further, σ2 ∼= idM together with higher coherence relations
on this isomorphism.

Example 2.4.2. If R is an ordinary ring and M an (R ⊗L
Z R)-module, equipped with

an isomorphism σ : M → τ∗M interchanging the two R-module structures, then M [0] ∈
D(R ⊗L

Z R) ≃ LModHR⊗HZHR becomes a HR-module with involution, where higher
coherence relations are trivial.

De�nition 2.4.3. An R-module M with involution is called an invertible R-module if

� It is perfect with respect to either of the A-module structures (applying the invo-
lution, it is then automatically perfect with respect to the other).

� If we equip M with the �rst R-module structure, the second can be rewritten as
an action of R on M , i.e. a morphism R → HomR(M,M). We require this to be
an isomorphism. Equivalently, applying the involution, we could have exchanged
the roles of both module structures.

Example 2.4.4. If R is a commutative ring spectrum, we may regard it as an (R⊗kR)-
module over itself by restricting the scalars of its canonical R-left-module structure along
the multiplication map R⊗kR→ R, in other words we de�ne the module multiplication
as (r1 ⊗ r2) · r := r1 · r2 · r. Since the multiplication is symmetric in its arguments, this
canonically makes R into a homotopy invariant with respect to the S2 action exchanging
the factors of R, so it becomes a module with involution. In fact, the map R →
HomR(R,R) is the identity be de�nition, making R into an invertible R-module.

In nature, invertible modules often arise via the following construction:

De�nition 2.4.5. The category Alg(Modk) possesses an S2-action sending a k-algebra
A to its opposite, in the sense of 1.6.14. A k-algebra with anti-involution is a homotopy
�xed point of this action, i.e. a k-algebra A together with an isomorphism τ : A→ Aop

satisfying higher coherence conditions.

Proposition 2.4.6 ([CDH+20a, 3.1.9]). If (A, τ) is a k-algebra with anti-involution,
then it comes naturally equipped with the structure of a (A⊗k A)-module by applying
τ to the second component, so the module action looks like

(A⊗k A)⊗k A→ A , (a⊗ a′) · b := a · b · τ(a′) . (2.40)

This naturally makes A into an invertible A-module.
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Proof. Since τ is a morphism of k-algebras this does de�ne a module action, restricting
coe�cients of the canonical A-Aop-bimodule structure on A. Also, A is by de�nition a
�nitely presented A-module, so it su�ces to check that the map A→ HomA(A,A)

∼= Aop

is an isomorphism. The op appears since the A-module structure on the right side is
induced by the second module structure of A, which was multiplication precomposed
with τ . Hence, the map agrees with τ , which is an isomorphism by de�nition.

Now, let us use invertible modules to de�ne Poincaré structures on R-modules.

Proposition 2.4.7 ([Lur17, 7.2.4.4]). For P ∈ LModperf(R) a perfect R-module, the
canonical biduality morphism

P → HomR(HomR(P,R), R) (2.41)

is an isomorphism.

Remark. This generalizes the statement that a perfect complex P over an ordinary ring
R is quasi-isomorphic to its bidual RHom(RHom(P,R), R), by the stable Dold-Kan
equivalence 1.7.2. In particular, any �nite-dimensional vector space is isomorphic to its
bidual space.

Proposition 2.4.8. Given an invertible R-module M , we can de�ne the functors

Ϙ
s
M : LModop

R → Sp , P 7→ mapR⊗kR
(P ⊗R P,M)hS2 (2.42)

and ϘqM involving coinvariants on the stable ∞-category LModperf
R of R-module spectra.

The associated bilinear functor is in both cases given by

BM(P, P ′) = mapR⊗kR
(P ⊗R P ′,M) (2.43)

so we can identify the duality functor as

DM(P ) = HomR(P,M) ∈ LModR (2.44)

where we may equip M with either of its R-module structures. The pairs (LModperf
R , ϘsM)

and (LModperf
R , ϘqM) are Poincaré∞-categories, and ifM is �nitely presented with respect

to either of its module structures the same holds in the �nitely presented case.

Proof. This is a generalization of, and works precisely like the example of derived cate-
gories 2.1.30. We have to check that for P a perfect R-module, HomR(P,M) is perfect
as well, and similarly if P,M are �nitely presented. Also, we need to show biduality:

DMDM(P ) = HomR(HomR(P,M),M) (2.45)

� If P = R, by assumption DM(R) = HomR(R,M) ∼= M is perfect/ �nitely pre-
sented. Also, DMDM(R) ∼= DM(M) = HomR(M,M) ∼= R as M is invertible.
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� Any �nitely presented R-module P is generated by R under co�bers and shifts,
and both of the above properties are preserved under these operations.

� If P is a direct summand of P ′ = P ⊕Q and DM(P ′) = HomR(P
′,M) = DM(P )⊕

DM(Q) is perfect, then its direct summand DM(P ) is also perfect since perfect
modules are by de�nition closed under direct summands.

� Similarly if P ′ = P⊕Q satis�es biduality, thenDMDM(P ) is the direct summand of
DMDM(P ′) ∼= P ′ on homomorphisms that send HomR(Q,M) to zero, which itself
is the summand of homomorphisms in DM(P ′) sending P to zero. By construction
of the evaluation map P ′ → DMDM(P ′) we can hence identify it with P .

De�nition 2.4.9. For R an associative ring spectrum and M an invertible R-module,
we de�ne the projective quadratic and projective symmetric L-groups

Lpq
n (R,M) := Ln(LModperf

R , ϘqM) , Lps
n (R,M) := Ln(LModperf

R , ϘsM) . (2.46)

Similarly, if M is additionally �nitely presented with respect to either of its R-module
structures, we de�ne the quadratic and symmetric L-groups Lq

n(R,M) and Ls
n(R,M) by

replacing perfect by �nitely presented R-modules.

Remark. If M = R with both R-module structures induced by multiplication in R, we
simply denote the respective L-groups by Lq

n(R), Ls
n(R) etc., without specifying M .

Remark. By their construction, the stable Dold-Kan correspondence 1.7.2 identi�es the
quadratic functors ϘqR and ϘsR with those on derived categories from 2.1.30.

Theorem 2.4.10 (Ranicki periodicity, [CDH+20a, 3.5.14.(i), 3.5.16]).
Let k0 be an ordinary commutative ring and k = Hk0. Then, the (projective) symmetric
and quadratic L-groups of any ring spectrum R over k with respect to an invertible R-
module M are always 4-periodic, in the sense that

Lq
n+4(R,M) ∼= Lq

n(R,M) (2.47)

and similarly in the other cases. If we further denote by −M the invertible R-module
obtained by replacing the involution σ : M ∼= τ∗M by −σ, then in all cases

Lq
n+2(R,M) ∼= Lq

n(R,−M) . (2.48)

Proof Sketch. Let (P, q) be an n-dimensional Poincaré object representing a class of
Ls
n(R,M), the other cases are analogous. This means that the quadratic form

q ∈ Σ−nmap(P ⊗R P,M)hS2 (2.49)

induces an isomorphism P ∼= Σ−nHomR(P,M). But then ΣP ∼= Σ−n−1HomR(P,M), so
it appears that q makes ΣP into an (n + 2)-dimensional Poincaré object. This is not
completely true:
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SinceM,P are modules over the k-algebra R, they themselves are modules over k = Hk0
as well, so by the stable Dold-Kan correspondence 1.7.2 we may represent them by
(�nitely presented) chain complexes M,P ∈ D(k0). Here, q corresponds to a symmetric
bilinear form b : P ⊗ P → M with respect to the involution σ of M , however by the
Koszul sign rule Σb : ΣP ⊗ ΣP → Σ2M is antisymmetric. This can be remedied by
changing the sign of σ, because it is involved in the S2-action making sense of which
forms are symmetric, and which antisymmetric.

The functor Σ thus associates to an n-dimensional Poincaré object with respect to M
and (n + 2)-dimensional Poincaré object with respect to −M , and is clearly invertible
by applying Ω. We obtain the second claimed isomorphism of L-groups; and applying it
twice yields the �rst isomorphism as −(−M) = M .

Example 2.4.11 ([Lur11, Lectures 13, 15, 16]). If we regard the integers Z as a com-
mutative ring spectrum HZ with trivial involution, its L-groups are given by

Lq
n(Z) =


8Z, for n = 0mod4

0, for n = 1mod4

Z/2Z, for n = 2mod4

0, for n = 3mod4

, Ls
n(Z) =


Z, for n = 0 mod 4

Z/2Z, for n = 1mod4

0, for n = 2mod4

0, for n = 3mod4

where the component in degree 0 corresponds to the signature of a quadratic form, while
the Z/2Z component is called the Arf-Kervaire and deRham invariant respectively.

For k a �eld of characteristic ̸= 2, the L-groups Lq
n(k) = Ls

n(k) vanish unless n = 0
modulo 4, where they agree with the classical Witt group of quadratic spaces W (k). If k
is algebraically closed the W (k) ∼= Z/2Z, while for any real-closed �eld (in particular the
real numbers) W (k) ∼= Z via the signature. The Witt group W (Q) is however in�nite
and complicated. See the referenced lectures for proofs of our statements, or [CDH+21].

Warning. If R is an ordinary ring, there are several non-equivalent ways to extend the
notion of quadratic and symmetric forms to LModHR. Recall from 2.1.9 that the space
of quadratic forms on a �nitely generated projective R-module P is given by

QuadR(P ) = HomR(P ⊗ P,R)S2 (2.50)

while the space of symmetric forms SymmR(M) is obtained by replacing coinvariants
with invariants. Extending to D(R) ≃ LModHR seems straightforward: We need to
derive the functors QuadR and SymmR. However, they are not additive!

Still, this can be done using the concept of a non-abelian derived category or animation,
where we resolve by simplicial objects instead of chain complexes. The derived functor
Ϙ
gq : LModHR → Sp of QuadR does not agree with Ϙq; similarly for symmetric forms Ϙgs

does not agree with Ϙs. Their associated L-groups are non-periodic and called genuine
quadratic and genuine symmetric L-groups. We will not need them, but want the reader
to be aware that L-groups depend not only on DϘ, but also Ϙ itself in a subtle way.
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2.5 ρ-construction and L-spectra

We give an alternative, more geometric de�nition for the L-groups of a Poincaré ∞-
category (C, Ϙ) that mimics the classical de�nition of a Quinn-spectrum or an ad-
theory.

As a motivation, we remind the reader that the singular chain complex C∗(M ;Z) of
a closed oriented n-manifold Mn equipped with the Kronecker pairing determines a
class in Ls

n(Z), and for a bordant manifold Nn, the associated class agrees. In fact,
one should regard algebraic L-theory as an algebraic analogue of bordism theory, and
many geometric constructions and results should have analogues in the algebraic world.
Particularly interesting is the following example:

Theorem 2.5.1. Let (P, q), (P ′, q′) and (P ′′, q′′) be n-dimensional Poincaré objects and

P
f← L

f ′
→ P ′ as well as P ′

g← L′
g′→ P ′′ Lagrangian correspondences with associated

paths η : f ∗q ≃ f ′∗q′ and η′ : g∗q′ → g∗q′′. Then, the span P ← L×P ′ L′ → P ′′ induced
by the diagram

L×P ′ L′

L L′

P P ′ P ′′

π1

π2

f f ′ g g′

is also a Lagrangian correspondence, with associated path π∗2η
′ ◦ π∗1η.

Proof. We know that P ∼= P∨[−n] induced by q, and similarly for P ′ and P ′′. Also,
L,L′ being Lagrangian correspondences amounts to isomorphisms

L ∼=P∨[−n]×L∨[−n] P
′∨[−n] ,

L′ ∼=P ′∨[−n]×L′∨[−n] P
′′∨[−n]

induced by η, η′. Consequently we can use the Pasting Lemma to dualize and extend
the above commutative diagram to

(L×P ′ L′)∨[−n] L∨[−n] P∨[−n]

L′∨[−n] P ′∨[−n] L

P ′′∨[−n] L′ L×P ′∨[−n] L
′
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where every square is a pullback (and by stability also a pushout). This implies, using
P ′ ∼= P ′∨[−n] and pasting, that L×P ′L′ ∼= P∨[−n]×(L×P ′L′)∨[−n]P

′′∨[−n]. Compatibility
of the required witnessing 2-morphisms can be veri�ed by chasing them around the
diagram.

Remark. Compare this with the observation that a bordism W between closed oriented
manifolds M and M ′, and a bordism W ′ from M ′ to M ′′, can be glued along a collar to
a bordism from M to M ′′. In particular, if (P, q) is an n-dimensional Poincaré object
and f : L → P , f ′ : L′ → P equipped with η, η′ are two distinct Lagrangians, then the
pullback L×P L′ comes equipped with the structure of an (n+1)-dimensional Poincaré
object, with quadratic form π∗1η ◦ π∗2η′ : 0 → π∗1f

∗q = π∗2f
′∗q′ → 0 being a path from 0

to 0 in Ω∞Ϙ[−n](L×P L′), i.e. a point in the loop space

Ω1Ω∞Ϙ[−n](L×P L′) = Ω∞Ϙ[−n−1](L×P L′) .

This is analogous to how two null-bordisms of an n-manifold can be glued to an (n+1)-
manifold.

Figure 2.1: Gluing two null-bordisms W,W ′ of N to a closed manifold

This tells us that classes in Ln+1, being (n + 1)-dimensional Poincaré objects, can be
constructed from Poincaré objects of dimension n by gluing two Lagrangians, just as for
example the circle S1 can be constructed from S0 by gluing two intervals (i.e. nullbor-
disms). Iteratively, we could also glue S2 from the obtained S1 by gluing two disks that
we regard null-bordisms, and so on. Similarly, Poincaré objects of higher degree can
be obtained from ordinary Poincaré objects by gluing of Lagrangians and �higher La-
grangians". The underlying combinatorics are captured by the following construction:

Construction 2.5.2 (ρ-construction). For n ∈ N0 and [n] = {0, . . . , n}, let sd([n])op be
the power set of [n] equipped with the opposite ordering to the one given by inclusion.
The cotensor hermitian ∞-categories

ρn(C, Ϙ) := (C, Ϙ)sd([n])
op

= (Fun(sd([n])op,C), Ϙsd([n])
op

) (2.51)
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are Poincaré∞-categories by 2.3.8 and are functorial in the sense that they naturally �t
into a simplicial object ρ•(C, Ϙ) ∈ Fun(∆op,Catp∞), as can be deduced from [CDH+20a,
6.6.1, 6.6.2]. Composing this with any functor F : Catp∞ → S consequently yields a
simplicial space Fρ•(C, Ϙ) : ∆

op → S.

De�nition 2.5.3. A simplicial space is a functor X : ∆op → S, where we denote
Xn := X([n]). The geometric realization |X| ∈ S is de�ned as the quotient topological
space

|X| :=
⊔
n

Xn × |∆n|⧸∼ (2.52)

by the relations introduced by the face maps in X, which we regard as a Kan complex.
This is an analogue of the geometric realization of a simplicial set, since it is formally
obtained by applying the nerve-realization paradigm to the functor rspace : ∆ → S

sending [n] to a Quillen-�brant replacement of ∆n like Sing |∆n|:

|X| := Lanh rspace(X) = colim
h([n])→X

rspace([n]) =

� n∈∆
Xn × Sing |∆n| (2.53)

The colimit or coend introduces the mentioned gluing.

De�nition 2.5.4. For (C, Ϙ) a Poincaré∞-category, its L-theory space L(C, Ϙ) is de�ned
as the geometric realization of the simplicial space determined by Poincaré objects in
the ρ-construction:

L(C, Ϙ) := |Pn ρ(C, Ϙ)| (2.54)

This yields a functor L : Catp∞ → S since the geometric realization, Pn and the ρ-
construction are functorial.

Example 2.5.5. For X a simplicial space, let us calculate π0|X|. This only depends
on the 1-skeleton, and can be identi�ed with the set of vertices divided by the relation
identifying vertices connected by an edge in |X|. But since |X| is a quotient of

⊔
nXn×

|∆n|, its edges either come from edges of X0, or vertices of X1. This means that π0|X|
agrees with the quotient of π0X by the relation generated by [x] ≃ [y] for x, y ∈ X0 if
there is a z ∈ X1 such that x = X(d0)(z) and y = X(d1)(z).

In particular, this means that L0(C, Ϙ) is the quotient of π0 Pn(C, Ϙ) by the relation gen-
erated by Lagrangian correspondences, agreeing with our de�nition of L0(C, Ϙ) because
we may equivalently divide by metabolic objects by 2.3.5. Let us try to generalize this
to the higher L-groups and homotopy groups.

Proposition 2.5.6 ([CDH+20b, 3.5.8]). In the above situation, there is a natural ho-
motopy equivalence

ΩL(C, Ϙ)
≃−→ L(C, Ϙ[−1]) . (2.55)
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Proof Idea. This is di�cult to show without further preparations, let us �rst explain
what happens on objects. On the left, those are loops in L(C, Ϙ), but we have seen that
the edges in this space consist of isomorphisms of Poincaré objects and of Lagrangian
correspondences. The former are a special case of the latter, so such a loop at the zero
objects is equivalent to a Lagrangian correspondence from the zero Poincaré object to
itself. By 2.3.6, this is the same thing as a 1-dimensional Poincaré object. Hence, the
di�culty lies in extending this to higher simplices.

To do this, we need to make the set of Lagrangian correspondences into a space. We
have already done this in 2.3.3, where we had noticed that Lagrangian correspondences
are precisely the Poincaré objects in the cotensor Poincaré∞-category C(∗←∗→∗). Let us
look at the stable subcategory on diagrams of the form (0← L→ P ) on correspondences
beginning at the zero object; one can show [CDH+20a, 2.3.5] that the cotensor quadratic
functor restricts to a Poincaré structure on it. We call this to metabolic Poincaré ∞-
category Met(C, Ϙ) associated to (C, Ϙ), and its Poincaré objects are pairs of Poincaré
objects in C and associated Lagrangians.

There is a canonical duality-preserving functor (C, Ϙ[−1])→ Met(C, Ϙ) sending C 7→ (0←
0 → C); such that the associated functor on Poincaré objects maps a 1-dimensional
Poincaré object in C to the associated Lagrangian of the zero object by the above dis-
cussion. Together with the duality-preserving functor (0 ← L → C) 7→ C sending a
Lagrangian to the underlying Poincaré-object, we obtain by [CDH+20b, 1.2.5] a split
Poincaré-Verdier sequence (see the next section)

(C, Ϙ[−1]) −→ (Met(C, Ϙ), Ϙmet) −→ (C, Ϙ) . (2.56)

We are �nished after noting the following:

� The functor L : CatP∞ → S sending a Poincaré ∞-category to its L-theory space is
additive as de�ned in [CDH+20b, 1.5.4], which means in particular that it sends
Poincaré-Verdier sequences to �ber sequences.

� The functor L is also bordism-invariant, so by [CDH+20b, 3.5.4] it sends metabolic
Poincaré∞-categories to the contractible space L(Met(C, Ϙmet)) = ∗. This is intu-
itively clear, since in the L-theory space there is a path joining any metabolic
object to zero and similarly for higher simplices, but in Met(C, Ϙmet) every-
thing is metabolic by de�nition � alternatively, show that the homotopy groups
πnL(Met(C, Ϙmet)) are trivial as in [CDH+20b, 3.5.5].

De�nition 2.5.7. For (C, Ϙ) a Poincaré∞-category, its L-theory spectrum L(C, Ϙ) is the
in�nite loop space

L(C, Ϙ) := [L(C, Ϙ),L(C, Ϙ[1]),L(C, Ϙ[2]), . . . ] ∈ Sp (2.57)

where the transition maps are induced by the last proposition. By its construction from
L, the association L : Catp∞ → Sp is functorial.
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Theorem 2.5.8. The homotopy groups πnL(C, Ϙ) agree with the L-groups Ln(C, Ϙ) we
have de�ned in 2.2.10. For n ≥ 0, they also agree with the homotopy groups πnL(C, Ϙ).

Proof. By 2.5.6, we know that the structure maps L(C, Ϙ[m])→ ΩL(C, Ϙ[m+1]) are homo-
topy equivalences (classically, spectra with this property are called Ω-spectra), so

πnL(C, Ϙ
[m]) ∼= πn−1ΩL(C, Ϙ

[m]) ∼= πn−1L(C, Ϙ
[m−1]) ∼= πn−iL(C, Ϙ

[m−i])

for all m ∈ Z, n ∈ N0 and i = 0, . . . , n. This implies for i = n,m = 0 that

πnL(C, Ϙ) ∼= π0L(C, Ϙ
[−n]) = Ln(C, Ϙ)

proving one of the equivalences. Also, it follows that for n ≥ 0 the colimits calculating
its stable homotopy groups are essentiall constant:

πnL(C, Ϙ) = colim
m∈N

πn+mL(C, Ϙ
[m]) = π0L(C, Ϙ

[−n]) = Ln(C, Ϙ)

by the same argument as above. This also works for n < 0 if we ignore the terms in the
colimit where n+m < 0.

While calculating the L-groups, or the L-spectrum, of a given ring spectrum R equipped
with an invertible module M as in the last section seems like a very daunting task,
a powerful tool called algebraic surgery theory can be used for this purpose. While it
would take a while to properly introduce (see [CDH+21, Section 1] or [Lur11, Lecture
11-16]), we close this section by stating an important result that can be derived in this
manner:

De�nition 2.5.9. A module M over a ring spectrum R is called projective if it is a
direct summand of Rn for some n ∈ N. In particular, this implies that M is perfect.

Theorem 2.5.10 (Algebraic π-π-theorem, [CDH+21, 1.2.33]). Let M be a projective
invertible module over a connective ring spectrum R, then there is a canonical equiva-
lence

Lq(R,M) ∼= Lq(π0(R), π0(M)) . (2.58)
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3 A Zoology of Decompositions

Just as a topological space can be decomposed into an open subspace and its closed
complement, or how an R-module may be written as a direct sum or more general ex-
tension of two other R-modules, there several di�erent ways to de�ne a decomposition
of a stable or Poincaré ∞-category. We follow [CDH+20b] in introducing (split) Verdier
and (split) Poincaré-Verdier sequences as well as several useful results about them, and
draw a comparison with the notion of recollement in [Lur17, A.8] as well as semiortho-
gonal decompositions of triangulated categories. After a brief digression on the much
stricter orthogonal decompositions, we generalize some of the above construction to the
case where we decompose our ∞-category in more than two parts.

3.1 Recollements

This section summarizes parts of the discussion of recollements of categories with �nite
limits in [Lur17], and speci�es to the stable case.

De�nition 3.1.1 ([Lur17, A.8.1]). An ∞-category C with �nite limits is called the
recollement of two full subcategories C0,C1 ⊆ C if:

� The inclusions i0, i1 : C0,C1 ↪→ C are re�ective, i.e. they admit left adjoints L0, L1.

� The re�ections L0, L1 are left exact.

� If X ∈ C0, then L1(X) = ∗ is the terminal object.

� L0 and L1 are jointly conservative: If α is a morphism in C such that L0(α) and
L1(α) are isomorphisms, then α is an isomorphism.

Remark. Many authors also assume that C0,C1 ⊆ C are replete, i.e. closed under iso-
morphism. We do not assume this as, being an evil1 notion, it is ultimately irrelevant;
however we sometimes abuse notation in the sense that if for C ∈ C we say C ∈ C0,
we actually mean that C is isomorphic to an object in C0. Should confusion arise, be
assured that we always use non-evil notions.

1A property in category theory is called evil if it is not invariant under equivalences of categories.
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Lemma 3.1.2. Conversely to the third point, if X ∈ C and L1(X) = ∗, then the unit
η0 : X → L0X is an isomorphism since L1η0 : ∗ → ∗ and L0η0 : L0X → L2

0X are, so X
(essentially) lies in C0. In other words, C0 agrees with the kernel of L1.

Lemma 3.1.3. If in the above situation C0 ∈ C0 and C1 ∈ C1, then

MapC(C0, C1) ∼= MapC1
(L1C0, C1) ∼= MapC1

(∗, C1) ≃ ∆0

is contractible. Conversely, if C ∈ C and MapC(C,C1) ≃ ∆0 for all C1 ∈ C1, then by the
Yoneda Lemma L1C = 0 so by the last lemma, C ∈ C0.

Proposition 3.1.4 ([Lur17, A.8.16]). Let X be a topological space, j : U ↪→ X an open
subset, and i : X − U =: Z ↪→ X the complementary closed subset. Then, the fully
faithful pushforward functors i∗ : Sh(Z) ↪→ Sh(X) and j∗ : Sh(U) ↪→ Sh(X) exhibit
Sh(X) as a recollement of Sh(Z) and Sh(U), with re�ections the pullbacks i∗, j∗.

Remark. By virtue of this example, we call C0 the closed and C1 the open subcategory
of the above recollement datum. Also, we will often denote i0, i1 by i∗ and j∗ and L0, L1

by i∗, j∗ following this analogy.

Remark ([Lur17, A.8.5], [Lur17, A.8.13]). In a similar manner to the later proof of 3.2.7,
one can show that

� If C0 has an initial object, the functor j∗ has a fully faithful left adjoint j+ : C1 → C.

� If C has a zero object meaning that its terminal object is also initial, the inclusion
C0 ↪→ C admits a right adjoint i− : C 7→ fib(C → j∗j

∗(C)), the �ber of the unit of
j∗ ⊣ j∗.

Proposition 3.1.5 ([HPT20, 5.20]). Let the ∞-category V be

� presentable and stable, or

� the tensor product of a compactly generated ∞-category and an ∞-topos.

Then, tensoring with V preserves recollements of presentable∞-categories. In particular
in the situation of 3.1.4, the∞-category Sh(X;V) of V-valued sheaves is the recollement
of Sh(Z;V) and Sh(U ;V).

Remark. The case where V itself is compactly generated is particularly well-behaved,
compare 3.5.9.

Proposition 3.1.6 ([Lur17, A.8.17]). Let C be the recollement of C0 and C1. Then, C is
stable i� both C0 and C1 are stable and L0|C1 : C0 → C1 is exact. We call this situation
a stable recollement.
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Proof. For the only if direction, C0 and C1 are the essential images of the left exact
localization functors L0 and L1 and therefore, as subcategories of C, closed under �nite
limits. In particular, they contain the zero object and are closed under �bers and �nite
products, and thus form stable subcategories by 1.5.7. Further, L0|C1 = L0 ◦ i1 is a
composition of left exact functors (since i1 is a right adjoint), but being left exact is
equivalent to being exact in the stable case.

The if direction is more involved; since C has �nite limits it su�ces to show that

� The terminal object ∗ ∼= L0(0) ∼= L1(0) in C is initial,

� A sequence C ′ → C → C ′′ in C is a (co)�ber sequence i� its images under L0, L1

are (co)�ber sequences both in C0 and C1.

The �rst point is clear since L0, L1 preserve colimits; note that the indicated sequence
of isomorphisms follows from joint conservativity. Similarly, the second claim follows
from the fact that L0, L1 preserve �nite limits and colimits and are jointly conservative,
for example C ′ ∼= fib(C → C ′′) i� the analogous statements for L0(C

′) and L1(C
′) hold.

For a more abstract argument, see the reference.

Remark. In the stable case, the extra adjoints j+ and i− always exist.

3.2 Verdier Sequences

De�nition 3.2.1. Given an exact functor F : C→ D between stable ∞-categories, we
call a morphism f in D an equivalence modulo C if its �ber fib(f) lies in the smallest
stable subcategory of D spanned by the essential image of F . Note that if F is the
inclusion of a stable subcategory, this just means fib(f) ∈ C ⊆ D. The Verdier quotient
D⧸C is de�ned as the localization (see 1.2.3) of D with respect to this class of morphisms.

Proposition 3.2.2 ([CDH+20b] A.1.5, A.1.6). In the above situation, D⧸C is stable and
the localization functor D → D⧸C is exact. Conversely, every localization of a stable
∞-category with these properties is a Verdier quotient.

De�nition 3.2.3 ([CDH+20b] A.1.10). A sequence C i∗→ D
j∗→ E of stable ∞-categories

and exact functors is called a Verdier sequence if:

� The composition j∗ ◦ i∗ is the zero functor,

� j∗ exhibits E as the Verdier quotient D⧸C,

� i∗ is fully faithful, embedding C as the full subcategory spanned by the objects
D ∈ D satisfying j∗(C) = 0
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Verdier sequences of stable ∞-categories are the analogue of short exact sequences, in
our earlier analogy between stable∞-categories and R-modules. However, the following
proposition does not hold any more:

Proposition 3.2.4 (Splitting Lemma).

A short exact sequence 0→M ′ f→M
g→M ′′ → 0 of R-modules splits if it is isomorphic

to the trivial extension 0 → M ′ i1→ M ′ ⊕M ′′ p2→ M ′′ → 0 in the sense that there is an
isomorphism M ∼= M ′⊕M ′′ making both involved squares commute. This is equivalent
to any of the following statements:

� There is an R-module-homomorphism s : M →M ′ such that s ◦ f = idM ′ .

� There is an R-module-homomorphism t : M ′′ →M such that g ◦ t = idM ′′ .

To develop a partial analogue to these splitting criteria for stable∞-categories, we need
some background on localizations.

De�nition 3.2.5. Let C be an ∞-category, W a class of morphisms in C and L : C →
C[W−1] the associated localization. We call L a re�ection or left Bous�eld localization if
it admits a fully faithful right adjoint, exhibiting C[W−1] as a re�ective subcategory of
C. Dually, L is a core�ection or right Bous�eld localization if it admits a fully faithful
left adjoint.

Lemma 3.2.6 ([CDH+20b, A.2.1]). A localization functor L : C→ C[W−1] is a re�ection
i� for every C ∈ C, there exists and object C ′ ∈ C together with an isomorphism
LC ∼= LC ′ such that the functor

MapC(−, C ′) : Cop → S (3.1)

sends all morphisms in W to isomorphisms. Dually, L is a core�ection i� for each C ∈ C

there is a C ′ ∈ C such that LC ∼= LC ′ and MapC(C
′,−) sends morphisms in W to

isomorphisms.

Proof. We only prove the case of re�ections, the other case is dual. For the only if
direction, let i : C[W−1] ↪→ C be the inclusion right adjoint to L and set C ′ := iL(C),
then LC ′ = LiL(C) ∼= LC since the counit Li⇒ IdC[W−1] is an isomorphism as i is fully
faithful. Further, Map(C ′,−) ∼= Map(LC,L−) sends W to isomorphisms since L does.

Conversely, if an object C ′ with these properties always exists, it su�ces to show that it
represents the functor MapC(L−, LC) since L is essentially surjective by construction of
the localization so LC covers all objects of the localization, and the representing objects
C ′ =: iLC assemble into the desired left adjoint. Note that i is fully faithful since the
counit LC ′ ∼= LC is an isomorphism.
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By assumption, Map(−, C ′) factors as M ◦ L with M : C[W−1]op → S, and we may
calculate that for any other G : C[W−1]op → S we have

Nat(M ◦ L,G ◦ L) ∼= Nat(Map(−, C ′), G ◦ L) ∼= G ◦ L(C ′) ∼= G(LC)

by the Yoneda Lemma. The last expression agrees with Nat(Map(−, LC), G) while
the �rst, by the universal property of a localization exhibiting Fun(C[W−1], Sop) ⊆
Fun(C, Sop) as a full subcategory, agrees with Nat(M,G). Hence, Map(−, LC) ∼= M
so Map(−, LC) ◦ L ∼= M ◦ L = Map(−, C ′), as claimed.

Remark ([CDH+20b, A.2.2]). In fact, if i : C′ ↪→ C is fully faithful and admits a left
(or right) adjoint L, then by [Lur09a, 5.2.7.12] the functor L is a localization at those
morphisms that are sent to isomorphisms by the functor (co)represented by any object
in C′.

Proposition 3.2.7 ([CDH+20b, A.2.5]). Let C0
i∗→ C

j∗→ C1 be a sequence of stable
∞-categories and exact functors such that j∗i∗ = 0. Then, the following are equivalent:

� The functor i∗ is fully faithful and exhibits C0 as the full subcategory of C on
objects C with j∗C = 0, and j∗ possesses a fully faithful left adjoint j+ (or fully
faithful right adjoint j∗)

� The functor j∗ exhibits C1 as the Verdier quotient of i∗ : C0 ↪→ C, and i∗ is fully
faithful and admits a left adjoint i∗ (or right adjoint i−)

Proof. If a left adjoint j+ ⊣ j∗ exists, we may de�ne i∗ := cofib(j+j
∗ → idC) as the

co�ber of the counit, which takes values in C0 = ker(j∗) since

j∗i∗C ∼= cofib(j∗j+j
∗C → j∗C) ∼= cofib(idj∗C) = 0 .

This de�nes a left adjoint to i∗ since

Map(i∗C,C0) ≃ fib (Map(C,C0)→ Map(j+j
∗C,C0)) = Map(C, i∗C0)

as the second mapping space is contractible because j+ ⊣ j∗ and j∗C0 = 0. Since j∗ by
assumption admits a fully faithful left adjoint, it is a localization and in fact even the
Verdier quotient by C0 as a morphism α is sent to an isomorphism i� fib(α) ∈ ker(j∗) =
C0. Also, i∗ is fully faithful by assumption.

Conversely, given i∗, let us de�ne j+ := fib(idC → i∗i
∗) as the �ber of the unit; while

this is a priori a functor C → C it factors through C1 → C as for α is a morphism in C

with �ber F in C0, we have

fib j+(α) = j+(F ) = fib (F → i∗i
∗F ) = 0
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so j+(α) is an isomorphism. If C1 ∈ C1 is represented as the localization j∗Ĉ1,

Map(j+C1, C) = Map
(
fib(Ĉ1 → i∗i

∗Ĉ1), C
)
≃ cofib

(
Map(i∗i

∗Ĉ1, C)→ Map(Ĉ1, C)
)
.

In the case that C = i∗C0 is in the essential image of C0, this evaluates to
cofib (Map(i∗C ′, C0)→ Map(C ′, i∗C0)) = 0 using that i∗ is fully faithful. Hence, by
the same argument as above, Map(j+C1,−) factors through C1. But j∗j+ = fib(j∗ →
j∗i∗i

∗) = idC1 regarded as a functor on C1. This veri�es both conditions of 3.2.6, so we
are �nished.

For the case of right adjoints, given j∗ we construct i− := fib(C → j∗j
∗C) which lies in

C0 since j∗i−C = fib(j∗C → j∗j∗j
∗C) = 0 as j∗ is a left-exact re�ection. Then,

Map(C0, i
−C) ≃ fib(Map(C0, C),Map(C0, j∗j

∗C)) ∼= Map(C,C0)

again by 3.1.3. Conversely, j∗ := cofib(i∗i
− → idC) also uses 3.2.6.

Remark. As indicated by the boxes, behold the canonical �ber sequences

i∗i
− ⇒ Id⇒ j∗j

∗, j+j
∗ ⇒ Id⇒ i∗i

∗ . (3.2)

De�nition 3.2.8. A Verdier sequence C0
i∗
↪→ C

j∗→ C1 is called split if, equivalently (by
above Lemma),

� j∗ admits both a left and a right adjoint,

� i∗ admits both a left and a right adjoint.

It is called left or right split if only the left or right adjoint exist. The adjoints of p are
automatically fully faithful.

Warning. Not every split Verdier sequence is equivalent to an orthogonal decomposition
C ↪→ C⊕D→ D. More on this in 3.4.

Theorem 3.2.9. The following data are equivalent:

� A split Verdier sequence C0
i∗→ C

j∗→ C1

� A stable ∞-category C that is a (stable) recollement of C0 and C1, with inclusions
i∗, j∗ and re�ections i∗, j∗.
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Proof. Given a split Verdier sequence as above, we have seen that i∗ and the right adjoint
j∗ of j∗ are fully faithful, so they exhibit C0 and C1 as full subcategories of C. Also, i∗
possesses a left adjoint i∗, and j∗i∗ = 0 by de�nition, so we only need to show that i∗, j∗

are jointly conservative.

If α is a morphism in C such that i∗α, j∗α are isomorphisms, then j∗ fib(α) = fib(j∗α) = 0
so fib(α) ∈ ker(j∗) ≃ C0. But this means that fib(α) ∼= i∗i

∗ fib(α) = i∗ fib(i
∗α) = 0, so α

is an isomorphism.

Conversely, let C be a stable recollement of C0 and C1 as above, then C0 = ker(j∗) by
3.1.2. Also, the localization j∗ : C→ C1 sends a morphism α in C to an isomorphism i�
fib(j∗α) ∼= j∗ fib(α) = 0, i.e. fib(α) ∈ ker(j∗) = C0. This means that j∗ exhibits C1 as a
Verdier quotient of C by C0 as claimed. Existence of the remaining adjoint follows from
3.2.7

Proposition 3.2.10. If the middle sequence in the diagram

C D Ei∗

i∗

i−
j∗

j∗

j+

is a split Verdier sequence with indicated adjoints, then the upper and lower sequences
are right and left split Verdier sequences.

Proof. We already know from 3.2.7 that j∗, j+ are fully faithful; also by construction
i−, i∗ have fully faithful left/ right adjoints making them (co)re�ections. Finally, by
the proof of the mentioned proposition ker(i∗) consists of precisely those D ∈ D with
j+j

∗D ∼= D, i.e. the essential image of j+. Similarly for i−.

De�nition 3.2.11. If C0 ⊆ C is a stable subcategory of a stable ∞-category, denote
by C⊥0 the full subcategory spanned by those C ∈ C such that for each C0 ∈ C0, the
mapping space MapC(C0, C) is contractible. Dually, de�ne ⊥C0 as the full subcategory
on those C ∈ C with MapC(C,C0) contractible for C0 ∈ C0.

Proposition 3.2.12. If C0 ⊆ C is a re�ective and core�ective stable subcategory of a
stable ∞-category, then C is a stable recollement of C0 and C⊥0 .

Dually, if C1 ⊆ C is a re�ective stable subcategory such that the re�ection j∗ : C → C1

has an additional left adjoint j+, then C is a stable recollement of ⊥C1 and C1.

Proof. For the �rst claim, we need to show that the inclusion j∗ : C⊥0 ↪→ C has a
left adjoint j∗ such that ker(j∗) = C0, since as a re�ection it is then automatically a
localization at the morphisms with �ber in C0 and all required adjoints exist. De�ne
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j∗(C) := cofib(i∗i
−C → C) where i∗ ⊣ i∗ ⊣ i− and i∗ : C0 ↪→ C is the inclusion, then for

C0 ∈ C0 and C1 ∈ C⊥0 ,

Map(C0, j
∗C) = cofib(Map(i∗C0, i∗i

−C)→ Map(i∗C0, C)) ∼=
∼= cofib(Map(C0, i

−C)→ Map(i∗C0, C)) ∼= 0

Map(j∗C,C1) = fib(Map(C, i∗C1)→ Map(i∗i
!C, i∗C1)) = Map(C, i∗C1)

so j∗ : C→ C⊥0 is well-de�ned and left adjoint to j∗. Finally, j∗(C) = 0 i� i∗i
−C ∼= C i�

C ∈ C0, so we are done.

The second claim is easier; we only need to show that ⊥C1 = ker(j∗) since j∗ is a re�ection
and all required adjoints exist. For C ∈ C, by Yoneda j∗(C) = 0 i� for all C1 ∈ C1 we
have Map(j∗(C), C1) ≃ Map(C, j∗C1) = 0, which is equivalent to C ∈ ⊥C1.

Proposition 3.2.13. If C is a stable recollement of C0 and C1, then C1 = C⊥0 and
C0 =

⊥C1 (as always, up to completing under isomorphisms).

Proof. First of all, for C0 ∈ C0 and C1 ∈ C1, we have

MapC(C0, C1) = MapC1
(L1i0C0, C1) = MapC1

(0, C1) = 0

which shows one inclusion of each identity.

Conversely, if C ∈ C such thatMap(C0, C) = 0 for all C0 ∈ C0, then applyingMap(C0,−)
to the counit map

Map(C0, C → j∗j
∗C) = (Map(C0, C, C)→ Map(j∗i∗C0, j

∗C)) = 0

yields an isomorphism so by the Yoneda-Lemma i∗(C → j∗j
∗C) is an isomorphism,

hence by joint conservativity it is enough to show j∗C → j∗j∗j
∗C is an isomorphism as

well, which is clear since j∗j∗ = idC1 .

Finally, if C ∈ C satis�es MapC(C,C1) = 0 for all C1 ∈ C1, then

MapC1
(L1C,C1) = MapC(C,C1) = 0

so by the Yoneda-Lemma already L1C = 0. We then calculate L1(C → i0L0C) = (0→
0) and L0(C → i0L0C) = idL0 , so by joint conservativity the unit map C → i0L0C is an
isomorphism and C ∈ C0.

Generally, morphism spaces in localizations are di�cult to calculate, unless we are deal-
ing with a re�ective localization which can be embedded into the original category.
Since we will make use of it later, let us still develop an explicit description in the case
of Verdier quotients (our arguments can however be adapted to general localizations, as
indicated in the respective references).
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De�nition 3.2.14 ([Lur09a, 5.3.5.4], [Lur09a, 5.1.6.8]). Let C be an arbitrary ∞-
category. Its Ind-completion Ind(C) is de�ned as a the smallest fully subcategory of
PSh(C) that contains the essential image of the Yoneda embedding h : C ↪→ PSh(C)
(consisting of the representable presheaves) and is closed under �ltered colimits. If
C admits �nite colimits, then this agrees with the full subcategory on those functors
Cop → S that preserve �nite limits (in Cop).

Similarly, the idempotent completion or Karoubi completion of C is the full subcategory
of PSh(C) spanned by retracts of representable presheaves. It agrees with the full subcat-
egory on the completely compact presheaves, i.e. those F ∈ PSh(C) such that Nat(F,−)
preserves (small) colimits in PSh(C).

Remark. The Ind-completion of a small∞-category C is compactly generated (in particu-
lar presentable), as it is controlled by its small full subcategory C. In fact, an∞-category
is compactly generated i� it admits colimits and is equivalent to the Ind-completion of
a small ∞-category (its full subcategory on compact objects). More generally, an ∞-
category C is presentable i� it admits colimits and there exists a regular cardinal κ such
that it is equivalent to the generalized Ind-completion Indκ(D) of some small∞-category,
compare [Lur09a, 5.5.1.1].

De�nition 3.2.15. Let F : C→ D be a functor between arbitrary∞-categories. Then,
its pseudo-left adjoint is the functor D → PSh(C) informally given by sending D 7→
MapD(F (−), D). Similarly, its pseudo-right adjoint is the functor D→ Fun(C, S) given
by D 7→ MapD(D,F (−)).

If the pseudo-left adjoint of F factors through Ind(C) ⊆ PSh(C), we call it the pro-left
adjoint of F , and similarly for pro-right adjoints and the dual Pro-completion Pro(C) ⊆
Fun(C, S) of C. Clearly, if it even factors through the essential image of the Yoneda
embedding C ↪→ PSh(C), this factorization is an ordinary left adjoint of F .

Proposition 3.2.16. Every functor F : C → D between ∞-categories admits a
pseudo-left and a pseudo-right adjoint. Similarly, every exact functor between stable
∞-categories admits a pro-left and a pro-right adjoint.

Proof. The statement for pseudo-adjoint follows by de�nition. Since stable∞-categories
admit �nite (co)limits it remains to show that if F is an exact functor between stable
∞-categories and D ∈ D, the pseudo-left adjoint MapD(F (−), D) preserves �nite limits
in Dop, which is clear since it is a composition of left exact functors. The statement for
pseudo-right adjoints is dual.

Proposition 3.2.17 ([Lur09a, 5.3.5.10]). Let C be an ∞-category, and h : C ↪→ Ind(C)
be the Yoneda-embedding into its Ind-completion. Then, for any ∞-category D admit-
ting �ltered colimits, precomposing with h induces an equivalence of categories

Funind(Ind(C),D) ≃ Fun(C,D) (3.3)
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between the full subcategory of functors Ind(C)→ D preserving �ltered colimits and all
functors F : C → D, where the inverse is given by Yoneda extension F 7→ Lanh F =:
Ind(F ).

Proof. This is an analogue of 1.1.6, and the proof is similar: By de�nition, every element
of Ind(C) can be written as a �ltered colimit of representable cosheaves, so a functor
Ind(C)→ D preserving �ltered colimits is determined by its value on the essential image
of the Yoneda embedding.

Proposition 3.2.18 ([Lur09a, 5.5.1.1], [Lur17, 1.1.3.6]). If the ∞-category C has �nite
colimits, then Ind(C) is compactly generated, in particular admits all limits and colimits.
If C is even a stable ∞-category, then Ind(C) is stable as well.

Corollary 3.2.19 ([Lur09a, 5.3.5.13]). For F : C → D a functor between ∞-category,
there is a canonical functor F ∗ : Fun(Dop, S)→ Fun(Cop, S) between presheaf categories
given by precomposition with F , which is right adjoint to the Yoneda extension of
F . If C has �nite colimits and those are preserved by F , this restricts to a functor
F ∗ : Ind(D) → Ind(C) since the property of a presheaf preserving �nite limits in Cop

is preserved. By construction, it is again right adjoint to Ind(F ); in particular Ind(F )
preserves all, instead of just �ltered, colimits. We obtain a restricted equivalence

Funcolim(Ind(C),D) ≃ Funrex(C,D) (3.4)

between the full subcategories of functors that preserve colimits or �nite colimits, re-
spectively.

Lemma 3.2.20. Let F : C → D be a functor between ∞-categories. It induces two
functors between presheaf categories PSh(C)→ PSh(D):

� The left Kan extension functor LanF

� The Yoneda extension LanhC
(hD ◦ F )

These functors agree.

Proof. The functor LanF is left adjoint to the precomposition functor F ∗. Similarly,
applying the nerve-realization paradigm 1.1.7, the Yoneda extension has a right adjoint
realization functor sending a presheaf S ∈ Fun(Dop, S) to |S| ∈ Fun(Cop, S) with

|S|(C) = MapPSh(D)(hD ◦ F (C), S) = Nat(MapD(−, F (C)), S) ∼= S(F (C)) = (F ∗S)(C)

by the Yoneda Lemma, so | − | = F ∗ and our functors must agree by uniqueness of
adjoints.
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Construction 3.2.21 ([CDH+20b, A.3.11 and below], [NS18, I.3.5]). Let C0
i∗→ C

j∗→
C1 be a Verdier sequence of stable ∞-categories. Then, the exact composite functor
C → C1 ↪→ Ind(C1) can by the previous Corollary be extended to a colimit-preserving
functor Ind(j∗) : Ind(C)→ Ind(C1) with a right adjoint Ind(j)∗ de�ned by precomposing
presheaves with j∗, compare the above Lemma. Similarly for i∗, so the sequence

Ind(C0)
Ind(i∗)−→ Ind(C)

Ind(j∗)−→ Ind(C1) (3.5)

is a right split Verdier sequence, because

� Ind(j∗) is a re�ection, since its right adjoint Ind(j)∗ is given by the precomposition
Fun

(
C⧸C0

, Sop
)
→ Fun(C, S) with the localization j∗, which by de�nition is fully

faithful. In particular,

We �nd that C⧸C0
⊆ Ind(C) via the embedding Ind(j)∗ ◦ h.

� Ind(i∗) is fully faithful since it agrees with Lani∗ on the presheaf category, and the
left Kan extension along a fully faithful functor is so as well.

� It exhibits Ind(C0) ⊆ Ind(C) as the kernel of Ind(j∗): Any object of Ind(C) can be
written as a �ltered colimit I = colim

k∈K
hp(k) of representable presheaves for some

diagram p : K → C, and we must show that Ind(j∗)(I) = colim
k∈K

hj∗p(k) = 0 i�

already I ∈ Ind(C0). The if direction is clear, for the only if we refer to the proof
of the second reference, as it uses background we do not want to develop.

Remark. The references show that further right adjoints Ind(i∗) ⊣ Ind(i)− ⊣ Ind(i)− and
Ind(j∗) ⊣ Ind(j)∗ ⊣ Ind(j)− exist, in particular the middle functors preserve colimits.

Proposition 3.2.22 ([NS18, Proof of I.3.3]). As discussed above for any∞-category D

with all colimits, the functor j∗ induces a left Kan extension functor

Lanj∗ : Fun(C,D)→ Fun
(
C⧸C0

,D
)

(3.6)

that, since j∗ is exact, restricts to Ind(j∗) between the Ind-categories if D = S. We can
give the explicit formula

Lanj∗ F (C1) = colim
C0∈C0 /Ĉ1

F
(
cofib(C0 → Ĉ1)

)
(3.7)

for any presheaf F : C→ D, where Ĉ1 is any object of C with j∗Ĉ1 = C1.

Remark. Since C0 has �nite limits, the involved colimit is �ltered because the formation
of limit lets us extend �nite diagrams to cones.
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Proof. Denote the above colimit expression by L(F ), we want to show that the functor
L, which since a choice of lift is necessary is a priori de�ned on C, factors through C⧸C0
where it is left adjoint to the fully faithful (by de�nition of a localization) precomposition
functor J = − ◦ j∗. There is a canonical natural transformation (ηF : F → L ◦ J(F ))F
induced by the compatible set of morphisms F (C)→ F (cofib(C0 → C)) arising from the
inclusion C → cofib(C0 → C) = 0⨿C0 C. We are �nished if we can verify the conditions
in 3.2.6.

If F lives in the full subcategory Fun
(
C⧸C0

,D
)
⊆ Fun(C,D), then it must by de�nition

send morphism with (co)�ber in C0 to isomorphisms. But C → cofib(C0 → C) has
�ber C0, so ηF is an isomorphism, which proves one of the conditions. On the other
hand, L(F ) always lies in this subcategory (in particular it factors through the Verdier
quotient, as claimed) since as a composition of exact functors it is exact, so it su�ces
to show that for C ′0 ∈ C0, we have L(F )(C ′0) = 0. Indeed we calculate

colim
C0∈C0 /C′

0

F (cofib(C0 → C ′0)) = F (cofib(idC′
0
)) = 0

since the colimit diagram has a terminal object.

Remark. The general formula for left Kan extensions also tells us that

Lanj∗ F (C1) = colim
(C∈C, α:j∗(C)→C1)

F (C) , (3.8)

but it is more di�cult to use since this requires knowledge about morphisms α in C1.

Corollary 3.2.23 ([NS18, I.3.3]). The mapping space between objects C1, C
′
1 in C1 =

C⧸C0
represented by Ĉ1, Ĉ ′1 in C can be calculated as

MapC⧸C0

(C1, C
′
1) ≃ colim

C0∈C0 /Ĉ′
1

MapC(Ĉ1, cofib(C0 → Ĉ ′1)) . (3.9)

Proof. Applying the last Proposition 3.2.22, we need to show that

MapC⧸C0

(C1,−) ∼= Lanj∗ MapC(Ĉ1,−) (3.10)

as functors C⧸C0
→ S, in other words Lanj∗ intertwines the respective (dual) Yoneda

embeddings. We apply the Yoneda Lemma in this functor category:

Nat(Lanj∗ MapC(Ĉ1,−), F ) ∼= Nat(MapC(Ĉ1,−), F ◦ j∗) ∼= F (C1) (3.11)

for any F : C⧸C0
→ S, so since Lanj∗ MapC(Ĉ1,−) is uniquely determined by this prop-

erty, it can only depend on the class C1 of Ĉ1. Our aim is to show that the factorization

C1 ∈ C⧸C0

op
7→ Lanj∗ MapC(Ĉ1,−) ∈ Fun

(
C⧸C0

, S
)

agrees with the Yoneda embedding, which is immediate from the universal property in
Equation 3.11.
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3.3 Poincaré-Verdier Sequences

Let us translate this into the context of Poincaré ∞-categories, obtaining a long exact
sequence of L-groups.

De�nition 3.3.1 ([CDH+20b, 1.1.5]). A Poincaré-Verdier sequence is a sequence of

Poincaré ∞-categories and duality-preserving functors (C, Ϙ)
i∗→ (D,Φ)

j∗→ (E,Ψ) such
that the underlying sequence of stable∞-categories is a Verdier sequence, and addition-
ally

� The canonical transformation Ϙ ⇒ i∗Φ = Φ ◦ i∗,op that is part of the datum of a
hermitian functor is an isomorphism, and

� The canonical transformation Φ ⇒ Ψ ◦ j∗,op exhibits Ψ as the left Kan extension
Lanj∗,op Φ.

It is called split, or Poincaré recollement, if the underlying Verdier sequence is split. In
this case, the second condition is equivalent to the composition Φ ◦ j+ → Ψ ◦ j∗j+ → Ψ
being an equivalence, because j+ ⊣ j∗ implies Lanj∗,op = − ◦ jop∗ ⊣ − ◦ j∗,op.

Remark. In the non-split case, we can use the opposite version of 3.2.22 to rewrite

Ψ(C1) ∼= Lanj∗,op Φ(C1) ∼= colim
(C0, α:i∗C0→Ĉ1)∈(C0 Ĉ1/

)op
Φ(fib(i∗C0 → Ĉ1)) (3.12)

for C1 = j∗Ĉ1. This expression should be handled with much care: The left Kan
extension is explicitly along pop, so we must work in the Pro-completion Ind(C)op =
Pro(C)op to calculate it (note Cop is still stable). The �ber in above expression is taken
in C, while the colimit is parametrized by arrows in (C0 Ĉ1/

)op = (Cop
0 )/Ĉ1

.

Warning. Even though Φ ◦ j+ ≃ Ψ in the split case, the functor j+ is usually not
duality-preserving. If it were, this would mean

j∗ ∼= (j+)
! = DΦ ◦ j+ ◦Dop

Ψ
∼= D2

Φ ◦ j+ ∼= j+ (3.13)

so the adjunction j∗ ⊣ j∗ ⊣ j∗ becomes two-sided.

Proposition 3.3.2 ([Lur11, Lecture 8, Proposition 6]). Let (D,Φ) be a Poincaré ∞-
category, and C a stable subcategory. If C is closed under duality DϘ, then

� The restriction Ϙ|C automatically makes C into a Poincaré ∞-category, and

� The left Kan extension Lanj∗ Ϙ along the projection j∗ : D → D⧸C makes this
Verdier quotient into a Poincaré ∞-category

so that (C,Φ|C)→ (D,Φ)→ (C/D,Lanj∗ Φ) becomes a Poincaré-Verdier sequence.
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Remark. In fact, quadratic functors can be restricted or left Kan extended along arbitrary
functors, as shown in [CDH+20a, Section 1.4]. We do not give a proof, since it mostly
consists of straightforward but not very enlightening calculations.

Corollary 3.3.3. If (C, Ϙ) i∗→ (D,Φ)
j∗→ (E,Ψ) is a split Poincaré-Verier sequence, then

the adjoint sequences

(E,Ψ)
j+→ (D,Φ)

i∗→ (C,Lani∗,op Φ)

(E,Φ ◦ j∗)
j∗→ (D,Φ)

i−→ (C, Ϙ)

are right and left split Poincaré-Verdier sequences.

Proof. By 3.2.10 they are Verdier sequences, and as explained in the de�nition of
Poincaré-Verdier sequencesΨ ∼= Φ◦j+. Similar to the reasoning there, Lani−,op

∼= (−◦iop∗ )
since both functors are left adjoint to (−◦ i−,op) and we are �nished by applying the last
Proposition.

De�nition 3.3.4. For F : (C, Ϙ)→ (D,Φ) : G any functor between stable ∞-categories
with dualities, let F ! be its dual functor

F ! := DΦ ◦ F op ◦Dop
Ϙ

: C→ D . (3.14)

Remark. We will denote (f∗)
! := f! and (f ∗)! := f ! in the rest of the text.

Proposition 3.3.5. Let F : (C, Ϙ)→ (D,Φ) : G be an arbitrary functor between stable
∞-categories with dualities, and G a right adjoint to F . Then, G! is left adjoint to F !.

Proof. We use the fact that DϘ and DΦ are anti-autoequivalences and their own inverses,
in particular D

Ϙ
⊣ Dop

Ϙ
and Dop

Φ ⊣ DΦ. For C ∈ C and D ∈ D,

MapC(G
!(D), C) = MapC(DϘG

opDop
Φ (D), C) ∼= MapCop(GopDop

Φ (D), Dop
Ϙ
(C)) ∼=

∼= MapC(DϘ(C), GDΦ(D)) ∼= MapD(FDϘ(C), DΦ(D)) ∼=
∼= MapD(D,DΦF

opDop
Ϙ
(C)) = MapD(D,F !(C))

Remark. Note that we have not actually used anything about DϘ and DΦ except for the
two adjunctions. Hence, our statement holds more generally.

Corollary 3.3.6. Let F : (C, Ϙ) → (D,Φ) be a duality-preserving functor between
stable ∞-categories with dualities. Then, F admits a left adjoint i� it admits a right
adjoint.

Proof. In 3.3.5, note that if F op ◦ DϘ ∼= DΦ ◦ F since F is duality-preserving, then
F ! ∼= Dop

Ϙ
DϘF ∼= F .
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Corollary 3.3.7. A Poincaré-Verdier sequence (C, Ϙ) i∗→ (D,Φ)
j∗→ (E,Ψ) is split i� one

of the adjoints j∗, j+, i∗, i− exists.

Proof. Since by assumption i∗ and j∗ are duality-preserving, combine the previous Corol-
lary with 3.2.7 to construct the remaining adjoints.

Proposition 3.3.8. (9-Lemma) Given a commutative diagram of stable (Poincaré) ∞-
categories of the form

C0 D0 E0

C D E

C1 D1 E1

iC∗

i0∗

iD∗

j∗0

iE∗

j∗
C

i∗

j∗
D

j∗

j∗
E

i1∗ j∗1

where the rows and the �rst two columns are (split) (Poincaré-)Verdier sequences. Fur-
ther, suppose that the any morphism f : C → D0 in D, with C ∈ C and D0 ∈ D0,
can be factored as C → C0 → D0 for some C0 ∈ C0.Then, the dashed arrows de-
termined by functoriality of the Verdier quotient make the right column into a (split)
(Poincaré-)Verdier sequence. Similarly, given a commutative diagram

C0 D0 E0

C D E

C1 D1 E1

iC∗

i0∗

iD∗

j∗0

iE∗

j∗
C

i∗

j∗
D

j∗

j∗
E

i1∗ j∗1

where the rows and the last two columns are (split) (Poincaré-)Verdier sequences and
assume that any morphism g : D0 → C factors as D0 → C0 → C for some C0 ∈ C0.
Then, the dashed arrows determined by functoriality of the kernel make the left column
into a (split) (Poincaré-)Verdier sequence.

Remark. As will become clear in the proof, we can exchange the directions of both
factorization conditions, i.e. in the �rst case it is su�cient if any morphism f : D0 → C
factors through a C0 ∈ C0. Since they arise in di�erent ways in the proof, we have
already stated them in di�erent directions. In fact, both factorization conditions follow
immediately if suitable splittings (i.e. adjoints) exist making the upper left square Beck-
Chevalley in either direction since we can then use those adjoints to factor morphisms;
and the �rst condition also follows if the upper right square is Beck-Chevalley for simpler
reasons.
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Remark. The factorization conditions in this theorem seem weird when comparing with
the analogous statement in abelian categories, but they are also present in isomorphism
theorems for triangulated categories � see [Orl04, 1.3] or [KS13, 1.6.10]. In our setting
the proof is however quite a bit more di�cult, since it is harder to get a grip on the
morphism spaces. The places where this condition enters in the �rst claim are the fully
faithfulness of iE∗ and the condition on the quadratic functor on E0. The rest of the result
actually still holds if we leave it out, and even more:

In the �rst diagram, choose a representant D0 ∈ D0 of E0 ∈ ker(iE∗), i.e. j∗0(D0) = E0.
Then, j∗ ◦ iD∗ (D0) = iE∗E0 = 0, so that iD∗ (D0) must come from an element C ∈ C since it
becomes 0 when localizing (see 3.1.2). But then i1∗ ◦ j∗C(C) = j∗D ◦ i∗(C) = j∗Di

D
∗ (D0) = 0,

and since i1∗ is fully faithful, j∗C(C) = 0, so C = iC∗(C0) for a C0 ∈ C0. It is now clear
that iD∗ ◦ i0∗(C0) = i0∗(D0) so since iD∗ is fully faithful, D0 = i0∗(C0). But this means
E0 = j∗0i

0
∗(C0) = 0.

Hence, let α : E0 → E ′0 be a morphism in E0, then α is an isomorphism i� fib(α) ∼= 0 i�
iE∗(fib(α)) = fib iE∗(α) = 0 (as iE∗ is exact) i� iE∗(α) is an isomorphism � this means that
iE∗ is conservative. Without the factorization condition we are however not able to show
that it is fully faithful.

In the second claim, a similar diagram chase shows that while j∗0 might without the
factorization not be a Verdier projection, it is still essentially surjective.

Remark. In the case of Verdier sequences, the �rst claim is a categori�cation of the third
isomorphism theorem: Among other points, it entails that(

D⧸D0

)
⧸(C⧸C0

) ≃ (D⧸C)⧸(D0⧸C0

)
. (3.15)

Proof. We only prove the �rst claim, the second is similar. Let us begin with the
case of Verdier sequences. The dashed arrows exist and are exact functors since Verdier
quotients are co�bers in Catex∞, and co�bers are functorial � alternatively, use the uni-
versal property of the localization as in [NS18, I.3.3].

To show that iE∗ is fully faithful, we need to check the following equivalence of mapping
spaces, using the formula from 3.2.23:

MapE0
(j∗0(D0), j

∗
0(D

′
0)) ≃ colim

C0∈C0 /D′
0

MapD0
(D0, cofib(i

0
∗C0 → D′0))

!≃

≃ MapE(i
E
∗j
∗
0D0, i

E
∗j
∗
0D
′
0) = colim

C∈C
/iD∗ D′

0

MapD(i
D
∗D0, cofib(i∗C → iD∗D

′
0))

Since iD∗ is fully faithful and exact, all we need to show is that in the second colimit, if
su�ces to only regard those C that lie in the essential image of iC∗ . In other words, we
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claim that the inclusion C0 /D′
0
→ C/i0∗D

′
0
is right co�nal. Applying Quillen's Theorem A

1.2.15, we need to show that for each (C → i0∗D
′
0) ∈ C/i0∗D

′
0
, the simplicial set

C0, C//D′
0
:= C0 /D′

0
×C

/i0∗D′
0

(
C/i0∗D

′
0

)
(C→i0∗D

′
0)/

is weakly contractible. We will show that it is co�ltered, in the sense that for any
diagram p : K → C0, C//D′

0
with K a �nite simplicial set, there exists an extension

p̄ : K◁ → C0, C//D′
0
. If the reversed factorization condition holds, we can similarly show

that it is �ltered.

Since D0 is stable, it admits �nite limits so the diagram q : K▷ → D0 induced by p
that sends the cone point to D′0, and the rest of K to the underlying objects in C0 of its
image under p admits a limit lim q ∈ D0. Further, p induces a natural transformation
from the constant functor on C to q and thus a map f : C → lim q, which we can factor
as C → C̃0 → lim q using the factorization condition. Unwinding our construction, C̃0

as a cone point allows us to lift p to p̄. We pictorially summarize our argument in the
following diagram, where the right two columns describe the diagram q:

p(k)

C C̃0 lim q p(k′) D′0

. . .

Next, let us show that j∗E is a Verdier projection. Regard C and D0 as full subcategories
of D, and denote by WD0 ,WC,WC1 the classes of morphisms in D with �ber in D0,C
or C1 respectively. We want to show that the composite maps l1 : D → D1 → E1 and
l2 : D→ E→ E⧸E0

satisfy the same universal property, namely they both localize D at
WD0 ∪WC.

Let A be another stable∞-category. Precomposition with D1 → E1 exhibits Fun(E1,A)
as the full subcategory of Fun(D1,A) on the functors that send morphisms in WC1

to isomorphisms. Therefore, precomposition with l1 exhibits the former as the full
subcategory of Fun(D,A) on functors F that send WD0 to isomorphisms and, after
being factored through D1, send WC1 to isomorphisms.

If F already sends WC to isomorphisms, the latter is automatic by commutativity of
the lower left square. Conversely, if the factorization of F through D1 sends WC1 to
isomorphisms, note that any f ∈ WC induces j∗D(f) with fib(j∗Df) = j∗C fib(f) ∈ C1

since Verdier localizations are exact (see 3.2.2) and j∗C is the (co-)restriction of j∗D to
the respective full subcategories; so f is �nally sent to an isomorphism. Using a similar
argument for l2, we are �nished.
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Next, let us show that if all involved sequences are split, the dotted sequence is so as
well. This amounts to constructing left and right adjoints to the dashed arrows, which is
straightforward by using commutativity of the right squares: For example, iE∗◦j∗0 ∼= j∗◦iD∗
means that iE∗

∼= j∗ ◦ iD∗ ◦ j0+ since j∗0 ◦ j0+ ∼= idE0 because j0+ is fully faithful, so a left
adjoint is given by the composition j∗0 ◦ i−D ◦ j∗.

Finally, we want to show that if all involved sequences are Poincaré, then the dotted
sequence is as well. This amounts to showing that, for Ϙ the quadratic functor of D,(

LanE
D Ϙ
)
|E0
∼= LanE0

D0
(Ϙ|D0)

LanE
E Lan

E
D Ϙ
∼= LanE1

D1
LanD1

D Ϙ

The latter follows from transitivity of Kan Extensions and commutativity of the lower
right square; the former relies on equation 3.12 to write, for E0 ∈ E0 with E0 = j∗(D0)
for some D0 ∈ D:

LanE
D Ϙ(E0) ∼= colim

D0→i∗(C)
Ϙ(fib(D0 → C))

LanE0

D0
(E0) (Ϙ|D0)

∼= colim
D0→i0∗(C0)

Ϙ(fib(D0 → C0))

This follows by the same co�nality argument we had used to compare the mapping
spaces in the beginning.

Now, for the main reason we went through all these de�nitions:

Theorem 3.3.9 ([CDH+20b, 4.4.6]). Given a Poincaré-Verdier sequence (C, Ϙ) →
(D,Φ) → (E,Ψ), the by functoriality of L for duality-preserving functors associated
sequence of L-spectra

L(C, Ϙ) −→ L(D,Φ) −→ L(E,Ψ) (3.16)

is a �ber sequence of spectra. In particular, we obtain a long exact sequence of L-groups

. . . L1(C, Ϙ) L1(D,Φ) L1(E,Ψ)

L0(C, Ϙ) L0(D,Φ) L0(E,Ψ)

L−1(C, Ϙ) L−1(D,Φ) L−1(E,Ψ) . . .

Construction 3.3.10 ([CDH+20b], 4.4.7). One can explicitly describe the value of the
boundary operator in this long exact sequence on an n-dimensional Poincaré object
(E, q) ∈ Ln(E,Ψ). For simplicity, choose n = 0 since other cases can be obtained by
shifting the quadratic functor.
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� First, since j∗ is essentially surjective, represent if as E ∼= j∗D′ with D′ ∈ D.

� Apply equation 3.12 to write

Ψ(E) = colim
(C0, α:i∗C0→D′)∈(C0 D′/)

op
Φ(fib(i∗C0 → D′)) .

Since q is a point of this space, it must come from some q̂ ∈ Φ(fib(i∗C0 → D′)) =
Φ(D) with D := fib(i∗C → D′) ∈ D.

� If the considered Poincaré-Verdier sequence is split, we might simply choose D =
j∗E with q̂ the image of q under the natural isomorphism Φ ◦ j∗ ∼= Ψ.

� While (D, q̂) is generally not a Poincaré object (even in the split case, j∗ is generally
not duality-preserving), q̂ induces a map q̂♯ : D → DΦD. The co�ber of this map
is self-dual up to a shift:

DΦ(cofib q̂♯) ∼= fib

(
DΦ(D

q̂♯→ DΦD)

)
= fib(D2

ΦD → DΦD) ∼= cofib(D
q̂♯→ DΦD)[−1]

after noticing Dq̂♯ ∼= p♯ composing with the biduality isomorphism, by its construc-
tion from q̂. Using some gymnastics for quadratic functors (related to algebraic
surgery/ the algebraic Thom-isomorphism as in [CDH+20b, Section 2.4]), one can
show that this self-duality is induced by a quadratic form qc ∈ Φ[1](cofib q̂♯).

What the reference shows is that the boundary map Ln(E,Ψ) → Ln−1(C, Ϙ) sends the
class [(E, q)] to the class represented by the Poincaré object (cofib q̂♯, qc) we have just
constructed.

3.4 Orthogonal Decompositions

Proposition 3.4.1. Let C be an∞-category that admits �nite limits and is the recolle-
ment of a closed subcategory C0 and an open subcategory C1 via the re�ections L0 and
L1. Suppose that the same functors also exhibit C as a recollement of C1 as closed, and C0

as open subcategory. Then, L0 and L1 induce an equivalence of categories C ≃ C0 × C1.

Proof. We claim that the functor C→ C0 × C1 mapping C 7→ (L0C,L1C) is an equiva-
lence with inverse (C0, C1) 7→ C0 × C1 ∈ C. The compositions of these functors map

(C1, C2) 7→ (L0(C0 × C1), L1(C0 × C1)) ∼= (C0 × ∗, ∗ × C1) ∼= (C0, C1) (3.17)

and C 7→ L0C×L1C. The natural transformation α from C to L0C×L1C given by the
unit maps yields an isomorphism when applying L0 or L1, as L0C ∼= L0L0C × L0L1C.
Since L0 and L1 are jointly conservative, α is a natural isomorphism as well.
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Remark. Under C ≃ C0×C1, the inclusions i0, i1 correspond to the functors C0 7→ (C0, ∗)
and C1 7→ (∗, C1).

Corollary 3.4.2. Let C0
i∗−→ C

j∗−→ C1 be a split Verdier sequence, so that the reversed
sequence C1

j∗−→ C
i∗−→ C0 is also split Verdier. Then, i∗ and j∗ induce an equivalence

C ≃ C0 × C1.

Proof. By 3.2.9, C is a stable recollement of C0 and C1, and similarly with the roles
reversed. Therefore, we can apply 3.4.1

Corollary 3.4.3. If C0 ⊆ C is a re�ective and core�ective stable subcategory of a stable
∞-category C, and ⊥C0 and C⊥0 coincide, then we can factor C ≃ C0 × C⊥0 .

Proof. By 3.2.12, we know C is a recollement of C0 and C⊥0 , in particular there are
re�ections L0 : C → C0 and L1 : C → C⊥0 that are left exact and jointly conservative,
such that L1C0 = 0. We are �nished if we can show L0(C

⊥
0 ) = 0, since then C is also

a recollement of C⊥0 and C with roles reversed, meaning we can apply 3.4.1. But this
follows by the Yoneda lemma since for each C0 ∈ C0 and C1 ∈ C⊥0 ,

MapC0
(L0C1, C0) = MapC(C1, C0) = 0 (3.18)

because C⊥0 = ⊥C0 by assumption.

We develop an analogous statement for split Poincaré-Verdier sequences.

De�nition 3.4.4. For (C, Ϙ) and (E,Ψ) two Poincaré∞-categories, their product C×E

also admits the structure of a Poincaré∞-category using the smashed quadratic functor
Ϙ ∧Ψ : Cop × Eop → Sp de�ned as the composition

Cop × Eop Ϙ×Ψ−→ Sp× Sp
⊕−→ Sp . (3.19)

Proof. The associated polarization is

BϘ⊕Ψ((C,E), (C ′, E ′)) = BϘ(C ⊕ C ′)⊕BΨ(E,E ′) (3.20)

which is clearly still bilinear, and represented by the exact duality functor

DϘ⊕Ψ(C,E) = (DϘ(C), DΨ(E)) (3.21)

satisfying biduality, since the individual duality functors do. Finally,

ΛϘ⊕Ψ(C,E) = fib
(
Ϙ(C)⊕Ψ(E)→ (BϘ(C,C)⊕BΨ(E,E)hS2)

) ∼= ΛϘ(C)⊕ ΛΨ(E)

is still exact, so we have checked everything.
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Remark. This operation is both product and coproduct in Catp∞.

Proposition 3.4.5. If (C, Ϙ) i∗→ (D,Φ)
j∗→ (E,Ψ) is a split Poincaré-Verdier sequence

such that the reversed sequence (E,Ψ)
j∗→ (D,Φ)

i∗→ (C, Ϙ) is also split Poincaré-Verdier,
then we can decompose

(D,Φ) ≃ (C× E, Ϙ⊕Ψ) (3.22)

such that i∗, i
∗, j∗, j

∗ are the canonical embeddings into and projections out of this
product.

Proof. By 3.4.1, we know that on the underlying split Verdier sequences, (i∗, j∗) : D→
C× E is an equivalence exhibiting i∗, i

∗, j∗, j
∗ as the canonical maps. In particular, any

D ∈ D is isomorphic to i∗i
∗D⊕ j∗j

∗D. We only need to show that (Ϙ⊕Ψ)◦ (i∗, j∗) ∼= Φ,
then we are �nished. But

(Ϙ⊕Ψ) ◦ (i∗, j∗)(D) = Ϙ ◦ i∗ ⊕Ψ ◦ j∗(i∗i∗D ⊕ j∗j
∗D) ∼= Ϙ(i∗D)⊕Ψ(j∗D) ∼=

∼= Φ(i∗i
∗D)⊕ Φ(j∗j

∗D)⊕BΦ(i∗i
∗D, j∗j

∗D) ∼= Φ(i∗i
∗D ⊕ j∗j

∗D) = Φ(D)

where we use that j∗i∗ = 0 and i∗j∗ since both are the composites of Verdier sequences,
and BΦ(i∗i

∗D, j∗j
∗D) ∼= Map(i∗i

∗D,DΦj∗j
∗D) ∼= Map(j∗i∗i

∗D,DΨj
∗D) = 0 since j∗ is

duality preserving.

Remark. Using 3.3.5, we know that i! ⊣ i! and j! ⊣ j!; but given our assumption in
the last proposition that both directions are Poincaré-Verdier sequences, the functors
i∗, i

∗, j∗, j
∗ must be duality-preserving. Hence, i! := DΦ ◦ i∗ ◦ DϘ ∼= D2

Φi∗
∼= i∗ and

similarly for the others, so i∗ ⊣ i∗ ⊣ i∗ and j∗ ⊣ j∗ ⊣ j∗ are double-sided adjoints. This
is not at all surprising, since by our proof they are just inclusions and projections into
a biproduct, which always satisfy this property.

3.5 P -slicings and P -recollements

The above discussion has only involved splitting Poincaré∞-categories into two compo-
nents. Classically, semiorthogonal decompositions of triangulated categories can however
consist of multiple subcategories. We translate this into our context since we could not
�nd a full discussion in the literature (some results can be extracted from [FLM15]), and
we will see a nice application ot this in 3.5.9.

Let us �x a parametrizing poset P , where P = {0 < 1} corresponds to the case of two
components.

De�nition 3.5.1. A slicing of P is a decomposition P = P− ⊔ P+ such that for every
p− ∈ P−, p+ ∈ P+, we have p− < p+. The set O(P ) of slicings of P is partially ordered
by setting (P−, P+) ≤ (P ′−, P

′
+) i� P− ⊆ P ′− (and hence also P+ ⊇ P ′+). Also, it has a

minimal element (∅, P ) and a maximal element (P, ∅).
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Remark. In this case, P− is downwards closed and P+ is upwards closed.

Lemma 3.5.2. A slicing of P is the same thing as an order-preserving map P → [1].

Proof. Given a slicing (P−, P+) of P , we can de�ne a map f : P → [1] sending all of P−
to 0 and P+ to 1. This is well-de�ned since P−, P+ are disjoint and cover all of P . Also,
it is order preserving as we had assumed that p− < p+ for all p− ∈ P−, p+ ∈ P+.

Conversely, to any order-preserving map f : P → [1] we can associate a slicing
(f−1({0}), f−1({1})) of P clearly satisfying f−1({0}) ∩ f−1({1}) = f−1({0} ∩ {1}) = ∅
and f−1({0}) ⊔ f−1({1}) = f−1([1]) = P , as well as p− < p+ as above since f is order-
preserving.

De�nition 3.5.3. Let C be an∞-category with �nite limits. A P -slicing of C is a map
that associates to every slicing (P−, P+) ∈ O(P ) a pair of full subcategories CP− ,CP+ ⊆ C

such that

� C is a recollement of CP− and CP+ ,

� to (∅, P ) and (P, ∅) we associate the trivial recollements {∗},C and C, {∗},

� and if (P−, P+) ≤ (P ′−, P
′
+), then CP− ⊆ CP ′

−
.

Remark. Again, of most interest is the case where C is stable. By 3.1.6, this implies that
CP+ ,CP− are stable subcategories and all involved functors are exact. In this setting,
above notion was introduced in [FLM15, Chapter 6].

De�nition 3.5.4. A P -recollement of an ∞-category C admitting �nite limits consists
of a collection of full subcategories (Cp)p∈P such that:

� The inclusions ip : Cp ↪→ C admit left exact left adjoints Lp, for all p ∈ P .

� For Cp ∈ Cp, Cq ∈ Cq where p, q ∈ P with p < q, the composition Lqip = 0 vanishes.

� The functors (Lp)p∈P are jointly conservative.

Proposition 3.5.5. If P is �nite, we may rephrase the last point by instead requiring
that the smallest full subcategory of C closed under �nite limits and containing every Cp

is C itself.

Proof. For the if direction, if there was a morphism α in C such that all Lpα are
isomorphisms, but α itself is not, then Lp fib(α) for all p. Let K denote the set of all
objects in C with this property, then the true full subcategory of C spanned by objects
that are not in C would violate above condition.

Conversely, if there were a true full subcategory C′ ⊆ C closed under �nite limits and
containing all of the Cp, and C ∈ C were not in C, then we map iteratively replace it by
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the �nite limit cofib(C → limp∈P ipLpC) which is in the kernel of all Lp, violating joint
conservativity.

Theorem 3.5.6. For P a �nite poset, the following pieces of data are equivalent:

� An ∞-category C that admits all �nite limits and is a P -recollement of (Cp)p∈P

� A functor F : P op → Cat lex∞ into the non-full subcategory of Cat∞ spanned by
∞-categories that admit all �nite limits, and left exact functors

� A P -slicing of an ∞-category C admitting �nite limits

Proof Sketch. (i)⇒ (ii). If C is a P -recollement of (Cp) with functors denoted as above,
and p < q, then we obtain a left exact functor Lp ◦ iq : Cq → Cp. Also, Cp has all
�nite limits, as it is a re�ective subcategory of a category that has them. We may thus
assemble the required functor F by F (p) = Cq and F (q ≥ p) = Lp ◦ iq.

(ii) ⇒ (i). Conversely, given such a functor F : P op → Cat lex∞ , let C be its lax limit. In
other words, apply the Grothendieck construction to the underlying functor F : P op →
Cat∞ to obtain a Cartesian �bration C : M → P , and de�ne C := FunP (P,M) as its
space of sections. We now claim that C is a recollement of the categories Cp := F (p),
with re�ections Lp given by evaluating a section P →M at p, yielding an object of the
�ber M×P {p} = Cp.

We only sketch this, the full proof is analogous to [Lur17, A.8.7]. The right adjoints
ip : Cp → C are given by constructing sections that consist only of terminal and C-
Cartesian arrows, and the fact that they are fully faithful follows from the essential
uniqueness of Cartesian lifts. From this construction, it is clear that Lqip = ∗ for p < q;
and the fact that Lp is left exact and C has �nite limits follows from the fact that F lands
in Catlex∞ . Finally, the Lp are jointly conservative since if α is a natural transformation
between sections and Lp(α) are isomorphisms, then α is pointwise an isomorphism and
therefore a natural isomorphism by [Lur18a, Tag 01DK].

(ii) ⇒ (iii). Given any P -slicing s : P → [1], our goal is to base-change the functor
F : P op → Cat lex∞ along s. Informally, this should be done using a lax right Kan extension,
so that

C = laxlimP op(F ) ∼= laxlim[1]op laxRan
[1]op

P op (F ) (3.23)

still decomposes C. Just as a right Kan extension along a Cartesian �bration is calcu-
lated by taking the colimit over the �bers by [Lur18a, Tag 02ZM], we might expect the
same formula to hold in the lax case, so we de�ne F ′ : [1]op → Cat lex∞ as the space of
local sections F ′(0) := FunP (P−,M) on P− = s−1({0}), and similarly for P+. The re-
quired map FunP (P+,M)→ FunP (P−,M) is then a limit over the suitable contravariant
transports. Concretely formalizing this proof is very heavy on combinatorics, we hope
the reader is simpli�ed with the simpler special case in 4.6.1.

(iii)⇒ (i). To any p ∈ P , we can associate two canonical P -slicings (P≤p, P −P≤p) and
(P<p, P − P<p). By de�nition, they di�er only by the side of the slicing that p is on. If
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we denote by L≤− the left exact re�ection onto CP≤p
and similarly by L<

+ the re�ection
onto CP−P<p , de�ne Cp := L≤−CP−P<p ⊆ C. This is a re�ective subcategory with left exact
re�ection Lp := L≤−L

<
+, and by de�nition for q > p we have LqCp = 0. It remains to

show that together, the Lp are jointly conservative, which is done by repeatedly slicing
P and reducing the statement to joint conservativity after localizing to P− and P+, until
by �niteness of P we reach the case of [1] where the claim follows by assumption.

De�nition 3.5.7. A P -decomposition of a stable ∞-category C consists of a collection
of stable subcategories (Cp)p∈P such that:

� For Cp ∈ Cp, Cq ∈ Cq where p, q ∈ P with p < q, the mapping space MapC(Cp, Cq)
is contractible.

� The smallest stable subcategory of C containing Cp for every p ∈ P is C itself.

Theorem 3.5.8. For P a �nite poset, the following pieces of data are equivalent:

� A stable ∞-category C that is a P -decomposition of (Cp)p∈P

� A stable ∞-category C that is a P -recollement of (Cp)p∈P

� A functor F : P op → Catex∞ into the non-full subcategory of Cat∞ spanned by
stable ∞-categories and exact functors

� A P -slicing of a stable ∞-category C

Proof. We had seen in Proposition 3.1.6 that a recollement of two subcategories is stable
i� the two subcategories are stable. The �rst two data are hence equivalent by combining
3.5.5 with the observation that if Lqip = 0 for p < q, thenMap(Cp, Cq) ≃ Map(LqipCp) =
0 automatically, and the converse following from the Yoneda lemma.

The remaining equivalences are also immediate by combining the arguments of the men-
tioned proposition with the previous Theorem. In particular, note that the recollements
involved in the P -slicing in the last point are automatically stable.

Remark. We expect partial results to still hold for P a noetherian poset. For general P ,
the correct de�nition is that of a functor P → Cat lex∞ or into Catex∞ respectively, whence
we recover C as its lax limit. In particular, the notion of a P -recollement is generally
stronger than the notion of a P -slicing, as indicated in the following proposition.

Proposition 3.5.9 ([HPT20, 5.16]). Let (X → P ) be a strati�ed space in the sense of
6, with P potentially in�nite. For V a compactly generated ∞-category, the hyperpull-
back functors (Shhyp(X;V) → Shhyp(Xp;V))p∈P are jointly conservative. This implies
that in our terms, the full subcategories Shhyp(Xp;V) embedded into Shhyp(X;V) by
pushforwards form a P -recollement. However, they already form a P -slicing under the
possibly weaker conditions of 3.1.5, e.g. if V is presentable and stable.
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Now that we have discussed the case of ∞-categories with �nite limits and stable ∞-
categories, the latter generalizing the classical theory of semiorthogonal decomopositions
by taking the homotopy category, we turn to the Poincaré case.

De�nition 3.5.10. Let (C, Ϙ) be a Poincaré ∞-category. A Poincaré P -slicing of C
is a P -slicing of C such that for every slicing (P−, P+) of P , the induced sequence

(CP− , Ϙ|CP−
)

i∗→ (C, Ϙ)
j∗→ (CP+ , Ϙ|CP+

) is a split Poincaré-Verdier sequence. In other
words, i∗ and j∗ must be duality-preserving.

Remark. We are unsure if this can be reformulated as a functor P op → Catp∞; a �rst
step would be to notice that the push-pull i∗j∗E ∼= i−j+E[1] = DϘi

∗j∗DϘE[1] is duality-
preserving up to a shift by the argument of [Ban07, 8.2.6].
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4 L-Groups of Simplicial Complexes

and PL-spaces

While we have de�ned L-groups for arbitrary Poincaré∞-categories, until now we mainly
considered algebraic examples, like the perfect derived∞-category or categories of mod-
ule spectra. Our goal however is to apply these consideration to (strati�ed) topological
spaces, a task that can get fairly di�cult especially when the spaces involved are not
well-behaved. As a �rst step, let us therefore take a look at one of the simplest classes
of spaces, �nite simplicial complexes, and then pass to compact PL spaces built from
them.

4.1 Simplicial Sheaves

In this section, we de�ne simplicial sheaves on a simplicial complex, which will turn out
to be a special case of the constructible sheaves on strati�ed spaces we later consider.
Further, we write down a Verdier duality functor on them allowing us to de�ne L-groups.
Let V be a stable ∞-category.

De�nition 4.1.1. A simplicial complex K consists of a set of vertices K0, and a partially
ordered set of simplices or faces denoted by IK that is a collection of nonempty �nite
subsets of K0, ordered by inclusion. We require that

� For each v ∈ K0, we have {v} ∈ IK , and

� If σ, τ are nonempty �nite subsets of K0, such that σ ⊆ τ and τ ∈ IK , then σ ∈ IK .

The dimension of a face σ ∈ IK is de�ned as its cardinality minus 1. The dimension of
K is the maximum over the dimensions of all its faces. K is called �nite if the poset IK
is �nite, which implies that K0 is also �nite.

De�nition 4.1.2. A map of simplicial complexes f : K → L is a map of underlying
sets f : K0 → L0 such that the image f(σ) ⊆ L0 of a simplex σ ∈ IK is again a simplex
in IL. One obtains a category of simplicial complexes.

A simplicial complex K should be regarded as special case of a simplicial set, where

� no ordering is �xed on the faces of an n-simplex,
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� the gluing of simplices is regular, i.e. all n-simplices of K are isomorphic to the
standard simplex ∆n, and

� the intersection of two simplices is again a single simplex.

In particular, we can associate a simplicial set to any simplicial complex K (which is
unique after �xing an order on the vertices), with non-degenerate simplices precisely the
simplices of K. We use it to de�ne e.g. the geometric realization |K| or the (barycentric)
subdivision sd(K), which agree with the usual de�nitions from topology.

Warning. We also associate a di�erent simplicial set to K, namely the ∞-category
obtained as the nerve of the partially ordered set of simplices IK . This simplicial set
has one vertex for every simplex of K and one edge for every inclusion relation among
them; so it is the subdivision of the construction above. In particular, their geometric
realization are homotopy equivalent (even homeomorphic).

De�nition 4.1.3. For K a simplicial complex and V an ∞-category, a simplicial sheaf
on K is a functor IK → V, where we regard the poset IK as a (thin) ∞-category using
the nerve construction. We write Shsimp(K;V) := Fun(IK ,V), and if V has a terminal
object ∗ we denote by Shsimp

c (K;V) its full subcategory on compactly supported simplicial
sheaves F , meaning that F (σ) ∼= ∗ ∈ V for all but �nitely many σ ∈ IK .

Remark. If V is compactly generated, or presentable stable, then this is equivalent to
the ∞-category of constructible sheaves on the strati�ed space |K| → IK , as we show
in 6.2.13. More generally, if V itself is not presentable but a full subcategory of an
∞-category W satisfying these properties, we will see in 6.3.5 that we may identify
Shsimp(K;V) with the full subcategory of Shcbl(|K|;W) on those sheaves with stalks in
V. This often happens for Poincaré ∞-categories, for example Dperf(R) ⊆ D(R).

Observation 4.1.4. If V possesses all (co)limits, the ∞-category Shsimp(K;V) does so
as well. Also, every functor F : IK → V agrees with the �ltered colimit

F ∼= colim
K′⊆K �nite

iK′,∗i
∗
K′F , (4.1)

where iK′,∗i
∗
K′F is de�ned to agree with F on all simplices in the sub-poset IK′ ⊆ IK ,

and is zero otherwise. Thus, Shsimp
c (K;V) generates Shsimp(K;V) under colimits.

Example 4.1.5. For τ ∈ IK and C ∈ V, denote by Fτ,V : IK → V the sheaf that sends
each face σ ⊆ τ to V , and all other simplices of K to 0. This is compactly supported on
the simplex τ and its faces.

Example 4.1.6. Conversely, denote by F τ,V : IK → V the sheaf that sends every σ ⊇ τ
to V and all other simplices of K to 0. As in the last example, the transition maps are
either identities or zero maps.
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Example 4.1.7. Both examples above still make sense if we replace τ by any subcomplex
L ⊆ K, yielding FL,V and FL,V .

De�nition 4.1.8. A simplicial sheaf F : IK → V on a simplicial complex K is called
locally constant if for each σ, τ ∈ IK with σ ⊆ τ , the image F (σ ⊆ τ) : F (σ)→ F (τ) is
an isomorphism. For every V ∈ V, we can de�ne a locally constant sheaf V : K → V as
the constant functor with value V ; let us call simplicial sheaves of this form constant.

De�nition 4.1.9. Given a simplicial sheaf F : IK → V on a simplicial complex K, its
global sections or simplicial cochain complex are de�ned as

Γ(F ) = C∗(F ) := lim
σ∈IK

F (σ) . (4.2)

Dually, we de�ne its simplicial chain complex C∗(F ) := colim
σ∈IK

F (σ).

Proposition 4.1.10. It V admits limits and colimits, the functors C∗ ⊣ (−) ⊣ C∗ form
an adjoint triple, by de�nition of limit and colimit:

Shsimp(K;V) = Fun(IK ,V) V

C∗

C∗

(–)

Hence, the compositions C∗ ◦ (−) ⊣ C∗ ◦ (−) are adjoint functors V → V, also denoted
by C∗(K;−) and C∗(K;−).

Remark. For V = D(R) the derived category of a ring or the category of chain complexes
Ch(R), the groups C∗(K;R) and C∗(K;R) agree with the usual simplicial (co)chain
complexes since homotopy (co)limits in the derived category of a Grothendieck abelian
category can be calculated using the bar construction as explained in 1.5.18. More
generally, C∗ and C∗ calculate the simplicial (co)chain complexes with values in a local
system. We will in 5.3.11 and 6.3.8 apply the same construction for the (co)homology
of a topological space with values in a local system or constructible sheaf; one can also
obtain the simplicial (co)chain complexes of a (regular, locally �nite) CW complex in
this manner using 6.2.12.

Technical Remark. If we regard Shsimp(K; S) as a (presheaf) ∞-topos, then (−) ⊣ C∗

agrees with the global sections geometric morphism, and their composition is a left-exact
functor S → S called the shape of this topos. The last remark shows how this encodes
topological invariants of the simplicial complex K. We will observe something similar
for the topological setting in 5.1.10.
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De�nition 4.1.11. If K is a simplicial complex and σ ∈ IK a simplex, the open star of
σ is the set of simplices in K that have a non-empty intersection with σ, regarded as an
open subset of |K| by taking the union of their interiors. The star of σ is the closure
of the open star under the operation of taking faces, so that it becomes a simplicial
complex itself (or a closed subset of |K|). The link of σ consists of those simplices in
the star that do not intersect σ.

Example 4.1.12. Usually, we are interested in the case where σ = {v}, so the star
of {v} is the closure of all simplices containing v as a vertex. If we for example let
v = 0 ∈ ∆n, then its star is all of ∆n; its link consists of those simplices in ∆n that do
not contain v, making up ∆1<···<n ∼= ∆n−1; and its open star is ∆n −∆1<···<n.

Example 4.1.13 ([Lur11, Lecture 18, Example 7]). Let us calculate the global sections
for the exemplary sheaves above:

C∗(FL,V ) = lim
σ∈IK

FL,V = lim
σ∈IL

V = V IL (4.3)

where V IL is the mapping object de�ned by

MapV(V
′, V IL) = lim

σ∈IL
MapV(V

′, V ) = MapS(IL,MapV(V
′, V )) (4.4)

for all V ′ ∈ V. To calculate C∗(F τ,V ), let L be the subcomplex of K de�ned as the
complement of the open star of τ . The sequence

F τ,V → FK,V = V → FL,V (4.5)

of functors is a �ber and co�ber sequence, since this can be checked simplex-wise. Hence,

C∗(F τ,V ) = fib(C∗(FK,V → FL,V )) = fib(V IK → V IL) =: V (IK ,IL) (4.6)

and since the mapping objects are de�ned by mapping K,L into the Kan complex
MapV(V

′, V ), they are invariant under weak homotopy by de�nition 1.2.16 so we can
contract the open star of τ to a point x in the interior of τ , obtaining C∗(F τ,V ) =
V (|K|,|K|−{x}) where we identify the topological spaces with their (singular) Kan com-
plexes.

From now on, let (V, Ϙ) be a Poincaré∞-category. This allows us to equip Shsimp(K;V)
with the tensor hermitian structure, making it into a Poincaré ∞-category as well by
2.3.8. We can even twist the quadratic functor by a local system:

De�nition 4.1.14. A spectrum X ∈ Sp is called invertible if there is another spectrum
Y ∈ Sp such that X ∧Y ∼= S. This already implies that X ∼= Sn for some n ∈ Z. Denote
by Spinv ⊆ Sp the full subcategory on invertible spectra.
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De�nition 4.1.15. Given a simplicial complex K, a spherical �bration on K is a locally
constant sheaf χ : IK → Spinv.

From now on, we always assume that K is �nite.

Proposition 4.1.16 ([Lur11, Lecture 21]). For (V, Ϙ) a hermitian ∞-category, K a
simplicial complex and ζ : IK → Spinv a spherical �bration, the category of simplicial
sheaves Shsimp(K;V) equipped with the twisted Verdier duality functor

ϘK,ζ(F ) := colim
σ∈IK

ζ(σ) ∧ Ϙ(F (σ)) (4.7)

for any F : IK → V is a hermitian ∞-category. Its associated bilinear functor is

BK,ζ(F,G) = colim
σ∈IK

ζ(σ) ∧BϘ(F (σ), G(σ)) (4.8)

and if Ϙ admits a duality functor DϘ, we obtain an associated duality functor

DK,ζ(F )(σ) = ζ(σ) ∧DK(σ) = ζ(σ) ∧ colim
τ∈IK

{
DϘ(F (τ)) for τ ⊇ σ

0 otherwise
(4.9)

where we denote the non-twisted tensor duality functor by DK,S =: DK .

Remark. The ζ(σ) ∧ − in this formula is the tensoring Spfin ⊗ V → V from 1.6.22,
determined by the universal property

MapV(E ∧ V, V ′) ≃ MapSp(E,mapV(V, V
′)) . (4.10)

Since ζ(σ) = ΣnS for some n ∈ Z, this tensoring on objects simply acts as ζ(σ) ∧ V =
ΣnV , but a priori it is not clear that this is functorial in Spinv.

Lemma 4.1.17. For E ∈ Spfin, and V a stable ∞-category with V, V ′ ∈ V,

E ∧mapV(V, V
′) ∼= mapV(V,E ∧ V ′) (4.11)

Proof. Every �nite spectrum can we written as a �nite (co)limit over the sphere spec-
trum S = Σ∞S0 (essentially by de�nition, compare [CDH+20a, 4.1.2]), and regarded as
functors in E, both sides of the above equality preserve �nite limits. We can therefore
reduce to E = S, which is a unit for the smash product so the result is automatic.

Proof of 4.1.16. Note that all involved colimits are �nite, so they exist in a stable ∞-
category. In the case where ζ = S : IK → Spinv is the constant functor on S, this
Proposition is just a special case of 2.3.7. Generally, ϘK,ζ(0) = 0 is reduced,

ϘK,ζ(F ⊕G) = colim
σ∈K

ζ(σ) ∧ (Ϙ(F (σ))⊕ Ϙ(G(σ))⊕BϘ(F (σ), G(σ))) ∼=
∼= colim

σ∈IK
ζ(σ) ∧ Ϙ(F (σ)) ⊕ colim

σ∈IK
ζ(σ) ∧ Ϙ(G(σ)) ⊕ colim

σ∈IK
ζ(σ) ∧BϘ(F (σ), G(σ)) =

= ϘK,ζ(F )⊕ ϘK,ζ(G)⊕BK,ζ(F,G)
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exhibits BK,ζ(F,G) as the correct polarization, and

BK,ζ(F,G) = colim
σ∈IK

ζ(σ) ∧mapV (F (σ), DϘG(σ)) ∼=
∼= colim

σ∈IK
mapV(F (σ), ζ(σ) ∧DϘG(σ))

using the Lemma above. From there, we can follow the proof of 2.3.7. Further, DK,ζ is
exact since the smash product preserves colimits in both variables and we already know
DK is exact, so BϘ is bilinear and automatically symmetric as it arises as a polarization.
We calculate

ΛK,ζ(F ) := fib
(
ϘK,ζ(F )→ BK,ζ(F, F )hS2

)
= colim

σ∈IK
ζ(σ) ∧ ΛϘ(F (σ))

since ∧ preserves colimits, making it exact as well, so ϘK,ζ is a non-degenerate quadratic
functor.

Example 4.1.18 ([Lur11, Lecture 19, Example 2]). Let V : IK → V be the constant
sheaf on V ∈ V. Its Verdier dual can be calculated as

DKV (σ) = colim
τ∈IK

{
DϘ(V ) for τ ⊇ σ

0 otherwise
= DϘ lim

τ∈IK

{
V for τ ⊇ σ

0 otherwise
=

= DϘC
∗F σ,V = DϘV

(|K|,|K|−{x})

for x in the interior of σ, using example 4.1.13.

Theorem 4.1.19 ([Lur11, Lecture 19, Proposition 3]). If V is a Poincaré ∞-category
and ζ a spherical �bration on a �nite simplicial complex K, then the hermitian ∞-
category (Shsimp(K,V), ϘK,ζ) is Poincaré as well.

We will need further preparations to prove the biduality statement included in this
theorem. Let us �rst examine the functoriality of our constructions.

De�nition 4.1.20. For f : IK → IL a map of simplicial sets as de�ned in 4.1.2, we
de�ne the pullback

f ∗ : Shsimp(L;V)→ Shsimp(K;V) (4.12)

by precomposing G : IL → V with f , in the sense that f ∗G(τ) := G(f(τ)). In fact, this
even makes sense if f is just a map of posets.

De�nition 4.1.21. As a precomposition functor f ∗ has adjoints f+ ⊣ f ∗ ⊣ f∗ given by
left and right Kan extension along f , assuming that V has the required colimits or limits
(e.g. K is �nite and V stable). We call f∗ = Ranf : Shsimp(K;V) → Shsimp(L;V) the
pushforward along f , it is explicitly given by

(f∗F )(τ) := lim
f(σ)⊇τ

F (σ) . (4.13)
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Observation 4.1.22. If f : K → L is even a map of simplicial complexes and τ ∈ IL,
then there exists a σ ∈ IK with f(σ) ⊇ τ i� there exists a σ′ ∈ IK with f(σ′) = τ ,
as we can choose σ′ ⊆ σ as a subset making the restricted map on vertices bijective.
Therefore, the set of σ′ with f(σ′) = τ is a left co�nal subposet of the indexing poset of
the above limit, as either both are empty or each σ there exists an appropriate face σ′.
We may then write

(f∗F )(τ) := lim
f(σ)=τ

F (σ) . (4.14)

In particular, this implies that f ∗F exists if V admits �nite limits (e.g. it is stable) and
the preimages f−1(τ) are �nite. We might call such maps of simplicial complexes proper.

Lemma 4.1.23. For f : IK → IL, g : IL → IM maps of posets, we have:

(g ◦ f)+ = g+ ◦ f+, (g ◦ f)∗ = f ∗ ◦ g∗, (g ◦ f)∗ = g∗ ◦ f∗ (4.15)

Also, if t : L→ ∆0 is the terminal map, then t∗ = C∗ and t+ = C∗ under the identi�ca-
tion Shsimp(∆0;V) = Fun(∆0,V) ≃ V. In particular, C∗ ◦ f∗ = C∗ and C∗ ◦ f+ = C∗.

Proof. This statement is clearly true for the precompositions. For the pushforwards,
this it is due to transitivity of Kan extensions.

Technical Remark. In fact, the expression Fun(−,V) : PoSetfin,op → Cat∞ sending maps
to the respective pullbacks is a functor on all �nite posets, and classi�es the coCartesian
�bration M → PoSetfin,op which is also Cartesian, and the Cartesian �bration M∨ →
PoSetfin which is also coCartesian. This yields the adjunction f+ ⊣ f ∗ ⊣ f∗ when
restricting to the non-full subcategory on (IK , IL, f) in PoSetfin, and the previous Lemma
when restricting to the span of (IK , IL, IM , f, g) and composing the (co)Cartesian lifts.

Proposition 4.1.24 ([Lur11, Lecture 19]). For f : K → L a map of �nite simplicial
complexes, ζ : IL → Spinv a spherical �bration and V a Poincaré∞-category, the induced
pushforward functor

f∗ :
(
Shsimp(K;V), ϘK,ζ◦f

)
→
(
Shsimp(L;V), ϘK,ζ

)
(4.16)

is duality-preserving in the sense that f∗ ◦DK,ζ◦f ∼= DL,ζ ◦ f∗.

Proof. By the Yoneda-Lemma, it su�ces to show that for F : IK → V and G : IL → V,

map(G,DL,ζf∗F ) ∼= map(f ∗G,DK,ζ◦fF )

naturally in F and G. But these are precisely the expressions for the associated bilinear
functors; we calculate

BL,ζ(G, f∗F ) = colim
τ∈IL

ζ(τ) ∧BϘ

(
G(τ), lim

f(σ)=τ
F (σ)

)
∼= colim

τ,f(σ)=τ
ζ(τ) ∧BϘ (G(τ), F (σ)) ∼=

∼= colim
σ∈IK

ζ(f(σ)) ∧BϘ (G(f(σ)), F (τ)) = BK,ζ◦f (f
∗G,F ) .
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Remark. A di�erent proof can be found in [CDH+20a, 6.5.13, 6.6.1] relying on the
observation that the map (IK)σ/ → (IL)f(σ)/ induced by f is always right co�nal.

Lemma 4.1.25. The sheaves (F τ,V )τ∈K,V ∈V generate Shsimp
c (K;V) under co�bers, and

Shsimp(K;V) under all colimits. Actually, for any F ∈ Shsimp(K;V) we have

MapShsimp(K;V)(F
τ,V , F ) ∼= MapC(V, F (τ)) . (4.17)

If we regard the simplex τ ∈ IK as a simplicial complex and let iτ : τ → K be the
canonical inclusion and V : τ → V the constant simplicial sheaf on τ with value V , we
can identify iτ,∗V = F τ,V .

Proof. Given a compactly supported simplicial sheaf F on K, its support supp(F ) is
a �nite downwards-closed subset of IK . If it is empty, then F ∼= F τ,0 and we are
�nished, otherwise we proceed by induction on its cardinality and choose any maximal
τ0 ∈ supp(F ). The �ber F ′ := fib(F → F τ0,F (τ0)) has a smaller support supp(F )−{τ0},
and F = cofib(F τ0,F (τ0) → F ′) so we are �nished. We have already observed in 4.1.4 that
the compactly supported sheaves generate all sheaves under �ltered colimits, showing
the second claim.

The third claim follows either from the Yoneda-Lemma, as F τ,V is just the Yoneda-
embedding of τ tensored with V , or by an explicit calculation. Then, the last claim
follows by applying the Yoneda-Lemma to the calculation

MapShsimp(K;V)(i∗,τV , F ) ∼= MapShsimp(τ ;V)(V , i∗τF ) ∼= MapV(V, lim
Iτ

F |τ ) ∼=
∼= MapV(V, F (τ)) ∼= MapShsimp(K;V)(F

τ,V , F )

since the limit diagram has an initial object.

Proof of 4.1.19. By the previous proposition 4.1.16, we only need to show that Id ∼= D2
K,ζ

is perfect. By its de�nition, DK,ζ commutes with colimits, so it su�ces to show this on a
class of objects generating Shsimp(K;V) under colimits. We use the sheaves F τ,V = iτ,∗V
for this purpose, and since pushforwards commute with DK,ζ by 4.1.24 we can reduce to
the constant sheaf V on an n-simplex τ .

In 4.1.18 we have calculated DKV (σ) = DϘV
(∆n,∆n−{x}) for x a point in the interior of

σ. If σ ⊆ τ is a proper face, this homotopy co�ber is trivial; for σ = τ it is homotopy
equivalent to DϘV

(Dn,Sn−1) ≃ DϘV
Sn

= DϘΣ
−nV = ΣnDϘV . Finally, we calculate

D2
K,ζV (σ) = ζ(σ) ∧ colim

σ′∈Iτ

{
DϘ (ζ(σ

′) ∧DKV (σ′)) for σ′ ⊇ σ

0 otherwise
=

= ζ(σ) ∧ colim
σ′∈Iτ

{
DϘ (ζ(σ

′) ∧ ΣnDϘV ) for τ = σ′ ⊇ σ

0 otherwise
=

= ζ(σ) ∧ ζ−1(σ) ∧ Σ−nV ∧ colim
σ′∈Iτ

{
DϘΣ

∞S0 for τ = σ′

0 otherwise
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using that DϘ sends Σn to Σ−n, and thus an invertible spectrum to its inverse. The
last colimit can be identi�ed with Σ∞ fib(|∂τ | → |τ |) = Σ∞Sn, so we are left with
Σ−nV ∧ ΣnS = V , as claimed.

4.2 Combinatorial Sheaves on PL spaces

De�nition 4.2.1. For K,L simplicial complexes, a homeomorphism r : |K| → |L|
exhibits K as a re�nement of L if

� It embeds the realization of a simplex σ in K into the realization of some simplex
in L. This induces a map of partially ordered sets r : IK → IL sending σ to the
smallest such τ ∈ IL.

� The realization of a simplex in L is the union of such embedded simplices from K.

We will often only specify the map of posets r : IK → IL, be aware that this is never a
map of simplicial complexes unless it is an isomorphism.

De�nition 4.2.2. A piecewise linear space, or PL space in short, is a topological space
X together with a set T of locally �nite triangulations such that

� if T ∈ T, then the barycentric subdivision sd(T ) is also in T, and

� any T, T ′ ∈ T possess a common re�nement T ′′ ∈ T.

The set T is partially ordered by re�nement of triangulations. We refer to the literature
(e.g. [Lur11, Lecture 17]) for more information, and di�erent characterizations. In
particular, a PL map between PL spaces is a map of simplicial complexes on some
triangulations of them, making PL spaces into a category.

Proposition 4.2.3 ([Lur11, Lecture 17, Remark 7]). For X a PL space, the following
are equivalent:

� X is compact as a topological space

� X admits a �nite triangulation

� Every triangulation of X is �nite

De�nition 4.2.4. An n-dimensional PL manifold is a PL space X that is locally iso-
morphic to Rn with its canonical PL structure, in the sense that any point x ∈ X has an
open neighborhood that, together with its restricted PL structure, possesses mutually
inverse PL maps to and from Rn. Similarly, we de�ne n-dimensional PL manifolds with
boundary.
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Proposition 4.2.5. A PL space X is an n-dimensional PL manifold i� it possesses a
triangulation K such that for every vertex v ∈ K0, (the geometric realization of) its
link is homeomorphic to Sn−1. This then automatically holds for every triangulation of
X, and even for the link of any simplex (not just vertices). In particular, (Whitehead)
triangulations of smooth manifolds yield PL manifolds, but triangulations of topological
manifolds may have non-spherical links.

Similarly, a PL space X is an n-dimensional PL manifold with boundary i� for some
(or for every) triangulation K the link of every vertex (or simplex) v ∈ K0 is either
homeomorphic to Sn−1 or Dn−1. The subcomplex spanned by all vertices with link
Dn−1 makes up the boundary of X.

De�nition 4.2.6. For X a PL space with family of triangulations T and V an ∞-
category, we de�ne the ∞-category of combinatorial sheaves on X with respect to T

Shcomb(X;V) := lim
T∈T

Shsimp(T ;V) = lim
T∈T

Fun(T,V) , (4.18)

where the transition maps in this limit diagram are given by pushforward along re�ne-
ments. Similarly, we de�ne the∞-category of compactly supported combinatorial sheaves
as a colimit along pullbacks of re�nements

Shcomb
c (X;V) := colim

T∈T
Shsimp

c (T ;V) . (4.19)

To be a bit more precise, denote by I : T → Cat∞ the functor from the poset of trian-
gulations of X into Cat∞ that sends a triangulation T to the nerve of its poset IT of
simplices, and a re�nement r of triangulations to the underlying map on posets. Post-
composing with Fun(−,V) this induces a functor Fun(I∗(−),V) : Top → Cat∞ sending
T 7→ Fun(IT ,V) = Shsimp(T ;V) and r to the pullback r∗. Sending r to r∗ instead, we
obtain a functor Fun(I∗(−),V) : T → Cat∞.

Note that r∗ preserves the property of being compactly supported, since every sim-
plex consists of �nitely many re�ned simplices by 4.2.3, so we can restrict to a functor
Func(I

∗(−),V) sending T to the full subcategory on functors IT → V that send all but
�nitely many simplices to 0. Then, we de�ne

Shcomb(X;V) := lim
T

Fun(I∗(−),V), Shcomb
c (X;V) := colim

T
Func(I

∗(−),V) . (4.20)

Technical Remark. To be even more precise, the coCartesian �bration M→ Top classify-
ing Fun(I∗(−),V) is also Cartesian, classifying a functor Fun(I∗(−),V) whose application
to each re�nement is right adjoint to the application of the �rst functor.

Remark. Compare this with the de�nition 1.5.24 of �nite spectra as the sequential
colimit of �nite pointed spaces with transitions maps given by the suspension func-
tor Σ, while general spectra were a sequential limit over pointed spaces with right
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adjoint transition map Ω. A similar argument to the discussion there shows that
Shsimp

c (K;V) ⊆ Shsimp(K;V) is canonically embedded as a full subcategory. If X is
compact, both categories are equivalent since every triangulation of X is �nite by 4.2.3.
We will still mostly work with the limit de�nition, however as in the case of spectra the
construction of Shsimp

c (K;V) seems more intuitive.

To de�ne a Poincaré structure on the category of combinatorial sheaves on a compact
PL space with values in a Poincaré∞-category (V, Ϙ), we need some structure theorems
about re�nement maps between simplicial complexes.

Proposition 4.2.7 ([Lur11, Lecture 19, Construction 1]). Let r : IK → IL be a re-
�nement of simplicial complexes and ζ : IL → Spinv a spherical �bration. Then, the
quadratic functor ϘL,ζ agrees with the composition ϘK,ζ◦r ◦ r∗.

Proof. We have to see that the following colimits agree, for F : L→ V:

ϘL,ζ = colim
σ′∈L

ζ(σ′) ∧ Ϙ(F (σ′))
!∼= ϘK,ζ◦r ◦ r∗(F ) = colim

σ∈K
ζ(r(σ)) ∧ Ϙ(F (r(σ)))

It su�ces to show that the r : K → L is a right co�nal map of ∞-categories, which
applying Quillen's Theorem A 1.2.15 is equivalent to the partially ordered set {σ ∈
K | i(σ) ⊆ τ} for each τ ∈ L being weakly contractible. But the geometric realization
of τ is by assumption the union the union of the geometric realizations of the simplices
σ in this set, i.e. the geometric realization of (the nerve of) this simplicial set. Since
|τ | = |∆k|, this is always a contractible space.

Corollary 4.2.8. This implies BϘL,ζ
(F, F ′) ∼= BϘK,ζ◦r(r

∗F, r∗F ′) by construction of the
polarization, so

map(F,DL,ζF
′) ∼= map(r∗F,DK,ζ◦rr

∗F ′) (4.21)

and we have DL,ζ
∼= r∗DK,ζ◦rr

∗ by the Yoneda Lemma.

Proposition 4.2.9 ([Lur11, Lecture 19]). For r : IK → IL a re�nement of simplicial
complexes and ζ : IL → Spinv a spherical �bration, the pullback r∗ is duality-preserving
in the sense that DK,ζ◦rr

∗ ∼= r∗DL,ζ .

Proof. Long but not very illuminating, see the reference.

Proposition 4.2.10 ([Lur11, Lecture 18, Proposition 8]). If r : IK → IL is a re�nement,
then the pullback functor r∗ is fully faithful.
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Proof. We show that the unit map Id⇒ i∗i
∗ is an isomorphism. Explicitly for G : IL →

V, it can be expressed by

G(τ) ∼= lim
i(σ)⊇τ

G(τ)→ i∗i
∗G(τ) = lim

i(σ)⊇τ
G(i(σ)) (4.22)

where the left isomorphism follows because we take the limit of a constant functor over a
weakly contractible diagram, as the geometric realization of the poset of σ with τ ⊆ i(σ)
by de�nition of a re�nement makes up |τ |, which is contractible. If r was a map of
simplicial sets, we could apply the same co�nality argument as in 4.1.22 to reduce to the
subdiagrams with i(σ) = τ , where this transformation clearly is an isomorphism. For
re�nements, the following Lemma applied to τ regarded as a PL manifold with boundary
supplies a similar result, �nishing the proof.

Lemma 4.2.11 ([Lur11, Lecture 18, Lemma 9]). Let T be a simplicial complex where
the link of any vertex either looks like Sn−1 or Dn−1, i.e. a triangulation of a PL n-
manifold with boundary. Also, let IoT be the sub-poset of IT on those simplices τ that
are not contained in the boundary, i.e. not every vertex of τ has link Dn−1. Then, the
inclusion IoT ⊆ IT is left co�nal.

Proof. We work by induction on n, where the case n = 0 is trivial. For σ ∈ IT , we
need to show that P := {τ ∈ IoT |σ ⊆ τ} weakly contractible. For σ ∈ IoT this is trivial
as it makes up an initial element of this set, so assume σ is in the boundary. Then, P
consists of those simplices in the open star of σ that are not contained in the boundary.
But simplices in the open star, excluding σ itself, are in bijection with simplices in the
link, via the map τ 7→ τ − σ if we regard τ, σ ⊆ T0. By 4.2.5, this link is a triangulation
of Dn−1, so we can identify P with the subset of those simplices in it that are not
contained in the boundary ∂Dn−1. This is left co�nal by the inductive step, so it is
weakly contractible since Dn−1 is.

Corollary 4.2.12. If r : IK → IL is a re�nement of simplicial complexes, the functors
C∗◦r∗ and C∗ : Shsimp(L;V)→ V are naturally isomorphic, assuming that the respective
limits exist.

Proof. This is a special case of the last proposition 4.2.10: Let tK : IK → ∆0 and
tL : IL → ∆0 be terminal maps of simplicial sets, then

C∗ ◦ r∗ = tK,∗ ◦ r∗ = tL,∗ ◦ r∗ ◦ r∗ = tL,∗ = C∗ .

Remark. We can not simply use a co�nality argument to show limτ∈L F (τ) ∼=
limσ∈K F (r(σ)), as it is not clear that r is left co�nal (while it was easy to verify that it
is right co�nal).

Similarly to this result, we know that C∗ ◦ r∗ = C∗ by 4.1.23, and even C∗r+ ∼= C∗ by
[Lur11, Lecture 18, Proposition 11].
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De�nition 4.2.13. Since we have seen in 4.1.23 that the global sections functor C∗ is
compatible with pushing forward along maps of posets, its value on any two triangu-
lations must agree as we can compare them on a common re�nement, so it de�nes a
functor

C∗ : Shcomb(X;V)→ V . (4.23)

Formally, C∗ de�nes a natural transformation Fun(I∗,V) ⇒ V of functors T → Cat∞,
and taking the limit on both sides yields a functor Shcomb(X;V) → limT V = V as T is
�ltered an therefore weakly contractible.

De�nition 4.2.14. A spherical �bration ζ on a PL space (X,T) consists of

� A right co�nal subset Tζ ⊆ T, in the sense that every admissible triangulation of
X possesses a re�nement in Tζ

� A natural transformation from I∗ : Top
ζ → Cat∞ to the constant functor on Spinv.

In other words, we need to choose spherical �brations compatibly on a co�nal subset of
all triangulations of X.

Construction 4.2.15. For r : IK → IL a re�nement and ζ : IL → Spinv a spherical
�bration, we have seen in 4.2.7 that ϘL,ζ ∼= ϘK,ζ◦r ◦ r∗ : L→ V are naturally isomorphic.
Hence, given a spherical �bration ζ on a co�nal set of triangulations Tζ for a PL space
X, we can glue these quadratic functor together to obtain a map Func(I∗(−),V)op ⇒ Sp
between functors Tζ → Cat∞, which by de�nition is equivalent to a functor

ϘX,ζ : Sh
comb
c (X;V)op → Sp (4.24)

out of the colimit. Similarly, by 4.2.9 we know that the duality functors DL,ζ are com-
patible with pushforwards along re�nements, so they glue to a functor

DX,ζ : Sh
comb
c (X;V)op → Shcomb

c (X;V) (4.25)

satisfying D2
X,ζ = Id since this holds on all components by 4.1.19. In fact, we can

check on components of the colimit all conditions that are necessary to exhibit ϘX,ζ as
a quadratic functor and Shcomb

c (X;V) as a Poincaré ∞-category. See below for a more
abstract argument.

Construction 4.2.16 ([Lur11, Lecture 20]). The isomorphism ϘK,ζ◦r◦r∗ ∼= ϘL,ζ induces1
an adjoint morphism ϘK,ζ◦r → ϘL,ζ ◦ r∗ that generally is not an isomorphism. Explicitly,
we obtain it as the composition

ϘK,ζ◦rF ∼= colim
τ∈L,r(σ)=τ

ζ(τ) ∧ Ϙ(F (σ))→ colim
τ∈L

ζ(τ) ∧ Ϙ
(

lim
r(σ)=τ

F (σ)

)
= ϘL,ζ(r∗F ) (4.26)

1Note that we actually precompose ϘK,ζ◦r with (r∗)op, and (− ◦ (r∗)op) ⊣ (− ◦ (r∗)op) with (co)units
induced by precomposition with the original (co)units.
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which even works for arbitrary maps of posets instead of r. This means that r∗ becomes
a hermitian functor, which is even duality-preserving by 4.1.24. For any PL space
(X,T) with spherical �bration (ζ,Tζ) with Tζ = T we thus obtain a (�ltered) diagram
T → Catp∞ of Poincaré ∞-categories, which by [CDH+20a, Proposition 6.1.4] admits a
limit. Explicitly by [CDH+20a, Remark 6.1.3], we need to form the limit Shcomb(X;V) of
the underlying∞-categories along the pushforwards r∗, and equip it with the limit of the
quadratic functors pulled back to this limit cone: If we denote by πT : Shcomb(X;V) →
Shsimp(T ;V) the canonical projections, then

ϘX,ζ(F ) := lim
T∈T
ϘT,ζT ◦ πT (F ) . (4.27)

Remark. The restriction to Tζ = T is necessary since otherwise, the limit over the
diagram T → Catp∞ need not yield combinatorial sheaf, as Tζ is right and not necessarily
left co�nal. We do not know how to �x this, unless of course X is compact.

Proposition 4.2.17. For (X,T) a compact PL space with spherical �bration (ζ, Tζ),
both functors ϘX,ζ we have just constructed on Shcomb(X;V) ∼= Shcomb

c (X;V) agree and
equip it with the structure of a Poincaré ∞-category.

Proof. Since for r a re�nement, both r∗ and r∗ are duality-preserving, the duality func-
tors agree by construction. The case of the quadratic functors follows from our con-
struction of the inclusion Shcomb

c (X;V) ⊆ Shcomb(X;V), where the left was de�ned as a
colimit over pullbacks and the right as a limit over the right adjoint pushforwards. Since
the comparison maps ϘK,ζ◦r ◦ r∗ ∼= ϘL,ζ and ϘK,ζ◦r → ϘL,ζ ◦ r∗ correspond to each other
under this adjunction r∗ ⊣ r∗, they must induce the same functor on the colimit/ full
subcategory of the limit.

By this theorem and 4.1.19, we can for any Poincaré∞-category (V, Ϙ) de�ne L-spectra

� L(Shsimp(K;V), ϘK,ζ) for any �nite simplicial complex K and spherical �bration
ζ : IK → Spinv,

� L(Shcomb(X;V), ϘX,ζ) for any compact PL space X and spherical �bration ζ on X.

We will study them, and related L-spectra, in the next sections.

4.3 Locally Constant Sheaves and their L-spectrum

Recall that we have de�ned a simplicial sheaf F : IK → V to be locally constant if for
any σ ⊆ τ in IK , the image F (σ ⊆ τ) is an isomorphism.

Proposition 4.3.1. If K,L are simplicial complexes and f : IK → IL is a map of posets,
then the pullback of simplicial sheaves f ∗ preserves locally constant sheaves.
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Proof. If F is a locally constant sheaf on L and σ ⊆ τ in IK , then f ∗F (σ ⊆ τ) =
F (f(σ) ⊆ f(τ)) must also be an equivalence, so f ∗F is indeed locally constant.

Proposition 4.3.2. For r : IT → IT ′ a re�nement, the pushforward r∗ : Sh
simp(T ;V)→

Shsimp(T ′;V) restricts to the full subcategories of locally constant sheaves Sh lc(T ;V)→
Sh lc(T ′,V) where it induces an equivalence of categories. Similarly for the precomposi-
tion r∗ which induces the inverse to this equivalence, and for r+.

Proof. As r+ ⊣ r∗ ⊣ r∗, it su�ces to prove the claim for r∗ since on any full subcategory
that one adjoint is an equivalence on, the other is an equivalence as well by [Lur18a,
Tag 02EX]. By the previous proposition, r∗ preserves locally constant sheaves since we
can factor r through the localization

r̄ : IT [W
−1
T ] −→ IT ′ [W−1

T ′ ]

where WT ,WT ′ denote the classes of all morphisms in IT , IT ′ respectively. Precomposi-
tion with this map of simplicial sets agrees with r∗ on locally constant sheaves. It su�ces
to show that r̄ is an equivalence of categories, which as both sides are Kan complexes is
equivalent to r̄ being a homotopy equivalence. Localizing at all morphisms is a form of
Quillen �brant replacement, just as Sing | − |, so we can identify r̄ with

Sing |r| : Sing |IT | → Sing |IT ′ | .

Since we assume r to be a re�nement, this map on partially ordered sets is induced
by a homeomorphism r : |K| → |L|, and one can check that, since we know how
everything is glued together and simplices are contractible, |r| must be homotopic to
this homeomorphisms and hence is a homotopy equivalence itself (actually, it is even a
homeomorphism). Since Sing sends those to homotopy equivalences of Kan complexes,
we are �nished.

De�nition 4.3.3. For (X,T) a PL space and T any triangulation of it, we de�ne the
∞-category of locally constant sheaves on X by Sh lc(X;V) = Sh lc(T ;V). Since the
partially ordered set T is �ltered, this is by the last Proposition independent of T up
to isomorphism since any two triangulations can be compared on a common re�nement.
Taking a limit over all triangulations, we obtain a fully faithful subcategory

Sh lc(X;V) ⊆ Shcomb(X;V) (4.28)

since fully faithful functors are closed under limits.

Remark. Alternatively, we could de�ne Sh lc(X;V) := limT∈T Sh
lc(T ;V) since we know

this limit diagram is essentially constant, and T is �ltered and hence weakly contractible.
We could also take a colimit.
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Proposition 4.3.4. If V has limits and colimits, the inclusion of locally constant into
all simplicial sheaves Sh lc(K;V) ⊆ Shsimp(K;V) has a left adjoint Llc and a right adjoint
Rlc, and similarly for Sh lc(X;V) ⊆ Shcomb(X;V).

Proof. As discussed above, the �rst inclusion agrees with the map Fun(IK [W
−1],V) →

Fun(IK ,V) induced by precomposing with the localization functor L : IK → IK [W
−1]

at all morphisms in IK . Since V has limits and colimits, this precomposition has a left
adjoint Llc = LanL and right adjoint Rlc = RanL.

In the PL case, using Sh lc(X;V) = limT∈T Sh
lc(T ;V) we can form the limit

Llc := lim
T∈T

Llc : Sh
comb(X;V)→ Sh lc(X;V)

which is still left adjoint to the inclusion, since adjunctions are preserved under (co)limits
of ∞-categories. To see this, take the (co)limit of the respective units and counits and
notice that by functoriality, the triangle identities are still ful�lled. Similarly for Rlc.

Corollary 4.3.5. In particular, locally constant sheaves are closed under �bers, direct
sums and contain the zero sheaf, so they form a stable subcategory of V.

Proposition 4.3.6. On any simplicial complex K, there is an equivalence of categories

Sh lc(K;V) ≃ Fun(Sing |K|,V) . (4.29)

In particular, any locally constant sheaf on a simplex K = ∆n is constant, as Sing |∆n|
is contractible.

Proof. As in the last proof, Sh lc(K;V) = Fun(IK [W
−1],V). But IK [W−1] and Sing |K|

are both Quillen-replacements of IK , since IK is the subdivision of K regarded as a
simplicial set so they are weakly equivalent, meaning that |K| ≃ |IK |. Thus, IK [W−1] ≃
Sing |K| are homotopy equivalent Kan complex and therefore in particular categorically
equivalent.

De�nition 4.3.7. A simplicial sheaf F : IK → V is called balanced if for every locally
constant sheaf S, the mapping spaceMap(F, S) ≃ ∆0 is contractible. Let us denote their
full subcategory by Sh⊥lc(K;V) ⊆ Shsimp(K;V). If V admits colimits, this is equivalent
to LlcF = 0 since we can identify above mapping space with Map(LlcF, S) and apply
the Yoneda Lemma.

De�nition 4.3.8. If r : IK → IL is a re�nement and G a balanced sheaf on L, then
Map(r∗F, S) ∼= Map(F, r∗S) = 0 since r∗ preserves locally constant sheaves. We thus
obtain a full subcategory of balanced sheaves Sh⊥lc(X;V) ⊆ Shcomb(X;V) on any com-
pact PL space (X,T) by taking a colimit over pullbacks along re�nements, consisting of
the kernel of Llc if V admits colimits.
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Remark. A similar argument shows that for any map of posets f : K → L, the functor
f+ preserves balanced sheaves.

Example 4.3.9. If K = ∆n is a simplex, then F ∈ Shsimp(K;V) is balanced i� its
simplicial chain complex C∗F is trivial. This is because we have seen in 4.3.6 that every
locally constant sheaf on V is constant, so F is balanced i� for any V ∈ V

Map(F, V ) ≃ Map(colim
IK

F, V ) ≃ ∆0

which by the Yoneda-Lemma implies that the colimit C∗F = 0. A dual argument shows
that F ∈ Sh lc(K;V)⊥ i� the global sections C∗F vanish.

Example 4.3.10. Let τ ⊆ τ ′ be two arbitrary simplices in K, V ∈ V and F τ,V , F τ ′,V the
sheaves we de�ned in 4.1.6. There is a canonical map F τ ′,X → F τ,X acting on simplices
containing τ ′ as the identity and as zero otherwise, whose (co)�ber is a balanced sheaf.
To see this, let S be an arbitrary locally constant sheaf on K. Then,

Map(cofib(F τ ′,V → F τ,V ), S) ≃ fib
(
Map(F τ,V , S)→ Map(F τ ′,V , S)

)
which by 4.1.25 agrees with fib (Map(V, S(τ)→ Map(V, S(τ ′)))) = 0 since this map is an
isomorphism by the assumption that S is locally constant. In fact, using that the F τ,V

generate Shsimp(K;V) under colimits, we see that such co�bers generate all balanced
sheaves.

Proposition 4.3.11. Let V be stable and bicomplete, and K be a simplicial set. The
sequence of stable ∞-categories

Sh⊥lc(K;V) ↪→ Shsimp(K;V)
Llc→ Sh lc(K;V) (4.30)

is a right split Verdier sequence, and similarly if we replace K by a PL space X. Dually,
the sequence

Sh lc(K;V) ↪→ Shsimp(K;V)→ Sh lc(K;V)⊥ (4.31)

using the right orthogonal subcategory is a split Verdier sequence.

Proof. This is immediate from 3.2.12 and its proof, since we know about the existence
of adjoints by 4.3.4.

Our goal is to re�ne this to a Poincaré-Verdier sequence, but the issue in doing this is
that Poincaré ∞-categories are usually not bicomplete. In many cases, we can however
embed them into a stable bicomplete ∞-category, denote this as i : V ↪→W. A natural
candidate is the Ind-completion Ind(V) which satis�es these properties by 3.2.18. In
fact, this is a universal candidate since by 3.2.19, the functor i factors uniquely through
a colimit-preserving functor Ind(V)→W that is fully faithful if the essential image of i
consists of compact objects by [Lur09a, 5.3.5.11].
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Construction 4.3.12. Let V be a Poincaré ∞-category that is embedded inside the
stable bicomplete ∞-category W = Ind(V). For K a �nite simplicial complex and
ζ : IK → Spinv a spherical �bration, de�ne the∞-category of V-generated locally constant
sheaves as the Verdier quotient

Sh lc(K;W)(V) := Shsimp(K;V)⧸Sh⊥lc(K;V) ⊆ Shsimp(K;W) (4.32)

where the last inclusion follows from 3.2.21. Note that

Sh⊥lc(K;V) = Sh⊥lc(K;W) ∩ Shsimp(K;V) (4.33)

since Sh lc(K;W) = Fun(IK [W
−1], IndV) = Ind Sh lc(K;V) so every locally constant sheaf

in W is a �ltered colimit of locally constant sheaves in V, meaning that a simplicial sheaf
F that is orthogonal to the latter and also a compact object, is orthogonal to the former
class of sheaves.

According to [Lur11, Lecture 21, p.2], we can further identify the full subcategory
Sh lc(K;W)(V) in Shsimp(K;W) as the essential image of Shsimp(K;V) under the functor
Llc. [We do however not understand his argument; while it is possible to show this
using our 9-Lemma 3.3.8, this seems highly non-trivial and we are not able to verify our
factorization condition.]

Theorem 4.3.13 ([Lur11, Lecture 22, Lemma 3]). In the situation described above, the
sequence

Sh⊥lc(K;V) −→ Shsimp(K;V)
Llc−→ Sh lc(K;W)(V) (4.34)

is a Poincaré-Verdier sequence, where we equip the middle with the quadratic functor
ϘK,ζ , the left with its restriction and the right with its restriction from Shsimp(K;W).

Proof. We know that the middle entry is a Poincaré ∞-category by 4.1.19, and the
sequence is Verdier by de�nition. By 3.3.2, it su�ces to show that Sh⊥lc(K;V) is closed
under duality, since the left Kan extension of ϘK,ζ agrees with the restriction from
Shsimp(K;W) by our derivation of equation 3.12 from 3.2.21.

Given F 0 ∈ Sh⊥lc(K;V), we have to show that for any S ∈ Sh lc(K;V),

Map(DK,ζF
0, S) ≃ Map(DKF, ζ

−1 ∧ S) ≃ ∆0

so since ζ is locally constant, we may reduce to ζ = S. Further, we know by 4.3.10 that
the category of balanced sheaves is generated under colimits by the objects cofib(F τ ′,V →
F τ,V ) =: F τ ′/τ,V for τ ⊆ τ ′ in IK and V ∈ V. In fact, for τ ⊆ τ ′ ⊆ τ ′′, applying
Map(DK(−), S) to the �ber sequence

F τ ′′/τ ′,V −→ F τ ′′/τ,V −→ F τ ′/τ,V

tells us that is su�ces to prove our statement for its outer entries. Inductively, we
restrict to the case where τ ′ is an n-simplex and τ a codimension-1-face.
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Denote by Λτ ′
τ the horn ∂τ ′ − τ . We then calculate

DKFτ ′/τ,V (σ) = colim
σ′∈K

{
DϘV for τ ′ ⊈ σ′ ⊇ σ, τ

0 otherwise
=

{
ΣnDϘV, for σ ⊆ τ ′, σ ⊈ Λτ ′

τ

0 otherwise

similarly to the proof of 4.1.19. We can pull this back from a coarser triangulation
where both τ ′ and Λτ ′

τ are simplices, where this sheaf is described by Fτ ′/Λτ ′
τ ,ΣnDϘV

. This
is balanced, and r∗ preserves balanced sheaves as we have seen, so we are �nished.

Theorem 4.3.14. Let V,W be as above and (X,T) be a compact PL space with spher-
ical �bration (ζ,Tζ). De�ne

Sh lc(X;W)(V) := Shcomb(X;V)⧸Sh⊥lc(X;V) ⊆ Sh lc(X;W) (4.35)

which, as in the simplicial case, consists of the essential image of Llc. Then, the sequence

Sh⊥lc(X;V) −→ Shcomb(X;V)
Llc−→ Sh lc(X;W)(V) (4.36)

is a Poincaré-Verdier sequence, where we equip the middle with the quadratic functor
ϘX,ζ , the left with its restriction and the right with its restriction from Shcomb(X;W).

Proof. It is a Verdier sequence by de�nition, and since the quadratic functors are glued
together from compatible quadratic functors on components the rest can be checked on
triangulations and thus follows from the last proof.

These sequences are not very useful unless we have some control over Sh lc(K;W)(V). If
we work with V = LModfp

R and W = Ind(V) = LModR over a ring spectrum R that is an
algebra over a commutative ring spectrum k (potentially k = S), this can be achieved.
The proofs of the following statements are similar to the topological case, so we postpone
them until 5.4.

Proposition 4.3.15 ([Lur11, Lecture 21]). For K a connected simplicial complex, there
is an equivalence of categories

Sh lc(K; LModR) ≃ LModΣ∞Ω|K|∧R . (4.37)

Similarly for X a PL space, Sh lc(X; LModR) ≃ LModΣ∞ΩX∧R.

Proposition 4.3.16 ([Lur11, Lecture 21, Theorem 2]). For K a connected simplicial
complex, there is an equivalence of categories

Sh lc(K; LModR)
(fp) ≃ LModfp

Σ∞Ω|K|∧R (4.38)

where the (fp) in the exponents denotes LModfp
R -generated sheaves. Similarly for X a

PL space, Sh lc(X; LModR)
(fp) ≃ LModfp

Σ∞ΩX∧R.

If M is an invertible module over R, we can use the duality functors ϘqM , ϘsM to induce
Ϙ
q
M,K,ζ , Ϙ

s
M,K,ζ on K. Their left Kan extension to locally constant sheaves is described by

equipping left modules over Σ∞Ω|K| ∧R with an involution combined from
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� the involution in M ,

� the loop-reversing involution on ΩX,

� the non-triviality of ζ, e.g. the obstruction along a loop to orienting it.

See the mentioned later discussion for a more precise statement and proof, the only
di�erence in the latter is that we use Fτ,V as a generating set.

Corollary 4.3.17 ([Lur11, Lecture 22, Proposition 6]). If we consider the case (V, Ϙ) =
(LModfp

R , ϘsR) for connected X, we can rewrite

Lvs(X;R) := L
(
Sh lc(X; LModfp

R ), ϘK,ζ

)
≃ L(Σ∞ΩX ∧R, ϘsM,K,ζ) (4.39)

which we call the visible symmetric L-groups of X with coe�cients in R. Similarly, we
can de�ne the visible quadratic L-groups Lvq(X;R) of X. If R is connective, we may
apply 2.5.10 to rewrite

Lvq(X;R) ∼= Lq(π0(Σ
∞ΩX ∧R)) = Lq(π0R[π1X]) . (4.40)

Though we suppress it, in both cases the involution must be kept in mind.

Remark. If we even assume that X is simply connected, we have Lvq(X;R) = Lq(π0R).
This is commonly exploited in algebraic topology for R = HZ or R = HQ, where we
obtain the signature and Arf invariant of the space X comparing with the respective
L-groups 2.4.11.

4.4 Assembly

Until now, we have de�ned several di�erent Poincaré∞-categories of sheaves associated
to simplicial complexes and PL spaces, allowing us to calculate L-spectra �tting into a
�ber sequence

L(Sh⊥lc(X;V)) −→ L(Shsimp(X;V)) −→ L(Sh lc(X;W)(V)) (4.41)

obtained by applying 3.3.9 to 4.3.14. We have also seen that the last L-spectrum agrees
with L(π0R[π1X]), i.e. it can be calculated from the group ring (π0R)[π1X] so it only
depends on the fundamental group of X. Our goal in this section will be to learn more
about the L-spectrum in the middle.

Construction 4.4.1. From 4.1.24 we know that given a map of simplicial complexes
f : K → L, the pushforward functor f∗ is duality preserving. Therefore, it induces a
map between L-spectra

f∗ : L(Shsimp(K;V), ϘK,ζ◦f ) −→ L(Shsimp(L;V), ϘL,ζ) (4.42)
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and we obtain a functor L(Shsimp(−;V), Ϙ−) from the ordinary category of pairs of �nite
simplicial complexes and spherical �brations into Sp. If we set ζ = S to be trivial, we
denote this functor by L(K,V, Ϙ).

Now, let us assume that our �nite simplicial complexes are pointed. Noting L(∆0,V, Ϙ) =
L(V, Ϙ) we form the reduced L-groups

Lred(K,V, Ϙ) := cofib (L(V, Ϙ)→ L(K,V, Ϙ)) (4.43)

where the map is induced by the pointing of K.

Construction 4.4.2. Just as in the last construction, we can de�ne a functor L(−,V, Ϙ)
from the ordinary category Poly of compact PL spaces and PL maps to spectra sending
X to the L-spectrum of Shsimp(X;V) with respect to ϘX . On pointed PL spaces, we also
de�ne a reduced version of this functor.

Remark. Let W denote the class of morphisms in Poly that are PL homotopy equiva-
lences. Then, the ∞-categorical localization Poly[W−1] agrees with the ∞-category Sfin

of �nite spaces.

Theorem 4.4.3 ([Lur11, Lecture 20]). The functor L(−,V, Ϙ) : Poly → Sp as well
as its reduced variant are invariant under PL homotopies, in particular they send the
morphism in W to isomorphisms. We obtain a functor

Ω∞Lred(−,V, Ϙ) : Sfin → S (4.44)

that is reduced and excisive, so that it de�nes a spectrum, which agrees with L(V, Ϙ).

Proof Sketch. Let f : X → Y be a PL map between compact PL spaces, which we rewrite
as f : T → S on triangulations. Potentially after further re�nement, let h : T ×∆1 → S
be a PL homotopy from f to g. It su�ces to show that for F ∈ Shsimp(K;V) a Poincaré
object, the pushforwards f∗F and g∗F are bordant, since the same argument can then
also be applied to Poincaré objects in the ρ-construction. For this purpose, denote by
i0, i1 : K → K ×∆1 the inclusions at 0 and 1, and by p : K ×∆1 → X the projection.
Since h∗ is duality-preserving, it in particular preserves Poincaré objects and bordisms,
so our goal is to show that i0,∗F and i1,∗F are bordant. But i0,∗F by de�nition agrees with
F on K × {0} and vanishes over 1, similarly for i1,∗F . Clearly p∗F supplies the wanted
bordism, as it agrees with F over 0 and 1 so dividing out one of these pushforwards
yields the other.

The functor Ω∞Lred(−,V, Ϙ) is reduced by de�nition, so we only need to show that it
sends pushout squares to pullback squares. If X = X ′ ⨿Y ′ Y is a (homotopy) pushout
of �nite pointed spaces, it su�ces to show that

Lred(X,V, Ϙ)

Lred(X ′,V, Ϙ)
∼=

Lred(Y,V, Ϙ)

Lred(Y ′,V, Ϙ)
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where by construction both sides can be rewritten as

Lred(X/X ′,V, Ϙ) ∼= Lred(Y/Y ′,V, Ϙ)

which follows by homotopy invariance and the assumption X/X ′ ≃ Y/Y ′.

By this analysis, the functor Lred(−,V, Ϙ) : Sfin → Sp is itself reduced and excisive, so it
de�nes an object in the spectri�cation Sp(Sp) = Sp ⊗ Sp ∼= Sp as it is the unit of this
tensor product. Unwinding the de�nitions, under this equivalence L(−,V, Ϙ) corresponds
to its in�nite loop space

Ω∞Sp(L(−,V, Ϙ) = Lred(S0,V, Ϙ) = L(∆0,V, Ϙ) = L(V, Ϙ)

proving the last claim. One could have also shown that both functors agree on spheres
by 1.5.21, but this would be more complicated.

Corollary 4.4.4. The spectra Lred(X,V, Ϙ) ≃ Σ∞X ∧ L(V, Ϙ) are equivalent for any
pointed PL space X. In particular,

L(X,V, Ϙ) ≃ Σ∞X+ ∧ L(V, Ϙ) . (4.45)

Theorem 4.4.5 ([WW93, Theorem 1.1]). Given any functor F : Sfin → Sp, there exists
a unique reduced functor F% : Sfin → Sp preserving pushout squares, equipped with a
natural transformation

A : F% −→ F (4.46)

such that A∆0 : F%(∆0) → F (∆0) is a homotopy invariance. In fact, this functor is
given by F%(X) = Σ∞X+ ∧ F (∆0). Transformations A that arise in this way, and
the morphisms they consist of, are called assembly maps. The association F 7→ F%

is functorial, and even a re�ection of Fun(Sfin, Sp) on the full subcategory on functors
preserving �nite colimits.

In the same way, any functor F : S → Sp can be uniquely approximated by a functor
F% : S → Sp preserve pullback squares and arbitrary wedge products (called strongly
excisive in the reference).

Proof. We translate the proof in the reference to our ∞-categorical language. Since
Sfin is generated by the point ∆0 under �nite colimits, and S = Ind(Sfin) = PSh(∆0) is
generated by the point under colimits, we have (combining 1.1.6 and 3.2.17)

Funcolim(S,D) ≃ Funrex(Sfin,D) ≃ Fun(∆0,D) ≃ D (4.47)

for any∞-category D admitting colimits, in particular Sp. If we let j : {∆0} ↪→ S be the
canonical inclusion, then under this identi�cation, the approximation F% is constructed
as the counit F% := j+j

∗F → F where j+ denotes the left Kan extension. In other words,
we evaluate F on the point and Yoneda-extend the result using Sp ≃ Funcolim(S, Sp).
This agrees with X 7→ Σ∞X+ ∧ F (∆0), since both preserve colimits (by the abstract
de�nition of the smash product) and agree on the point.
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Remark. This is again related to Goodwillie-Weiss-Calculus, in the sense of 2.1.3: Any
functor F : Sfin

∗ → Spop can be approximated, either from the left or from the right, by
a unique n-excisive functor (see 2.1.2), just as any smooth function Rn → Rm can be
approximated by its Taylor series. In fact, this holds for functors between much more
general ∞-categories. In the case n = 1, the approximation from the left agrees with
F% as de�ned above.

Theorem 4.4.6. The map L(Shsimp(X;V), ϘX) → L(Shsimp(X;V), ϘX) induced by Llc

in 4.3.14 induces an assembly map

A : Σ∞X+ ∧ L(V, Ϙ) −→ L(Sh lc(X;V), ϘX) (4.48)

in the spirit of the last theorem. In particular, if (V, Ϙ) = (LModfp
R , ϘR) for a ring

spectrum R, we obtain

A : Σ∞X+ ∧ Ls(R) −→ Ls(Σ∞ΩX ∧R)

A : Σ∞X+ ∧ Lq(π0R) −→ Lq(π0R[π1X])

where the second row agrees with Ranicki's Assembly map from [Ran92].

Proof. This is immediate since the assembly of F was always constructed as the wedge
product Σ∞X+ ∧ F (∆0), and is unique.

Proposition 4.4.7 ([Lur11, Lecture 22, Proposition 7]). In the above situation, the
commutative square

X ∧ Lq(π0R) X ∧ Ls(R)

L(π0R[π1X]) Ls(Sh lc(X; LModR))

where the horizontal maps are induced by the norm map is a pullback square in Sp.

4.5 Strati�cations and Constructible Sheaves

For this section, let us �x a poset P and a stable ∞-category V.

De�nition 4.5.1. A strati�cation on a simplicial complex K with strati�cation poset
P is an order-preserving map f : IK → P . Denote by Kp the preimage f−1({p}), by
K≤p the preimage f−1({q ∈ P | q ≤ p}), and similarly K≥p.

Proposition 4.5.2. For each p ∈ P , the poset K≤p determines the simplices of a
simplicial subcomplex of K.
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Proof. De�ne the set of vertices (K≤p)0 := {v ∈ K0|f({v}) ≤ p}, which can be used to
describe every simplex in K≤p since {v} ⊆ σ ∈ K≤p implies {v} ∈ K≤p as f is order-
preserving. For the same reason, τ ∈ K≤p and σ ⊆ τ implies σ ∈ K≤p, so K≤p is indeed
a simplicial complex.

Warning. The subsetsKp andK≥p of IK in general do not de�ne simplicial subcomplexes.
This situation improves a bit if we instead de�ne a strati�cation as a map K0 → P
labeling each vertex by a stratum, instead of all simplices, since we can then consider
the subcomplex spanned by the vertices in a �xed stratum. We can always reduce from
our de�nition to this more rigid situation by taking the barycentric subdivision.

Example 4.5.3.

� Every simplicial complex K admits the trivial strati�cation IK → [0] sending
everything to 0, and the identity strati�cation IK → IK putting each simplex into
a di�erent stratum. The former is the coarsest, the latter the �nest strati�cation
on K, where we call IK → P �ner than IK → Q if we can factor the latter map
as IK → P → Q for some order-preserving map P → Q.

� Every simplicial complexK admits the skeletal strati�cation (usually called skeletal
�ltration) IK → N0 sending every simplex to its dimension.

� Given a subcomplex K ′ ⊆ K, we may stratify IK → [1] sending simplices in K ′ to
0, and everything else to 1. In fact, any [1]-strati�cation arises in this manner.

� Similarly, an N0-strati�cation of a complex K can be thought of as a �ltration by
a system of sub-complexes

K0 ⊆ K≤1 ⊆ K≤2 ⊆ K≤3 ⊆ · · · ⊆ K .

� As a special case of the last examples, we can stratify a triangulation of a man-
ifold with boundary by sending the interior to 1, and simplices contained in the
boundary to 0. This is also an instance of the intrinsic strati�cation of a PL space
we introduce below.

De�nition 4.5.4. A simplicial sheaf F : K → V on K is called constructible with
respect to the strati�cation f : K → P if for each p ∈ P , the restriction F |Kp : Kp → V

is locally constant in the sense that for σ ⊆ τ any simplices of Kp, the map F (σ ⊆ τ) :
F (σ) → F (τ) is an isomorphism. Denote the full subcategory on constructible sheaves
by Shcbl(K;V) ⊆ Shsimp(K;V).

De�nition 4.5.5. Let (X,T) be a PL space. A strati�cation on X over a poset P
consists of a right co�nal sub-poset TP ⊆ T and, for any T ∈ TP , a map of posets
T → P compatible with re�nements in T. In other words, we need to choose a natural
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transformation I|TP ⇒ P between functors TP → Cat∞, which is by right co�nality
equivalent to a map out of the colimit

colim
T

I ∼= colim
TP

I −→ P .

Example 4.5.6.

� The trivial strati�cation on X over [0] is induced by the terminal map T → [0] on
every triangulation T .

� There is an intrinsic strati�cation on X that, given any triangulation T , sends
points with PL homeomorphic (i.e. isomorphic after further re�nement) links to
the same stratum. In particular, any PL manifold with boundary is canonically
strati�ed over [1].

� Any strati�cation of X as a PL space determines a strati�cation of the underlying
topological space, in the sense of 6.1.2.

� A PL subspace X ′ ⊆ X is determined by a strati�cation of X by [1]. If T ∈ T[1] is
any triangulation in the de�ning sub-poset of this strati�cation, then the preimage
of 0 ∈ [1] under T → [1] is a triangulation of X ′, and together these determine its
PL structure.

Proposition 4.5.7. For (X,T) a P -strati�ed PL space as above, any re�nement r :
IT → IT ′ in TP induces an equivalence of categories

Shcbl(T ;V) ≃ Shcbl(T ′;V) (4.49)

so that these categories agree or all T ∈ TP since for any two, we can choose a common
re�nement. We thus de�ne

Shcbl(X;V) := Shcbl(T ;V) = colim
T∈TP

Shcbl(T ;V) = lim
T∈TP

Shcbl(T ;V) (4.50)

since TP ⊆ TP is co�nal and both are �ltered, hence weakly contractible so the (co)limit
of a constant diagram agrees with its constant value.

Proof. Both IT , IT ′ are by de�nition equipped with maps to P that factor through the
localizations IT [W−1

P ], IT ′ [W−1
P ], where WP respectively denotes the class of morphisms

determined by containment relations between simplices in the same stratum. As in 4.3.2,
it su�ces to show that the functor r̄ induced by r in the diagram

IT [W
−1
P ] IT ′ [W−1

P ]

P

r̄
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is an equivalence of∞-categories. The proof there shows that this map is a weak equiva-
lence, but since the above localizations are not Kan complexes, we are not �nished. One
way to proceed is to use the strati�ed homotopy theory we introduce in 6.2: On strati�ed
realizations, r : |IT [W−1

P ]| ≃ |IT |P → |IT ′ |P ≃ |IT ′ [W−1
P ]|P is (as it is a re�nement, and

compatible with the strati�cations) a strati�ed homeomorphism so by [DW21, Corollary
4.22], the original map in r̄ is a weak equivalence in SP , i.e. a categorical equivalence.

Proposition 4.5.8. If V admits all limits and colimits, the inclusion Shcbl(K;V) ⊆
Shsimp(K;V) has a left adjoint Lcbl and a right adjoint Rcbl. Similarly for a strati�ed PL
space X, the inclusion Shcbl(X;V) ⊆ Shsimp(X;V) has a left and a right adjoint.

Proof. This is completely analogous to 4.3.4. Denote by WP the class of morphisms
σ ⊆ τ in K such that f(σ) = f(τ). Then, we can identify the above inclusion with the
embedding

Fun(K[W−1
P ],V) ⊆ Fun(K,V)

induced by the universal property of a localization.This is explicitly given by precom-
posing with the localization functor L : K → K[W−1

P ], so it possesses left and right
adjoints LanL and RanL since V is bicomplete. The PL case again follows from the fact
that adjunctions are preserved under (co)limits.

De�nition 4.5.9. A simplicial sheaf F : K → V is called constructibly balanced if for
any constructible sheaf S, the mapping space Map(F, S) ∼= ∆0 is contractible. If V
admits colimits, this is again equivalent Lcbl(F ) = 0 by the Yoneda Lemma. Denote the
full subcategory on constructibly balanced sheaves by Sh⊥cbl(K,V) ⊆ Shsimp(K,V).

Proposition 4.5.10. For K a P -strati�ed simplicial complex and V a bicomplete stable
∞-category, the sequence

Sh⊥cbl(K;V) ↪→ Shsimp(K;V)
Lcbl−→ Shcbl(K;V) (4.51)

is a right split Verdier sequence and the sequence

Shcbl(K;V) ↪→ Shsimp(K;V) −→ Shcbl(K;V)⊥ (4.52)

is split Verdier. Similarly if we replace K by a P -strati�ed PL space.

This follows precisely as in the locally constant case. We obtain a commutative diagram
of stable ∞-categories, where the the rows are right split Verdier sequences:

Sh⊥cbl(K;V) Shsimp(K;V) Shcbl(K;V)

Sh⊥lc(K;V) Shsimp(K;V) Sh lc(K;V)
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De�nition 4.5.11. For K a P -strati�ed simplicial complex, V a stable∞-category and
W := Ind(V), we de�ne the ∞-category of V-generated constructible sheaves on K with
values in W as the Verdier quotient

Shcbl(K;W)(V) := Shsimp(K;V)⧸Sh⊥cbl(K;V) ⊆ Shcbl(K;W) (4.53)

where the last inclusion follows analogously to the locally constant case. Its essential
image again consists of precisely those constructible sheaves of the form LcblF for some
F ∈ Shsimp(K,W).

Theorem 4.5.12. If K is a �nite simplicial complex, (V, Ϙ) a Poincaré ∞-category
with W = Ind(V) and we equip Sh⊥cbl(K;V) and Shcbl(K;W)(V) with the respective
restrictions of the quadratic functor ϘK , the following is a Poincaré-Verdier sequence:

Sh⊥cbl(K;V) ↪→ Shsimp(K;V)
Lcbl−→ Shcbl(K;W)(V) (4.54)

Similarly, passing to a (co)limit over all triangulations on a compact PL space, the
sequence

Sh⊥cbl(X;V) ↪→ Shcomb(X;V)
Lcbl−→ Shcbl(X;W)(V) (4.55)

is Poincaré-Verdier as well.

Proof. Analogous to the proof of 4.3.13. The only di�erence is that we now must show
that Sh⊥cbl(K;V) is closed under duality, so we have to �nd a suitable generating set for
it. With little e�ort if becomes evident that the sheaves F τ ′/τ,V still work, given that we
restrict to τ ⊆ τ ′ lying in the same stratum.

Remark. While we have not introduced a spherical �bration for this theorem, the result
is still true if we add one. If we want to apply the L-groups constructed in this manner
to strati�ed surgery, that is however not the right way to go: Spherical �bration should
be spherical, because the link of a point in a PL manifold is a sphere. This is no longer
true for PL pseudomanifolds, and the right approach is to use the dualizing complex
ωX instead, which is indeed constructible by 6.4.1. We will elaborate on this in the
topological case.

To summarize the last sections, given a compact PL space X or a �nite simplicial
complex K equipped with a spherical �bration ζ we have constructed the following
commutative diagram of L-groups, where the labels A denote assembly maps, the rows
are �ber sequences and all quadratic functors are induced by ϘqM,X,ζ .
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Lq
(
Sh⊥cblfp (X;R)

)
Lq
(
Shcomb

fp (X;R)
)

Lq
(
Shcbl(X;R)(fp)

)
Lq
(
Sh⊥lcfp (X;R)

)
Lq
(
Shcomb

fp (X;R)
)

Lq
(
Sh lc(X;R)(fp)

)
Σ∞X+ ∧ Lq(π0R) Lq(π0R[π1X])

A

∼= ∼=

A

We use the shorthands Sh(X;R) := Sh(X; LModR) and Sh fp(X;R) := Sh(X,LModfp
R )

denoting that our sheaves have �nitely presented stalks (regarded as sheaves on a topo-
logical space via the exodromy correspondence 6.3.4). The second row can be regarded
as a special case of the �rst row for the coarsest strati�cation on X, in fact any �ner or
coarser strati�cation of X can be added as a row into this commutative diagram. A simi-
lar diagram can be drawn for symmetric L-groups or in fact for any Poincaré∞-category;
only the last row generally does not work. An immediate question arising during in-
spection of above diagram is whether the constructible analogues Lq

(
Shcbl(X;R)

)
of the

quadratic L-groups of locally constant sheaves can be expressed in a similar, calculable
way. We turn to this in the next section.

4.6 Decomposition into Strata

Let s : P → [1] a slicing of a partially ordered set P , and �x a P -strati�ed simplicial
complex K and a stable ∞-category V. The composition K → P → [1] divides the set
of simplices in K into two disjoint classes. Let us denote by K+ ⊆ K to sub-poset of
simplices in the preimage of 1, and K− := (s ◦ f)−1({0}) similarly. We have seen that
K− ⊆ K forms a subcomplex.

Proposition 4.6.1. The precomposition functors i∗, j∗ with the inclusions i : K− ↪→
K, j : K+ ↪→ K possess right adjoints i∗, j∗ exhibiting Shsimp(K;V) as a recollement of
Fun(K−,V) and Fun(K+,V). In other words, the sequence

Fun(K−,V)
i∗
↪→ Shsimp(K;V)

j∗→ Fun(K+,V) (4.56)

is split Verdier sequence.

Proof. It su�ces to show that Shsimp(K;V) is a recollement of these full subcategories.
Since K− is downward closed, the left Kan extension functor applied to F : K+ → V

j+F (k−) = colim
k+∈K+,k+≤k−

F (k+) = 0 (4.57)

vanishes on simplices of K−, and similarly the right Kan extension i∗G of G ∈
Fun(K−,V) vanishes on simplices of K+. In particular, they both exist, and are fully
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faithful since i, j are fully faithful. Further, it is immediate to check Fun(K+,V) =
Fun(K−,V)

⊥ since the ⊆ direction is clear by de�nition of a zero object, and the ⊇
direction follows by restricting a functor to K+ and applying the Yoneda Lemma. We
can apply 3.2.12 since the remaining adjunctions are induced as in 3.2.7.

Corollary 4.6.2. The recollements of the form (Fun(K−,V),Fun(K+,V)) for any slicing
of P form a P -slicing of Shsimp(K;V).

This is a special case of an even stronger result:

Proposition 4.6.3. Precomposing with the inclusions ip : Kp = f−1({p}) ↪→ K for all
p ∈ P yields restriction functors

i∗p : Sh
simp(K;V)→ Fun(Kp,V) (4.58)

possessing fully faithful right adjoints ip,∗ = Ranip . These functors exhibit Sh
simp(K;V)

as a P -decomposition of Fun(Kp,V) for all p ∈ P .

The previous result follow from this by postcomposing the respective strati�cation with
the slicing P → [1] to obtain a [1]-strati�ed simplicial set.

Proof Sketch. We could do essentially the same calculation as in the last proof, but we
rather use it as an opportunity to informally show o� lax right Kan extensions. By their
transitivity, the diagram

K Catex∞

P

∆0

V

f laxRanf V

commutes, where Catex∞ is the ∞-category of stable ∞-categories and exact functors,
V : K → Catex∞ is the constant functor with value V, and the lowest arrow classi�es
Fun(K,V) = Fun(laxcolimK ∆0,V) = laxlimK V , as the lax right Kan extension along
the terminal functor obtains the lax limit. It then remains to calculate that the functor
P → Catex∞ sends p to Fun(Kp,V).

A similar result holds for constructible sheaves:

Proposition 4.6.4. The above sequence reduces to a split Verdier sequence

Shcbl(K−;V) −→ Shcbl(K;V) −→ Shcbl(K+;V) (4.59)

where Shcbl(K+,V) denotes the functors K+ → V that send morphisms in K+ that are
constant over P to isomorphisms, and similarly for K−.
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Proof. Since there are still no morphisms from K−[W
−1
P ] to K+[W

−1
P ], this follows from

a proof analogous to 4.6.1.

Theorem 4.6.5. Fix a P -strati�ed simplicial complex K, a bicomplete stable ∞-
category W and a slicing (P−, P+) of P with inverse images K−, K+ ⊆ K. Then, there
is a square diagram

Sh⊥cbl(K−;W) Sh(K−;W) Shcbl(K−;W)

Sh⊥cbl(K;W) Sh(K;W) Shcbl(K;W)

Sh⊥cbl(K+;W) Sh(K+;W) Shcbl(K+;W)

where all rows are right split and columns are split Verdier sequences. In particular, the
vertical sequences induce P -slicings of Shcbl(K;W), Sh(K;W) and Sh⊥cbl(K;W).

Proof. We have just checked that the middle and right vertical sequences are split
Verdier, and the horizontal sequences are right split Verdier by 4.5.10. We are �nished
if we can apply the 9-Lemma 3.3.8 to deduce that the �rst sequence is split Verdier; the
fact that the horizontal sequences are only right split is no problem as can be checked
by going through its proof or applying [Lur18a, Tag 02EX].

In other words, we need to show the factorization condition: Any morphism of sheaves
F 0 → G with F constructibly balanced and G supported on K− factors through a G0

that is both. Clearly, de�ning G0 := i∗i
∗F ∈ im(i∗) as the restriction of F to K−,

sending everything else to 0, works since i∗ ⊣ i∗ implies that composing i∗i
∗F → G0

with the unit map F → i∗i
∗F yields the adjoint map i∗F → i∗G0 meaning that this

is actually a factorization. Further, i∗F is constructibly balanced on K− because for
S ∈ Shcbl(K−;W),

Map(i∗F, S) = Map(F, i∗S) ≃ ∆0

is contractible as i∗S is clearly still constructible.

Theorem 4.6.6. For a �nite P -strati�ed simplicial complex K with spherical �bration
ζ, a Poincaré ∞-category V with W = Ind(V) and a slicing (P−, P+) of P with inverse
images K−, K+ ⊆ K, the above diagram restricts to
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Sh⊥cbl(K−;V) Shsimp(K−;V) Shcbl(K+;W)(V)

Sh⊥cbl(K;V) Shsimp(K;V) Shcbl(K;W)(V)

Sh⊥cbl(K+;V) Shsimp(K+;V) Shcbl(K−;W)(V)

where all rows and columns are Poincaré-Verdier sequences with respect to Verdier
duality ϘK suitably restricted from Shsimp(K,W).

Proof. We know that the horizontal sequences are right split Poincaré-Verdier by 4.3.13.
The left and middle vertical sequences are split Verdier since they are restricted from
the respective sequences in the last proof of 4.6.5, and all adjoint functors preserve the
full subcategory of sheaves in V since they only involve �nite limits. We have also seen
there that the factorization condition of the 9-Lemma 3.3.8 is ful�lled, so we are �nished
if we can show that the left and middle vertical sequences are Poincaré-Verdier.

The functors i∗ and j∗ restrict to constructibly balanced sheaves by 4.6.5, so by the
de�nition of the respective quadratic functors as the correct restrictions all we need to
show is that i∗ and j∗ are duality-preserving. For i∗ this follows from 4.1.24, while for
j∗ it is a tedious computation we omit.

Remark. We even suspect that the columns are all split, but were not able to show this
for the last column.

The right vertical sequence can be used to calculate Lq(Shcbl(K;V)(fp)) in many special
cases; we return to this in 6.5. Let us mention that this theorem still holds if we
introduce a spherical �bration, or switch to symmetric L-theory. Also, everything works
out similarly in the PL setting:

Theorem 4.6.7. All results of this section still hold if we replace the (�nite) P -strati�ed
simplicial complex K with a P -strati�ed compact PL space.

Proof. As in the locally constant case, everything can be checked on components of the
respective colimit over the co�nal subset TP of triangulations.
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5 L-Groups of Manifolds

After this extensive discussion of the piecewise linear case, let us generalize some of our
results to good topological spaces, in particular topological manifolds and CW com-
plexes. We begin with a discussion of Verdier duality and the six-functor formalism
for ∞-sheaves, following [Vol21] and [Lur17]. An important technical tool is also the
monodromy correspondence, which we use to construct some of the functors involved in
the split Verdier sequences of interest. We further discuss the characterization of locally
constant sheaves of R-modules as modules over Σ∞ΩX ∧ R that was teased in the last
section.

5.1 Verdier Duality

De�nition 5.1.1. A topological space X is called locally compact if for every x ∈ X
and every open subset x ∈ U ⊆ X, there exists a compact neighborhood x ∈ K ⊆ U .
Note that as a neighborhood, K must contain an open neighborhood of x.

Proposition 5.1.2. Given a topological space X, de�ne another topological space X+

called its one-point compacti�cation with underlying set X ∪ {∞}, and U ⊆ X+ open
i� either

� ∞ /∈ U and U ⊆ X open, or

� ∞ ∈ U and X+ − U ⊆ X compact.

If X is locally compact Hausdor�, then X+ is also locally compact Hausdor�.

De�nition 5.1.3. Let V be a pointed ∞-category that admits all limits and colimits,
X be a Hausdor� space, and F be a V-valued sheaf on X. Then, given a closed subset
A ⊆ X, denote by ΓA(X,F ) := F (X)×F (X−A) 0 the space of sections of F supported in
A. Using this, we de�ne the space of compactly supported sections on an open U ⊆ X
as

Γc(U, F ) := colim
K⊆U cpt

ΓK(X,F ) . (5.1)

This induces a covariant functor Γc(−, F ) : Open(X)→ V.

128



Theorem 5.1.4 ([Lur17, 5.5.5.1]). Given a stable ∞-category V with all limits and
colimits, a locally compact Hausdor� space X and a sheaf F ∈ Sh(X;V), the functor
Fc := Γc(−, F ) is a V-valued cosheaf on X. In fact, F 7→ Fc induces a contravariant
equivalence of categories

Sh(X;V)op ≃ Sh(X;Vop) , (5.2)

where the inverse is again given by taking the cosheaf of compactly supported sections,
regarding a cosheaf as a Vop-valued sheaf.

Proof Sketch. Since X is locally compact Hausdor�, a sheaf F on X is determined by its
values on all compact subsets K. To be more precise, let K(X) be the partially ordered
set of compact subsets in X regarded as an∞-category, then a functor F : K(X)op → V

is called a K-sheaf if

� F (∅) = 0 is �nal,

� For any K,K ′ ∈ K(X), we can write F (K ∪K ′) ∼= F (K) ∩F (K∩K′) F (K ′) via the
maps induced by functoriality of F ,

� We have F (K) = colim
K′⊇K

F (K ′) where the colimit ranges over compactK ′ containing

an open neighborhood of K.

Let us denote the full subcategory of Fun(K(X)op,V) on K-sheaves by ShK(X;V), then
[Lur17, 5.5.5.3] shows that the canonical map Sh(X;V) → ShK(X;V) sending F 7→
(K 7→ ΓK(X,F )) is an equivalence.

The main idea of the proof is now to exploit a sort of duality between compact subsets
and complements of compact subsets (note the role that the latter play in the one-point
compacti�cation). To this purpose, we de�ne a set M as a subset of {0 < 1 < 2}×P(X),
where P(X) is the power set, on those pairs (i, S) where

� For i = 0, the subset S ⊆ X is compact

� For i = 2, the subset X − S ⊆ X is compact

and order M by de�ning (i, S) ≤ (j, T ) if either i ≤ j and S ⊆ T , or i = 0 and j = 2. In
particular, M0 := M×[2] {0} = K(X) and M2

∼= K(X)op. Now, the main technical work
done in [Lur17, 5.5.5.7] lies in showing that the following are equivalent, for F : M → C

a functor:

� The restriction F |M0 is a K-cosheaf (a K-sheaf with values in Vop), F |M1 = 0 and
F agrees with the left Kan extension of F |M0∪M1 where M0∪M1 := M×[2] {0 < 1}

� The restriction F |M2 is a K-sheaf, F |M1 = 0 and F agrees with the right Kan
extension of F |M1∪M2
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This proves the theorem, since the �rst class of functors is determined by the value on
FM0 which is an arbitrary K-cosheaf, while the second class is determined by the value
on FM2 which is an arbitrary K-sheaf. The right (and similarly, left) Kan extension
translating between them can be written out as

F (0, K) = RanM
M1∪M2

F (0, K) = lim
(i,L)∈(M1∪M2)(0,K)/

{
S(X − L), for i = 2

0, for i = 1
(5.3)

for S : M2
∼= K(X)op → V an arbitrary K-sheaf, which contains the left co�nal subdia-

gram

F (0, K) F (1, K) = 0

F (2, ∅) = S(X) F (2, K) = S(X −K)

by Quillen's Theorem A (each of the appearing slice categories admits an initial object,
so they are weakly contractible). This agrees with Sc(K) = ΓK(X,S) as claimed.

Now, let V be a bicomplete stable ∞-category and D : Vop → V be functor such that
Dop ⊣ D, i.e. there is an isomorphism in X, Y ∈ V

MapV(X,DY ) ≃ MapV(Y,DX) (5.4)

natural in X, Y . In particular, D sends colimits in V to limits in V. For example, these
conditions are satis�ed if

� D is a duality functor, for example in a Poincaré ∞-category;

� we additionally require V to be symmetric monoidal closed with unit 1V, and set

DX := Hom(X, 1V) ; (5.5)

� or if V = LModR where R is a ring spectrum, M an invertible module over R, and
DX := HomR(X,M). Note that this is not included in the �rst case, since we do
not restrict to perfect modules.

De�nition 5.1.5. Using the fact that D : Vop → V preserves limits, we see that post-
composing above equivalence of categories with D preserves the sheaf condition, yielding
a functor

D : Sh(X;V)op → Sh(X;V) , F 7→ (U 7→ D(Γc(U, F ))) (5.6)

which we will call the Verdier duality functor associated to D. If D is an equivalence of
categories, then D is as well.

Lemma 5.1.6. Equivalently, D = D ◦ (−)c ∼= (−)c ◦Dop.
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Proof. Given F ∈ Sh(X;V) and U ∈ Open(X), we can write

DFc(U) =D

(
colim

K⊆U cpt
ΓK(U, F )

)
∼= colim

K⊆U cpt
Dop

(
F (U)×F (U−K) 0

) ∼=
∼= colim

K⊆U cpt

(
DopF (U)×DopF (U−K) 0

)
= (DopF )c(U) .

Note that DopF (X) for example is regarded as an object of Vop, so the colimit is actually
a limit in V.

Lemma 5.1.7. Dop ⊣ D is true as well. In particular if D is an equivalence with inverse
Dop, the same holds for D.

Proof. As we have seen (−)c is an equivalence with inverse also given by (−)opc (acting
on cosheaves), (−)opc ⊣ (−)c. Since adjoints compose, Dop = (D ◦ (−)c)op = Dop ◦ (−)opc ⊣
(−)c ◦D ≃ D ◦ (−)c = D. The second statement is clear since we know that D is also
an equivalence in this case, so Dop ⊣ D implies that Dop is its inverse.

Proposition 5.1.8. Given a continuous map f : X → Y of locally compact Hausdor�
spaces, we obtain (apart from the usual direct and inverse image functors) an adjunction
f! : Sh(X;V) Sh(Y ;V) : f !. The exceptional direct and inverse image functors

f! ⊣ f ! are de�ned to �ll the respective commutative square in

Sh(X;V) Sh(Y ;V)

Sh(X;Vop)op Sh(Y ;Vop)op

(−)c
f!

(−)c

f !

(f∗)op

(f∗)op

where f∗, f ∗ denote direct and inverse image of cosheaves (viewed as Vop-valued sheaves).
In other words for F ∈ Sh(X;V), G ∈ Sh(Y,V),

f!F := (f∗Fc)
op
c , f !G := (f ∗Gc)

op
c (5.7)

Equivalently, we could also write f! = Df∗Dop and f ! = Df ∗Dop.

Proof. Since (−)c is an equivalence, this follows with an analogous argument as in 3.3.5
� be aware that contravariance of the duality functor exchanges the roles of left and right
adjoint. The second claim holds because D commutes with (−)c by 5.1.6; it commutes
with f∗ as this is just a precomposition, and since f∗ ◦ D ∼= D ◦ f∗ the left adjoints
Dop ◦ f ∗ ∼= f ∗ ◦Dop also agree.

Remark. In particular, Γc(U, f!F ) = Γc(f
−1(U), F ).
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Let us compare the theory we have developed with classical Verdier duality.

Theorem 5.1.9 ([Lur18b, 2.1.2.2]). Let R be an ordinary ring and X any topological
space, then there is a canonical equivalence of categories

Shhyp(X; LModHR) ≃ Shhyp(X;D(R)) ≃ D(Sh(X;R-Mod)) (5.8)

where the �rst equivalence is by the stable Dold-Kan correspondence 1.7.2, and the
right side is the derived ∞-category of the Grothendieck abelian category of ordinary
sheaves of ordinary R-modules over X. Explicitly, this equivalence sends a complex F
or ordinary sheaves to the derived sections RΓ(−, F ) : Open(X)op → D(R).

Let us identify F with its image RΓ(−, F ) in Shhyp(X;D(R)). By construction, the
global sections functor Γ(F ) = RΓ(X,F ) so its homology groups are sheaf cohomology.
For the same reason, f∗F = RΓ(−, F ◦ f−1) agrees with the derived direct image Rf∗,
so as its adjoint f ∗ agrees with Lf ∗.

Observation 5.1.10. The composition Γ∗Γ
∗ : LModR → Sh(X;R)→ LModR, possibly

replacing the middle term with hypercomplete sheaves, is by construction a left exact
functor called the shape of Sh(X;R). Similarly for sheaves with other coe�cients, in par-
ticular for S-valued sheaves one obtains a pro-space. In our case, Γ∗Γ∗(R) ∼= RΓ(X,R)
calculates the sheaf cohomology of the constant sheaf on R, which is an interesting
topological invariant of X.

For A ⊆ X a closed subset, ΓA(U, F ) = fib(F (U)→ F (U −A)) yields sheaf cohomology
with support in A since on resolutions, the �ber is quasi-isomorphic to the kernel. A
similar argument via resolutions shows that Fc(U) = RΓc(U, F ) calculates (sheaf) co-
homology with compact support, so D agrees with the ordinary Verdier duality functor
and f!, f

! agree with the associated functors Rf!, f
! on derived categories of sheaves. In

the next section, we will also see how D can also be expressed in terms of the dualizing
complex ωX .

Note that in our setting, we do not talk about resolutions at all to de�ne these functors,
allowing us to get rid of extra conditions in many classical theorems that require the
existence of (�nite) resolutions. In particular, this includes the biduality theorems we
discuss in the next sections.

5.2 Six-Functor Formalism and Biduality

Let us for simplicity restrict to the case of V = LModR over a ring spectrum R that
is an algebra over a commutative ring spectrum k, with duality given by D(P ) :=
HomR(P,R). We also omit the op on our D as it is always clear from context, and
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denote Sh(X,LMod(R)) by Sh(X;R) since we will use it a lot. We still �x X to be
locally compact Hausdor�, as �rst goal will be to introduce tensor product and internal
Hom that together with f∗, f

∗, f!, f
! form a six-operator formalism.

De�nition 5.2.1. Let X, Y be topological spaces and R a commutative ring spectrum,
then the relative tensor product ⊗R : ModR⊗ModR → ModR of R-modules induces a
functor

⊠ : Sh(X;R)× Sh(Y ;R)→ Sh(X × Y ;R) (5.9)

sending F,G to the sheaf F ⊠ G(U × V ) = F (U) ⊗R F (V ) on elementary opens in
the product. Similarly for R an arbitrary ring spectrum, or sheaves with values in
appropriate bimodules.

To see that this is indeed a sheaf, one uses presentability of LModR to write Sh(X;R) ≃
Sh(X)⊗ LModR which, regarding ⊗ as a functor C⊗ C→ C since it preservers colimits
in both variables, allows us to reduce to the following Lemma.

Lemma 5.2.2. For X, Y topological spaces, there is a canonical functor

⊠ : Sh(X)× Sh(Y )→ Sh(X × Y ) (5.10)

sending F,G to F ⊠G(U × V ) = F (U)× F (V ) extended from the product basis to all
opens. In fact, if either X or Y is locally compact, this functor induces an equivalence
of categories

Sh(X × Y ) ≃ Sh(X)⊗ Sh(Y ) . (5.11)

Proof. The functor F ⊠ G is indeed a sheaf since the product × : S × S → S preserves
limits involved in the descent condition. The stronger statement follows by combining
[Lur09a, 7.3.1.11] and [Lur09a, 7.3.3.9].

Remark. Our de�nition of ⊗R is, by the Yoneda Lemma, equivalent to construction
[Vol21, 2.2.5]. For more information on the six-functor formalism, in particular for V

that are not necessarily presentable, we refer to the discussion there.

De�nition 5.2.3. For X any topological space and ∆ : X → X ×X the diagonal map,
we similarly de�ne the tensor product of sheaves as the composition

⊗R : Sh(X;R) ⊗ Sh(X;R) ≃ Sh(X) ⊗ Sh(X) ⊗ LModR⊗LModR
⊗R−→

→ Sh(X ×X) ⊗ LModR
∆∗
−→ Sh(X;R)

(5.12)

or in other words, F ⊗R G := ∆∗(F ⊠R G). Similarly for sheaves over appropriate
bimodules.
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Proposition 5.2.4. For R a commutative ring spectrum, the tensor product we have
de�ned equips Sh(X;R) with a symmetric monoidal structure, with unit the constant
sheaf R = Γ∗(R).

De�nition 5.2.5. By construction, for a �xed sheaf F ∈ Sh(X;R) the functor
− ⊗R F preserves colimits, so by the adjoint functor theorem it admits a right adjoint
HomR(F,−) being itself a contravariant functor in F . We obtain a functor

HomR(−,−) : Sh(X;R)op × Sh(X;R)→ Sh(X;R) (5.13)

that preserves limits in the right, and colimits in Sh(X;R) in the left argument. Also,
since − ⊗R R is the identity functor, Hom(R,−) ∼= Id as well. A similar construction
works for sheaves over appropriate bimodules.

Proposition 5.2.6 ([Vol21, 2.31, 6.12]). For f : X → Y a continuous map between
locally compact Hausdor� spaces, F ∈ Sh(X;V) and G,G′ ∈ Sh(Y ;V), the following
formulae hold:

f ∗(G)⊗R f ∗(G′) ∼= f ∗(G⊗G′) (5.14)
f!F ⊗R G ≃ f!(F ⊗R f ∗G) (5.15)

Theorem 5.2.7 (Classical Verdier Duality). For X, Y locally compact Hausdor� spaces,
f : X → Y a continuous map, R a commutative ring spectrum and F ∈ Sh(X;R), G ∈
Sh(Y ;R), there are natural isomorphisms

f∗Hom(f ∗G,F ) ∼= Hom(F, f∗G) (5.16)

f∗Hom(F, f !G) ∼= Hom(f!F,G) (5.17)

Proof. Let E ∈ Sh(Y ;R), for the second claim by the Yoneda-Lemma it su�ces to show

Map(E, f∗HomR(F, f
!G)) ∼= Map(f ∗E ⊗R F, f !G)

!∼=
∼= Map(E ⊗R f!F,G) ∼= Map(E,Hom(f!F,G))

This follows from the projection formula f!(f
!E⊗R F ) ∼= E⊗R f!F above. Similarly, the

�rst claim follows from the �rst formula above.

De�nition 5.2.8. Regard R as a left module over itself, and write R for the constant
sheaf on R. Also, let t : X → ∗ be the canonical map into the terminal topological
space. Then, the dualizing sheaf on X is de�ned as the Verdier dual

ωX := Rc
∼= DR = Dt∗R = t!DR = t!R (5.18)

where we identify R with its image under Sh(∗;R) ≃ LModR.
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Example 5.2.9. If X is an n-dimensional topological manifold, we have ωX = Or[−n]
where Or is the orientation sheaf. In particular, ωX is locally constant.

Proof. See [Vol21, 6.18(i)]. In fact, the classical proof using the Poincaré-Lemma as in
[Ban07, Proposition 3.5.1] can be transported to the ∞-setting without problems.

Proposition 5.2.10. For F ∈ Sh(X;R), the Verdier duality functor can be rewritten
as

DF ∼= Hom(F, ωX) . (5.19)

Proof. Using that Dop ⊣ D by 5.1.7, we �nd

DF ∼= Hom(R,DF ) ∼= Hom(F,DR) = Hom(F, ωX) .

De�nition 5.2.11. A sheaf F ∈ Sh(X;R) on a locally compact Hausdor� space X has

� perfect stalks, if for each x ∈ X the stalk x∗F is a perfect R-module.

� perfect costalks, if for each x ∈ X the costalk x!F is a perfect R-module.

Similarly for the �nitely presented case. Note that we identify x with the associated
map x : ∗ → X.

Theorem 5.2.12. For X any topological space, the∞-category Sh(X;R) is presentable
stable, in particular it has all limits and colimits. If X is locally compact Hausdor�, the
full subcategory Shhyp

perf(X;R) on hypersheaves with perfect stalks and costalks equipped
with the quadratic functor

Ϙ
s
X(F ) := mapR⊗kR

(F ⊗R F, ωX)
hS2 (5.20)

or its pendant ϘqX is a Poincaré∞-category, with duality functor given by Verdier duality.
The same holds when restricting to �nitely presented stalks.

Proof. For the �rst claim, Sh(X;R) = Sh(X) ⊗ LModR by 1.3.17 since the latter is
presentable, and since it is also stable the result will be presentable stable as well. The
calculation of the duality functor from Ϙs is entirely analogous to 2.1.30, in particular:

BϘsX (F,G) = BϘqX (F,G) = mapR⊗kR
(F ⊗G,ωX)

DϘsX (F ) = DϘqX (F ) = HomR(F, ωX) ∼= DF

We already know that DϘs is exact, also it preserves the property of having presentable
(or �nitely presented) stalks and costalks since for x : {x} → X a point,

x∗DF = x∗ ◦ (−)c ◦DF = (−)c ◦ x!DF = Dx!F (5.21)
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and vice versa, using that D preserves colimits. Finally, if F is hypercomplete, then DF
as well since by 5.1.7 we know D is a right adjoint, and those preserve hypercomplete
objects by the proof of [Lur09a, 6.5.2.13].

It remains to show that the canonical biduality transformation Id → DD is an equiva-
lence. In fact, it is enough to see that for each F ∈ Shhyp

perf(X;R) the morphism F → DDF
is an isomorphism on stalks, since by 1.4.4 it must then be ∞-connected, but DDF is
hypercomplete so it is already an isomorphism. We calculate

x∗DDF = x∗D(−)cD(−)cF ∼= x∗DD(−)c(−)cF ∼= DDx∗F ∼= x∗F (5.22)

using again that D and (−)c commute by 5.1.6, that D preserves colimits and that x∗F
is perfect.

Remark. This both generalizes [KS13, 3.4.3] and looks a lot more natural.

Technical Remark. It would be interesting to know whether this result carries over to
∞-categories V without a symmetric monoidal structure, where we cannot use a tensor
product or ωX . The appropriate bilinear functor in this case would be the end

BϘsX (F,Q) = nat(F,DG) =

�
U∈Open(X)

mapV(F (U), DGc(U)) =

�
U∈Open(X)

BϘ(F (U), Gc(U))

but it does not seem obvious how to obtain a quadratic functor from this.

Finally, we will discuss several examples where Verdier duality and the associated func-
tors are particularly simple:

Proposition 5.2.13. If f : X → Y is a proper map, in the sense that the preimage
f−1(K) for K ⊆ Y compact is still compact, then f! ∼= f∗.

Proof. Since in the proof of 5.1.4 we have seen that, given we are working with locally
compact Hausdor� spaces, a sheaf is determined by its value on compact subsets, we
may reduce to showing that for F ∈ Sh(X;V) and K ∈ K(Y ), the values f∗F (K) =
F (f−1(K)) ∼= f!F (K) are isomorphic, naturally in F andK. Since (−)c is an equivalence
with inverse (−)c, we may as well show (f∗F )c(K) ∼= f∗Fc(K). This amounts to

(f∗F )c(K) = ΓK (Y, (f∗F )c)
(∗)∼= ΓK(Y, F ◦ f−1) = fib(F (X)→ F (X − f−1(K)))

f∗Fc(K) = Fc(f
−1(K))

(∗)∼= Γf−1(K)(X,F ) = fib(F (X)→ F (X − f−1(X −K)))

where at (∗) we use that ifK ′ ⊆ X is compact, then ΓK′(X,Fc) ∼= ΓK′(X,F ) by extensive
colimit arguments, compare [Lur09a, Section 7.3.4].
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Lemma 5.2.14. Let X be a topological space, and j : U ↪→ X an open subset. Then,
the functors j : Open(U)→ Open(X) that views an open subset of U as an open subset
of X is left adjoint to the functor j−1 : Open(X) → Open(U) that sends W ⊆ X to
W ∩ U ⊆ U .

Proof. Since the involved categories are posets, all we need to understand is that for
V ∈ U and W ∈ X, we have j(V ) = V ⊆ W i� V ⊆ W ∩ U .

Proposition 5.2.15. If j : U ↪→ X is an open subspace, and i : Z = X − U ↪→ X its
closed complement, then i∗ and j∗ commute with (−)c so that i− = i!, j+ = j! by 3.3.5.
We can thus restate 3.1.5 as saying that

Sh(Z;V) Sh(X;V) Sh(U ;V)i∗

i!

i∗

j∗

j∗

j!

is a split Verdier sequence, for V presentable stable or compactly generated.

Proof. First, note that U,Z are again locally compact and Hausdor�. The only non-
trivial part in verifying this is the local compactness of Z, but for x ∈ U ⊆ Z open we
have U = V ∩ Z with V ⊆ X open, so there is a K ⊆ X compact and a U ′ ⊆ X open
with x ∈ U ′ ⊆ K ⊆ V . But then x ∈ U ′ ∩ Z ⊆ K ∩ Z and K ∩ Z is a closed subset of
K, so it is a compact neighborhood of x inside U as desired.

The map i is proper since a closed subset of a compact set is again compact, so by
the previous Proposition 5.2.13 i! = (−)c ◦ i∗ ◦ (−)c ∼= i∗ proving this case. For j∗,
we use the fact that the adjunction from 5.2.14 induces an adjoint quadruple Lanjop ⊣
(−◦ jop) ⊣ (−◦ (j−1)op) ⊣ Ran(j−1)op between the presheaf categories Fun(Open(U)op,V)
and Fun(Open(X)op,V), which follows from uniqueness of adjoints and the fact that for
a pair of adjoint functors, the associated precomposition functors are also adjoint (but
with right and left adjoint exchanged).

This tells us that for F ∈ Sh(X;R) and an open V ⊆ U , the pullback sheaf j∗F (V ) =
F (V ) since the left adjoint to (− ◦ j−1) on presheaves is (− ◦ jop), and this functor
preserves sheaves by a short calculation or applying the covering lifting property 1.3.13.
With this observation, (−)c ◦ j∗ ∼= j∗ ◦ (−)c can be calculated from the very de�nition
of (−)c.

Lemma 5.2.16. In the situation above, for F, F ′ ∈ Sh(Z;R) we have

j!F ⊗R j!F
′ ∼= j!(F ⊗R G) (5.23)
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Proof. Using the second projection formula from 5.2.6, we may write

j!F ⊗R j!F
′ ∼= j!(F ⊗R j∗j!F

′) , (5.24)

but j∗j! = Id by the last Proposition, as j∗ is a core�ection right adjoint to j!.

Lemma 5.2.17. In the situation above, we have i−ωX = ωZ and j∗ωX = ωU .

Proof. Let tZ , tX , tU be the terminal maps from Z,X,U ; then we may write using the
last proposition

i−ωX = i!t!XR = t!ZR = ωZ , j∗ωX = j!t!XR = t!UR

Theorem 5.2.18. If X is a locally compact Hausdor� space, U ⊆ X an open subset
and Z = X − U its closed complement, then the sequence

(Shhyp
perf(Z;R), ϘqZ)

i∗−→ (Shhyp
perf(X;R), ϘqX)

j∗−→ (Shhyp
perf(U ;R), ϘqU) (5.25)

is a split Poincaré-Verdier sequence, with adjoints as indicated above. Similarly if we
work with ϘsZ , Ϙ

s
X and ϘsU .

Proof. Since LModR is compactly generated, this is a stable recollement by 3.1.5 and
hence a split Verdier sequence by 3.2.9. The previous proposition shows that i∗ and j∗

are duality-preserving, so it su�ces to show that ϘqX ◦ i∗ = Ϙ
q
Z and ϘqX ◦ j! = Ϙ

q
U . The

symmetric case is analogous.

For the �rst claim, let F ∈ Sh(Z;R) and write

Ϙ
q
X◦i∗(F ) = mapR⊗kR

(i∗F⊗Ri∗F, ωX)hS2 = mapR⊗kR
(F⊗RF, i

−ωX)hS2 = Ϙ
q
Z(F ) (5.26)

using the previous Lemma 5.2.17. Similarly, for G ∈ Sh(U ;R) we have

Ϙ
q
X ◦j!(F ) = mapR⊗kR

(j!F⊗R j!F, ωX)hS2 = mapR⊗kR
(F⊗RF, j

∗ωX)hS2 = Ϙ
q
U(F ) (5.27)

using the same Lemma and j!F ⊗R j!F ∼= j!(F ⊗R F ) by 5.2.16.

5.3 Locally Constant Sheaves

Let X be a topological space and V a presentable ∞-category.

De�nition 5.3.1. A sheaf F ∈ Sh(X;V) is called constant if it lies in the essential image
of the functor Γ∗ : V → Sh(X;V) that is left adjoint to the global sections functor Γ∗.
Explicitly, this means that F is (isomorphic to) the shea��cation of a constant presheaf,
a presheaf that sends every open in X to a �xed object V ∈ V.

Similarly, a hyperconstant hypersheaf is a (hyper-)sheaf in the essential image of the
composition Γ∗hyp := (−)hyp ◦ Γ∗.
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De�nition 5.3.2. A sheaf F ∈ Sh(X;V) is called locally constant if there is an open
cover (ιi : Ui ↪→ X) of X such that for each i, the restriction F |Ui

:= ι∗iF is locally
constant. Denote the full subcategory on locally constant sheaves by Sh lc(X;V).

Similarly, a hypersheaf F is called locally hyperconstant if there exists an open cover
(ιi : Ui ↪→ X) such that the hyperpullbacks (ι∗iF )hyp are hyperconstant. Denote the full
subcategory on them by Shhyp,lc(X;V).

Remark. These de�nitions are a special case of [Lur17, A.1.12].

Warning. Being a locally constant hypersheaf is not equivalent to being locally constant
and a hypersheaf.

Proposition 5.3.3. If V is additionally a stable ∞-category, then Sh lc(X;V) and
Shhyp,lc(X;V) are stable as well.

Proof. We know from 1.3.18 that Sh(X;V) itself is stable, so by 1.5.7 it su�ces to show
that the full subcategory on locally constant sheaves is closed under �nite limits. But
given any �nite diagram F : K → Sh lc(X;V) we may choose an open cover (Ui) ofX that
is closed under intersections such that on each Ui, all F (k)|Ui

with k ∈ K are constant.
Since pullbacks are left exact, we may calculate our �nite limit inside the category of
(hyper-)constant sheaves on each (Ui) individually and glue the results together. Hence,
without loss of generally, we may reduce to (hyper-)constant sheaves.

But the left adjoint to the global sections functor Γ∗ : V → Sh(X;V) sending V to the
associated constant sheaf is left exact, as is the hypercompletion functor (−)hyp, so we
are �nished since V being stable has �nite limits.

In the classical setting, a well-known result from covering theory can be applied to
determine the category of ordinary locally constant sheaves on a good space:

Theorem 5.3.4. Let X be a locally path-connected, semi-locally simply connected,
path connected topological space and denote by Cov(X) the category of coverings on it
and deck transformations, by Shlc(X) the category of locally constant 1-sheaves of sets
on X (also called local systems), and by π1(X) -Set the category of sets with an action
of the fundamental group. Then, the following correspondence holds:

Cov(X) ≃ Shlc(X) ≃ π1(X) -Set ≃ Fun(π≤1(X), Set) (5.28)

For X not path-connected, the category π(X) -Set is not equivalent to the rest since it
depends on a choice of base point, but the remaining equivalences still hold. Also, we
can replace the category of sets with any presentable 1-category.
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Proof Sketch. The �rst equivalence is induced by constructing the éspace étalé of a
locally constant sheaf, which is always a covering, and inversely taking the sheaf of
sections of a covering. The last equivalence is also easy to understand, since for X
path-connected, the groupoid π≤1(X) is also connected. It is therefore equivalent to the
one-object category associated to the group π1(X), and functors from it into Set are
speci�ed by the image of this object, together with an induced π1(X)-action.

Finally, we explain how to associate a monodromy representation m : π≤1(X)→ Set to
any locally constant sheaf F ; the converse uses the existence of a universal covering. To
each point x ∈ X, we associate the stalk m(x) := x∗F ; so for each path γ : [0, 1] → X
from x to a point y ∈ X, we need to �nd a transport map m(γ) : x∗F → y∗F that
is compatible with composition and homotopy invariant. We will mere explain how to
construct m(γ)(sx) for a �xed sx ∈ x∗F .

Choose connected open subsets (Ui) in X that cover γ([0, 1]) such that F |Ui
is a constant

sheaf for each i ∈ I. Since [0, 1] is compact, we can reduce to a �nite number U0, . . . , UN

of them such that x ∈ U0 and y ∈ UN , see the picture. Note that F |Ui
is even a constant

presheaf since Ui is connected, so we can canonically identify all stalks in Ui. This allows
us to iteratively transport sx through all of the �nitely many Ui until we reach UN and
a germ m(γ)(sy) ∈ Fy.

Figure 5.1: Parallel transport from x to y by covering the path with small open sets

x y

Lurie has proven a similar characterization [Lur17, A.4.19] for∞-sheaves, which we state
in a slightly generalized version that follows as a special case of [PT22, Theorem 5.17].
The presence of higher homotopies in the context on ∞-categories imposes higher local
connectivity requirements on our space:

De�nition 5.3.5. A topological space X is called locally weakly contractible if for every
x ∈ X, there exists a neighborhood U ∋ x such that Sing(U) is homotopy equivalent to
∆0 (or equivalently, πn(U) = 0 for all n).
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Example 5.3.6. Every topological manifold is locally weakly contractible.

Theorem 5.3.7 (Monodromy equivalence). For X a locally weakly contractible space
and V a presentable ∞-category, there is an equivalence of categories between locally
constant hypersheaves and representations of its homotopy type:

Shhyp,lc(X;V) ≃ Fun(Sing(X),V) (5.29)

As indicated in the discussion above, the functor Sing(X)→ V associated to a sheaf F
sends x ∈ X to the stalk x∗F ∈ V. If we assume that X is either

� paracompact Hausdor� of �nite covering dimension, so that all sheaves on it are
hypercomplete by 1.4.9, and additionally locally weakly contractible; or

� locally of singular shape in the sense of [Lur17, A.4.15], which is a di�cult property
but holds in particular for topological manifolds and CW complexes,

then the hypercompleteness condition is not necessary and we obtain an equivalence

Sh lc(X;V) ≃ Fun(Sing(X),V) . (5.30)

Remark. Since every Kan complex is the homotopy colimit of its points, we can rewrite
this as

Sh lc(X) = Fun(colim
Sing(X)

∗,V) ≃ lim
Sing(X)

V . (5.31)

These monodromy equivalences can be interpreted as saying that the category Set acts
as a classifying space for covering maps, and the ∞-category of spaces S acts as a
classifying space for locally constant ∞-sheaves (i.e. local ∞-systems). We refer to
[Zet23, Section B.5] for a more extensive exposition, connecting this theorem to other
Riemann-Hilbert-like correspondences throughout mathematics.

Corollary 5.3.8. If X is locally weakly contractible, then since we assume V is pre-
sentable, Shhyp,lc(X,V) is presentable as well. Similarly, if V is compactly generated
or an ∞-topos, then Shhyp,lc(X;V) has the same property. Under the mentioned extra
conditions, this statement translates to Sh lc(X;V).

Proof. All of these properties are preserved if we replace V by Fun(Sing(X),V) as long
as Sing(X) is small.

Corollary 5.3.9. The inclusion ilc : Sh
hyp,lc(X;V) ↪→ Shhyp(X;V) has a left adjoint Llc

and a right adjoint Rlc.
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Proof. Since the involved categories are presentable as we have just seen, by the Adjoint-
Functor-Theorem 1.2.19 it su�ces to show that locally constant sheaves are closed under
limits and colimits. For colimits, this is [Lur17, A.1.16] and due to the fact that Γ∗

being a left adjoints commutes with colimits; and for �nite (co)limits it follows from our
argument in 5.3.3. For general limits, we will see this in 6.3.6.

Corollary 5.3.10. A continuous map f : X → Y of locally weakly contractible topolog-
ical spaces induces an adjoint triple on ∞-categories os locally constant sheaves, where
f ∗ is given by the usual inverse image:

Shhyp,lc(X;V) Shhyp,lc(X;V)

f lc
+

f lc
∗

f∗

Remark. Compare this with the case of general sheaves, where there usually are only
two functors f∗ and f ∗.

Proof. The monodromy equivalence 5.3.7 tells us that Sh lc(X;V) = Fun(Sing(X),V)
and similarly for Y , so the map Sing(f) : Sing(X)→ Sing(Y ) induces an adjoint triple
on categories of locally constant sheaves via precomposition, left and right Kan extension
(which exist since V is presentable). It remains to show that under the above equivalence,
precomposition with Sing(f) corresponds to the pullback of sheaves.

Recall from 5.3.7 that for F a locally constant sheaf on X, the image of x ∈ X under
the monodromy representation of F is the stalk x∗F . But pullbacks of sheaves preserve
stalks, so our claim is true on vertices of Sing(X). On edges and higher simplices, we
would need to show that the pullback preserves (higher) parallel transports � instead of
doing this explicitly, we refer to the abstract argument of [PT22, 6.8].

Remark. Pre- and postcomposing pullback and pushforward for general sheaves with the
adjoint triple from 5.3.9, we see that f lc

∗ = Rlc ◦ f∗ ◦ ilc.

Remark. To gain some intuition for these adjoints, consider the classical case. The
functor f ∗ : Shlc(Y ) → Shlc(X) sends a locally constant sheaf with monodromy repre-
sentation M ∈ π1(Y )-Set to the restriction of scalars π1(X) → π1(Y ) → Aut(M); and
f lc
+ , f

lc
∗ send a representation N of π1(X) to the induced representation Ind

π1(Y )
π1(X)(N) or

coinduced representation CoInd
π1(Y )
π1(X)(N) of π1(Y ).

Corollary 5.3.11. For x ∈ X a point classi�ed by the map x : ∗ → X, and for t : X → ∗
the terminal map, we obtain adjunctions
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V Shhyp,lc(X;V) V

xlc
+

xlc
∗

x∗

C∗

C∗

(−)

where (−) = t∗ and Γ = C∗ = tlc∗ agree with the terminal geometric morphism on
sheaves, and C∗ := tlc+. As the names suggest, C∗ and C∗ in the case V = D(R) for R
an ordinary ring calculate the complexes of singular (co)chains with values in a local
system.

Proof. The adjunctions are a special case of 5.3.10. In particular, this tells us that t∗
agrees with the pushforward of sheaves along the terminal map, which calculates sheaf
cohomology. In the case of V = D(R), the (co)limits

C∗F = lim
Sing(X)

F , C∗F = colim
Sing(X)

F

where we identify F with its monodromy representation can be calculated explic-
itly from the �ech complex construction in 1.5.18, yielding precisely the singular
(co)chain complex with boundary maps twisted by parallel transport along F . For de�-
niteness, consider the constant sheaf R[0] with monodromy representation the constant
functor R[0] : Sing(X)→ D(R), then

C∗(R[0]) = colim
[n]∈∆

⊕
Sing(X)n

R[0] =

· · · → ⊕
e:|∆1|→X

R→
⊕

v:|∆0|→X

R


using the general bar construction.

Remark. Using 3.3.5, conjugating the adjoint triple f lc
+ ⊣ f ∗ ⊣ f lc

∗ with Verdier duality
induces an adjoint triple f lc

! ⊣ f ! ⊣ f lc
+!. In particular for the terminal map, we obtain

functors C ! ⊣ (−)
c
⊣ C! where C ! calculates compactly supported cohomology by the

discussion after 5.1.9, and C! is Borel-Moore-Homology.

5.4 Monodromy

In the case of V = LModR for R a ring spectrum, there is a more re�ned version of the
monodromy correspondence we have discussed in the last section.

De�nition 5.4.1. A generator of a stable∞-category C is an element X ∈ C such that
for any Y ∈ C, if MapC(X, Y ) ≃ ∆0 is contractible, then already Y = 0.

Proposition 5.4.2. If X is a non-empty connected locally weakly contractible topo-
logical space, and x ∈ X a base point, then xlc

+(R) is a compact generator of
Shhyp,lc(X; LModR), where we regard R as a left module over itself in the canonical
way.
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Proof. Since X is locally weakly contractible, if is in particular locally path connected
(since π0 vanishes on a neighborhood of each point), so connectedness implies path
connectedness.

For F ∈ Sh lc(X; LModR) be arbitrary, we can write

MapShlc(X;LModR)(x
lc
+(R), F ) ≃ MapLModR

(R, x∗(F )) = x∗F .

If we assume that this mapping space is contractible, then since X is connected, there
exists and isomorphism x∗F ≃ y∗F ≃ ∆0 for any y ∈ X induced by parallel transport
(to be precise, this follows from the monodromy correspondence). Hence, F must al-
ready agree with the terminal sheaf as it admits a canonical map into it which induces
isomorphisms on stalks, and both sheaves are hypercomplete.

Finally, R is a compact object of LModR and xlc
+ preserves compact objects since it has

a left adjoint x∗ that preserves colimits, as it is admits a left adjoint xlc
∗ itself. Therefore

xlc
+R is compact.

Theorem 5.4.3 ([PT22, Theorem 6.26]). For (X, x) a pointed, connected and locally
weakly connected topological space, denote by Σ∞Ω(X) the associative ring spectrum
given as the suspension spectrum of its loop space and de�ne the associative ring spec-
trum R′ := Σ∞Ω(X) ∧R. Then, there is a canonical equivalence of categories

Sh lc(X; LModR) ≃ LModR′ . (5.32)

Proof. Since LModR is a presentable stable ∞-category, combining the last proposition
5.4.2 with the Schwede-Shipley recognition criterion 1.7.4 we �nd that it is equivalent
to LModend(xlc

+(R)), so it remains to calculate this endomorphism ring spectrum:

end(xlc
+(R)) = map(xlc

+(R), xlc
+(R)) ≃ map(R, x∗xlc

+(R)) ≃ x∗xlc
+R

The pullback square in S

Sing(ΩX) ∆0

∆0 Sing(X)

t

t x

x

implies that Sing ΩX ≃ {x} ×Sing(X) Sing(X)/x, so we can calculate

x∗xlc
+R = LanSing(X)

x R(x) = colim
{x}×Sing(X)Sing(X)/x

R = R⊗ ΩX = R ∧ Σ∞ΩX

using how the tensoring in spaces or spectra is de�ned.
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If we want to use this theorem to calculate L-groups, we need to �nd a way to restrict to
�nitely presented R-modules. This involves generalizing the monodromy correspondence
to this non-presentable case.

Proposition 5.4.4. Let V be a small stable ∞-category, and X a locally weakly con-
tractible space. Then, locally constant hypersheaves in Ind(V) whose stalks all lie in V

are characterized by their monodromy representation:

Shhyp,lc
V (X; Ind(V)) ≃ Fun(Sing(X),V) (5.33)

Proof. Since Ind(V) is compactly presented, the monodromy correspondence 5.3.7 im-
plies Shhyp,lc(X; Ind(V)) ≃ Fun(Sing(X), Ind(V)), so it su�ces to show that such a sheaf
F has stalks in V i� for all x ∈ X, the value of its monodromy representation lies in
V ⊆ Ind(V). But we know that this value is just x∗F , so we are �nished.

Lemma 5.4.5. If Fx,M denotes the skyscraper sheaf at x ∈ X with value M ∈ LModR

and X is locally weakly contractible, then

LlcFx,M
∼= xlc

+M . (5.34)

Similarly if j : U ⊆ X is a weakly contractible open subset with trivial shape containing
x, then for the sheaf FU,M := j!M with support in U ,

LlcFU,M
∼= xlc

+M . (5.35)

Proof. For any locally constant hypersheaf S on X,

Map(LlcFx,M , S) ≃ Map(Fx,M , S) ≃ Map(M,x∗S) ≃ Map(xlc
+M,S)

hold by applying the appropriate adjunctions, so the result follows from the Yoneda
Lemma. Similarly,

Map(LlcFU,M , S) ≃ Map(j!M,S) ≃ Map(M,S|U) = Map(M,Γ∗S|U)

which, since U is weakly contractible and S|U therefore constant, agrees with the (trivial)
shape of U applied to the stalk x∗S, so the result follows as in the other calculation.

De�nition 5.4.6. As in the PL case, we de�ne a hypersheaf F ∈ Shhyp(X;V) to be
balanced if for any S ∈ Shhyp,lc(X;V), the mapping space Map(F, S) is contractible, and
denote their full subcategory by Sh⊥hyp,lc(X;V). If V = LModR, this is again equivalent
to LlcF = 0. De�ne Sh⊥lcfp (X;R) := Sh⊥lc(X;R) ∩ Shhyp

fp (X;R) as the full subcategory
of balanced sheaves that have �nitely presented stalks and costalks.

145



Proposition 5.4.7. If the underlying space X is a topological manifold or CW complex
(for us always locally �nite), then a locally constant sheaf F ∈ Sh lc(X;R) has �nitely
presented (or perfect) costalks i� it has �nitely presented (or perfect) stalks. In fact, we
show in 6.4.2 that this is true more generally, but we will for simplicity restrict to the
case of topological manifolds in what follows.

De�nition 5.4.8. As for PL sheaves, we de�ne

Shhyp,lc(X;R)(fp) := Shhyp
fp (X;R)⧸

Sh⊥hyp,lcfp (X;R) (5.36)

which as usual agrees with the full subcategory of Shhyp,lc(X;R) on sheaves of the form
LlcF with F ∈ Shhyp

fp (X;R).

Theorem 5.4.9. Let X be a topological manifold. Under the equivalence in 5.4.3, the
full subcategories

Shhyp,lc(X;R)(fp) ≃ LModfp
Σ∞ΩX∧R (5.37)

are identi�ed. The quadratic functor on the right induced by (twisted) Verdier duality
D = DM ◦ (−)c is associated to the invertible module Σ∞ΩX ∧ R whose involution
consists of

� the involution in M ,

� the loop-reversing involution on ΩX,

� the non-orientability of the orientation sheaf ωX along the respective loop adding
an extra sign.

Proof Sketch. We only prove the �rst part, the involution can be obtained by carefully
going through the proof of 5.4.3, compare [Lur11, Lecture 22]. The sheaves FU,R from
5.4.5 for U charts of X generate Shfp(X;R) since charts form a basic, so since we can
identify Sh lc(X;R)(fp) ⊆ Sh lc(X;R) with the essential image of this category under
Llc, it su�ces to show that smallest stable subcategory of it spanned by the compact
generator xlc

+R agrees with the smallest stable subcategory containing all LlcFU,R, which
is immediate by the mentioned Lemma.

Remark. If we want to prove this theorem in the PL case or on a simplicial complex, we
use the sheaves F τ,V as generators.

Corollary 5.4.10. If M is a connected topological manifold, then

Lq(Sh lc(M ;R)(lc)) ≃ Lq(Σ∞ΩM ∧R) ≃ Lq(π0R[π1M ]) (5.38)

just as in the PL case. If M is not connected but consists of �nitely many connected
components, it is easy to see that the category of locally constant sheaves orthogonally
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decomposes into the categories of sheaves on the individual components, and this is
compatibly with Verdier-duality in the sense of 3.4.5. Therefore, the total L-group splits
as a direct sum.

Warning. This result does not hold if we replace the term "�nitely presented" by "per-
fect", even in the PL case. There usually is only a fully faithful inclusion

Sh lc
perf(X;R)(fp) ⊆ LModperf

R . (5.39)

Compare the examples in [PT22, 6.30].

5.5 Visible L-Groups

It is time to piece together the developments of the last sections. Let X be a topological
manifold.

Proposition 5.5.1. The left adjoint Llc of the inclusion of Sh lc(X; LModR) into
Sh(X; LModR) induces a right split Verdier sequence

Sh⊥lc(X;R) Sh(X;R) Sh lc(X;R)
Llc

and the inclusion itself induces a split Verdier sequence

Sh lc(X;R) Sh(X;R) Sh lc(X;R)⊥ .
Llc

Proof. As for the PL analogue 4.3.11, this is just an application of 3.2.12 since we know
about all required adjoints.

Theorem 5.5.2. The Verdier sequence above reduces to a Poincaré-Verdier sequence

Sh⊥lcfp (X;R) Shfp(X;R) Sh lc(X;R)(fp)
Llc

where all categories are equipped with the respective restrictions of the Verdier duality
functor on Sh(X;R). In particular, we obtain a �ber sequence L-spectra

Lq(Sh⊥lcfp (X;R))→ Lq(Shfp(X;R))→ Lq(Sh lc(X;R)(fp)) . (5.40)

Proof. This sequence is Verdier by de�nition, so by 3.3.2 we only need to show that
Sh⊥lcfp (X;R) is closed under duality. But since it is the intersection of Sh⊥lc(X;R)
and Shfp(X;R) which are both closed under duality, since locally constant sheaves are
because the dualizing complex of a topological manifold is locally constant, we are
�nished.
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Remark. The perfect case is less interesting because 5.4 makes calculations di�cult, and
even if they were possible we would obtain projective L-groups instead of the L-groups
of �nitely presented modules we are usually interested in.

Let us de�ne the visible quadratic L-groups

Lvq
n (X;R) := Ln(π0R[π1X]) ∼= Ln(Sh

lc
fp(X;R), ϘqX) (5.41)

of X, and Lvs
n (X;R) := Ln(Sh

lc
fp(X;R), ϘsX) the visible symmetric L-groups. We suspect

that the map L(Shfp(X;R), ϘqX) → L(Sh lc
fp(X;R), ϘqX) induced by Llc is generally not

an assembly map, see 6.6.
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6 L-groups of Strati�ed Spaces

In the PL setting all of our results generalized without too many problems to the strat-
i�ed case, and things work out similarly well in the topological world. After developing
some of the technical tools, in particular strati�ed homotopy theory following [DW21]
and [Hai18] and the exodromy correspondence following [PT22], we restrict Verdier du-
ality to constructible sheaves making use of the main result in [Vol22] allowing us to
de�ne L-groups of constructible sheaves. After showing how these are actually calcu-
lable in some examples, we conclude this work by comparing our constructions in the
di�erent settings we have considered.

6.1 Notions of Strati�cations

De�nition 6.1.1. Let (P,≤) be a poset. We can equip it with the Alexandrov topology,
where

� Open subsets are precisely the upwards closed subsets

� Closed subsets are precisely the downwards closed subsets

� Locally closed subsets are precisely the intervals

In particular for p ∈ P , the set P≥p = {q ∈ P |q ≥ p} is open, P≤p is closed and {p} is
locally closed.

De�nition 6.1.2. A P -strati�ed space, usually called �ltered space, is a topological
space X equipped with a continuous map f : X → P , where P carries the Alexandrov
topology. The locally closed subspaces Xp = f−1(p) are called strata of X, and the
closed subspaces X≤p = f−1(P≤p) are called closed strata.

Example 6.1.3. An (N,≤)-strati�ed space is a topological space X, together with a
�ltration

⋃
i∈NXi = X by closed subspaces Xi with Xi ⊆ Xj for i ≤ j.

De�nition 6.1.4. A map of strati�ed spaces g : (X → P ) → (Y → Q) consists of a
continuous map X → Y and an order-preserving map P → Q (equivalently, continuous
with respect to the Alexandrov-topology) such that the following square commutes:
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X Y

P Q

We obtain a category Top/Alex, and we will call the isomorphisms strati�ed homeomor-
phisms. Also, restricting to a �xed poset P and continuous morphisms that cover the
identity map on P , we obtain a category Top/P .

De�nition 6.1.5. An open embedding f : (X → P ) ↪→ (Y → Q) of strati�ed spaces is
a map of strati�ed spaces that induces an open embedding f : X ↪→ Y of topological
spaces, as well as open embeddings fp : Xp ↪→ Yf(p) for each p ∈ P .

De�nition 6.1.6. For f : X → P a strati�ed space, de�ne its open cone

C(X) :=
X × [0,∞)

X × {0}
(6.1)

and equip it with its natural strati�cation by P ◁ := P ∪{−∞} that sends [(x, t)] 7→ f(x)
for t > 0, and the collapsed cone point to −∞.

De�nition 6.1.7. A strati�ed space f : X → P is called conically strati�ed if for any
p ∈ P and any point x ∈ Xp, there exists a neighborhood x ∈ U with f(U) = P≥p such
that the space U with its restricted strati�cation U → P≥p is strati�ed homeomorphic
to a space of the form Y × C(L). Here, Y should be a (trivially strati�ed) topological
space and L a P>p-strati�ed space so that we can identity P≥p ∼= P ◁

>p.

Being conically strati�ed implies many useful statements about the (strati�ed) homotopy
type of a space, as we will see later. To capture this de�nition in a few words, it says
that our space should locally look like a cone. There is a similar, even more re�ned
notion we will often use, that mirrors the de�nition of a topological manifold:

De�nition 6.1.8. An n-basic is inductively de�ned to be a strati�ed space of the form
Ri × C(L), where i ≥ 0 and its link Z is a compact topologically strati�ed space of
dimension (n− i− 1), inductively de�ned below. To start this induction, the only (−1)-
dimensional topologically strati�ed space is ∅ → ∅, and there are no basics of negative
dimension.

De�nition 6.1.9. A topologically strati�ed space of dimension n, also called C0-strati�ed
space, is a paracompact Hausdor� space that is locally strati�ed homeomorphic an n-
basic, in the sense of 6.1.7. We denote the category of them, together with strati�ed
maps, as StratC

0

n ; and if we take only strati�ed open embeddings of as morphisms, as
SnglC

0

n . Finally, we denote the category of n-basics with strati�ed open embeddings as
morphisms by BscC

0

n .
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Technical Remark ([AFT14, 6.2.2]). Since every space in SnglC
0

n can be glued from n-
basics, we can obtain an embedding SnglC

0

n ↪→ PSh(BscC
0

n ). In fact, open coverings
constitute a Grothendieck pretopology on BscC

0

n , and the functors of points of topologi-
cally strati�ed spaces are sheaves over it (but not every sheaf is of this form).

Example 6.1.10. It follows that the only 0-basic is C(∅ → ∅) = ∗ → ∗, and the only
1-basics are R, C(∗ → ∗) = (R≥0 → {0 < 1}) and generally C({1, . . . , k} → ∗) =
R≥0 ×{0} · · · ×{0} R>=0 → ∗.

Example 6.1.11.

� Since forming a cone always adds an element to the strati�cation poset, topologi-
cally strati�ed spaces (X → P ) with P = ∗ must locally look like Ri, so they are
precisely topological manifolds. Similarly, one can see that strata of topologically
strati�ed spaces are always topological manifolds.

� Topologically strati�ed spaces of dimension 0 are disjoint unions of points (with
the trivial strati�cation), and in dimension 1 we obtain undirected graphs strati�ed
over {0 < 1} by sending vertices to 0 and edges to 1.

� Let N ⊆ M be an embedded submanifold, and let us stratify M by {0 < 1} by
sending N to 0 and M\N to 1. This is a topological strati�cation; an important
special case are knots S1 ↪→ R3.

� Irreducible complex varieties of pure dimension, with their analytic topology, have
a natural topological strati�cation with only even-dimensional strata.

� The pinched torus S1 × S1
⧸{0} × S1 and the double cone S1 × R⧸S1 × {0} are

topologically strati�ed of dimension 2; both consist of a singular stratum (the
quotient point, with link S1 × S1 in both cases) of dimension 0 and a regular
stratum.

� The suspension ST 2 = [0,1]×T 2

{0,1}×T 2 of the torus is a topologically strati�ed space of
dimension 3 with two singular points.

� The topological n-simplex |∆n| = {(x0, . . . , xn) ∈ [0, 1]n+1|x0 + · · ·+ xn = 1} pos-
sesses a natural {0 < · · · < n}-strati�cation, sending (x0, . . . , xn) to the maximal
i with xi ̸= 0. For example, |∆1| consists of the 0-stratum {(1, 0, 0)} and the
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1-stratum given by the remaining half-open line. Alternatively, |∆n| can also be
strati�ed di�erently by considering it as a manifold with corners.

� Strati�cations that are not topological include for example most CW-complexes
(strati�ed by their skeleta); and { 1

n
|n ∈ N} ∪ {0} ⊂ R strati�ed by sending

everything to 1 ∈ {0 < 1}, except for 0 7→ 0.

Example 6.1.12. Topological n-Manifolds with corners, i.e. spaces that are locally
homeomorphic to Rn−i×Ri

≥0 for 0 ≤ i ≤ n, are topologically strati�ed over {0 < · · · < n}
if we send every corner to its dimension i (i.e. the interior to n, the boundary to n− 1,
and so on). This follows from the fact that topologically strati�ed spaces are closed
under forming products.

De�nition 6.1.13. A topologically strati�ed space is called a topological pseudomanifold
if its top-dimensional stratum is dense, and there is no stratum of codimension 1. This
allows, for example, the introduction of an orientation class.

Let us capture the most important �avors of strati�ed spaces in a diagram, where arrows
denote an extension in generality. Note that the variants of smooth strati�ed spaces are
always equipped with extra data like an atlas, so the respective arrows are not fully
faithful. Conically smooth spaces are slightly non-standard; they were introduced in
[AFT14] as a strati�ed generalization of smooth manifolds that adapts very well to the
strati�ed homotopy theory we develop in the next section.

strati�ed spaces topologically strati�ed topological pseudomanifolds

Thom-Mather conically smooth

Whitney complex varieties

6.2 Exit-Paths

The (weak) homotopy type of a topological space X is described by its singular simplicial
set, or fundamental ∞-groupoid, Sing(X) that we de�ned in 1.1.12. In fact, good
topological spaces and ∞-groupoids are more or less the same thing according to the
homotopy hypothesis.

We want to �nd a similar simplicial model for the strati�ed homotopy type of a strati�ed
space (X → P ). Since a strati�cation equips X with a sense of ordering, or direction,
we would expect that this model has non-invertible edges, ie. it should not be a Kan
complex. In fact, there is a correspondence (akin to the homotopy hypothesis) between
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∞-categories and so-called directed spaces, which we could regard strati�ed spaces as a
special case of. We will however take a di�erent approach.

Remember that vertices of Sing(X) are points of X, edges are paths, 2-simplices are
homotopies and so on. What we would expect for strati�ed spaces is that vertices of
their model SingP (X) should still be points of X, but edges should be paths that "move
in the direction of the strati�cation". Let us formalize this:

De�nition 6.2.1. We introduce a functor rstrat : ∆ → Top/Alex that sends [n] to
(|∆n| → [n]) with the natural strati�cation of 6.1.11. Using the fact that Top/Alex has
all colimits, and the nerve-realization paradigm 1.1.7, we obtain an adjunction

Top/Alex sSet
Singstrat

|−|strat

We call the simplicial set Singstrat(X) with n-vertices determined by

Singstrat(X)n := HomTop/Alex
((|∆n| → [n]), (X → P )) (6.2)

the exit-path category of X.

To be more explicit,

� Vertices of Singstrat(X) are points in X,

� For vertices x, y ∈ X, edges between them in Singstrat(X) are paths |∆1| → X
that cover an order-preserving map [1] → P , i.e. exit-paths in X that start in a
lower stratum and immediately exit into a higher stratum in which they stay,

� 2-simplices are homotopies between exit-paths that, following the strati�cation of
∆2, increase in the strati�cation of X,

� Higher simplices are higher homotopies compatible with the strati�cations.

In particular, for p ≤ p′ ≤ p′′ in P and exit-paths γ : x → y starting in Xp and exiting
into Xp′ , γ′ : y → z starting in Xp′ and exiting into Xp′′ , and γ′′ : x→ z starting in Xp

and exiting into Xp′′ , a 2-simplex starting at γ and γ′ and ending at γ′′ is a homotopy
between the concatenation γ′ ∗γ and γ′′ that, apart from beginning and end, completely
lies in Xp′′ .

Warning. Be aware that Singstrat(X) generally does not have to be an ∞-category,
despite the name. The reason is that paths γ′ and γ as above don't necessarily need
to have a composite, i.e. a third path γ′′ equipped with a 2-simplex as above. The
condition that the homotopy needs to lie in Xp′′ may be to strong.

This construction resolves half of our problem � we can use Singstrat(X) as a simplicial
model for X → P . What special properties does this simplicial set possess?
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Construction 6.2.2 ([DW21, 2.9]). For P a poset, regard it as a thin category and de-
note by N(P ) ∈ sSet its nerve, which is an∞-category with no non-trivial isomorphisms.
There is a canonical continuous map from the geometric realization φP : |N(P )| → P :
For every non-degenerate simplex of N(P ) corresponding to a strictly order-preserving
morphism [n] → P , ie. a chain (p0 < · · · < pn) ⊆ P , we map the associated simplex
{(x0, . . . , xn) ∈ [0, 1]n|

∑
xi = 1} to P via

φP (x0, . . . , xn) := max{i ∈ {0, . . . n} | ti ̸= 0}} . (6.3)

In particular, |N(P )| is naturally strati�ed over P and for P = [n], this agrees with the
strati�cation in 6.1.11.

Remark. It is a nice exercise to show that this is a well-de�ned continuous map, un-
derstand the strati�cation in more examples, and to describe the adjoint map N(P )→
Sing(P ).

Observation 6.2.3. Postcomposing with, and pulling back along the map φP induces
an adjunction between slice categories:

Top/P Top/|N(P )|−×P |N(P )|

φP ◦−

De�nition 6.2.4. Given a simplicial set (K → N(P )) ∈ sSet/P equipped with a map
to the nerve of P , we can form the geometric realization (|K| → |N(P )|) ∈ Top/|N(P )|.
Together with ϕP ◦ − this yields a composition

sSet/N(P ) Top/|N(P )| Top/P

|−|

SingP

φP ◦−

−×P |N(P )|

where both functors admit right adjoints. The right adjoint SingP of the geometric
realization (which we identify with the composition of both right adjoints) is constructed
as the pullback

SingP (X) Sing(X)

N(P ) Sing(P ) .

Remark. Both of these statements follow from standard theorems on the interaction of
adjoints and slice categories, and pasting in the latter case.

154



Proposition 6.2.5. For (f : X → P ) ∈ Top/P , the constructions Sing
strat(X → P ) ∼=

SingP (X) are naturally isomorphic. Similarly, for (K → P ) ∈ sSet/P , the underlying
topological spaces of |K|strat and |K → P |P agree.

Proof. While this can be deduced from abstract nonsense, for the �rst case this is clear
by construction of SingP : The pullback in sSet = Fun(∆op, Set) is computed pointwise,
so SingP (X) consists of precisely those simplices σ of Sing(X) that lie over a simplex of
N(P ), meaning that they can only go in the direction the edges in N(P ) point towards,
i.e. upwards in the strati�cation.

For the geometric realizations, note that both of them as well as the slice projections
sSet/P → sSet, Top/P → Top preserve colimits, so it is enough to show this on ∆n → P .
But the underlying space of both realizations by de�nition is just |∆n| in this case.

Remark. We have thus learned that the exit-path category Singstrat(X) ≃ SingP (X) is
equipped with a canonical map to P , and how to calculate the strati�ed realization.

Theorem 6.2.6 ([Lur17, A.6.4]). If (X → P ) is a conically strati�ed space, the exit
path category SingP (X) ∈ sSet is a quasicategory.

De�nition 6.2.7. A functor F : C→ D between ∞-categories is called conservative if
it re�ects isomorphisms. This means that if f is a morphism in C such that F (f) is an
isomorphism in D, then f is an isomorphism.

De�nition 6.2.8. For P a poset, the∞-category SP of abstract strati�ed homotopy types
over P is the full subcategory of the slice category Cat∞/N(P ) on conservative functors.

Proposition 6.2.9. For (X → P ) ∈ Top/P , the natural map SingP (X) → N(P ) is
conservative. In particular, if (X → P ) is conical, SingP (X) ∈ SP .

Proof. Since P is a poset, the only isomorphisms in N(P ) are the identities. Therefore,
all we need to check is that for each p ∈ P , the �ber SingP (X) ×N(P ) {p} is an ∞-
groupoid. From the de�nition of SingP (X), we see that morphisms in this �ber are
paths in X that stay entirely in Xp, without any conditions from the strati�cation. This
means that they are invertible, as we may trace the path in the opposite direction.

Remark. In fact, the same argument applied to higher simplices in SingP (X) shows that
SingP (X)×N(P ) {p} ≃ Sing(Xp), see also [Lur17, A.7.5].

Proposition 6.2.10 ([Hai18, 1.1.9]). A morphism f : K → L in SP is an isomorphism
i�

� it induces homotopy equivalences of strata Kp ≃ Lp for every p ∈ P , and
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� it induces homotopy equivalences between links for all p < q in P :

MapSP
({p < q}, K) ≃ MapSP

({p < q}, L) (6.4)

After this technical discussion, let us develop some examples. Recall that we always
assume CW complexes are locally �nite.

De�nition 6.2.11. A CW complex X is called regular i� the inclusions ϕ : Dn → X
of n-cells into X are homeomorphisms onto their image. For arbitrary CW complexes,
this is only true in the interior of Dn, and being regular means that this gluing has to
be "non-degenerate" along the boundary ϕ∂ : Sn−1 → skn−1(X) as well.

Proposition 6.2.12. If X is a regular CW complex and we denote by IX the set of
cells in X, then

� IX carries a natural partial order,

� There is a canonical strati�cation X → IX sending each point to the unique cell
that contains it in its interior (unless the point is a 0-cell itself, in which case it is
sent to this 0-cell),

� This strati�cation is conical (here, we need X to be locally �nite),

� The exit-path category SingIX (X) → IX is equivalent to the identity map, i.e.
SingIX (X) ≃ IX as ∞-categories.

Proof. First, note that a regular CW complex X is in particular normal. This means
the set of cells IX carries a partial order where e1 ≤ e2 i�, equivalently,

� e1 is contained in the closure e2,

� e1 ∩ e2 ̸= ∅,

by [TT18, 3.1]. This yields a conical strati�cation on X by [TT18, 1.7] and a remark
in [Lej21, Section 4.2]. To show that the map SingIX (X) → IX is an equivalence, we
proceed by showing it is essentially surjective and fully faithful.

Essentially surjective: In the proof of 6.2.9, we saw that the �ber of this map over a cell
is just the singular simplicial set of the open cell itself (or, in dimension 0, a point), in
particular contractible and non-empty.

Fully faithful: Let e1 and e2 be cells in X, and x ∈ e1, y ∈ e2. If e1 ≰ e2, the mapping
space MapSingS(X)(x, y) is also empty since there can't be a path γ : [0, 1] → X from x
to y that lies over the arrow e1 → e2 in S, as it would have to somehow jump from e1
to e2 even though e1 ∩ e2 = ∅, violating continuity.

If e1 ≤ e2, so e1 lies in the boundary of e2, we need to show that MapSingIX (X)(x, y)
is contractible. As in the proof of [Lur17, A.6.10], we can identify this with Sing(Px,y)
with Px,y the space of paths γ : [0, 1] → X from x to y such that γ((0, 1]) ⊆ e2. This
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only works because we know the strati�cation is conical so SingIX (X) is an ∞-category.
However γ([0, 1]) ⊆ e2, the image of the gluing map Dn → X of e2, which by regularity
is a homeomorphism onto its image.

Thus, we can identify Px,y with the space of maps γ : [0, 1] → Rn such that γ(0) = y′

for some �xed y′ with |y′| = 1 that corresponds to y, γ(1) = x′, and |γ(t)| < 1 for all
0 < t ≤ 1. This can clearly be contracted to the linear path, since the open unit ball is
convex.

Corollary 6.2.13. If K is a simplicial complex and we stratify its geometric realization
|K| by the poset IK of simplices, the exit-path category SingIK (|K|)→ IK is equivalent
to the identity IK → IK .

Proof. By de�nition of a simplicial complex and its geometric realization, |K| is a regular
CW-complex with poset of cells IK .

Example 6.2.14.

� For a trivially strati�ed space X → ∆0, the exit-path category agrees with the
homotopy type Sing∆

0

(X) = Sing(X).

� Using the same argument as in 6.2.12, one shows Sing[1](R≥0) ≃ ∆1.

� As a right adjoint, Singstrat commutes with products.

� By [AFR15, 3.3.12], if r : (X → P ) → (X → Q) is a re�nement, i.e. a map of
strati�ed spaces determined by the identity on X and an order-preserving surjec-
tion P → Q, then the induced functor SingP (X)→ SingQ(X) is a localization (loc.
cit. only works in the conically smooth case, but this should hold more generally).

� For Dn → [1] strati�ed as a manifold with boundary, choose the triangulation ∆n.
Then,

Sing[1] Dn ≃ (Sing[n] ∆n)[W−1] ≃ P({1, . . . , n})[W−1] (6.5)

where W is the class of face inclusions in ∆n that do not involve the interior, and
P denotes the power set ordered by inclusion.

� By [AFT14, 6.1.4], SingP (C(X)) ≃ SingP (X)◁ in the conically smooth case. In
particular, the exit-path category of a basic is

SingP
◁

(Ri × C(L)) ≃ Sing∆
0 Ri × SingP

◁

(C(L)) ≃ (SingP (L))◁ . (6.6)

� By [Vol22], the exit-path category of a compact conically smooth strati�ed space
is equivalent to a �nite ∞-category.
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6.3 Constructible Sheaves

Recall that on a topological space X, we have de�ned special classes of sheaves with
values in a presentable ∞-category V that locally do not change. If Γ∗ : V → Sh(X,V)
denotes the left adjoint of the global sections functor, sheaves of the form Γ∗(V ) for any
V ∈ V were called constant. Also, if there is an open cover (Ui)i∈I of X such that F |Ui

is constant for every i, we called F locally constant.

De�nition 6.3.1. For X → P a strati�ed space, we call a sheaf F ∈ Sh(X,V) con-
structible if for each p ∈ P , the restriction F |Xp to the respective pure stratum is locally
constant. The full subcategory on constructible sheaves will be denoted by Shcbl(X;V)
when the strati�cation is clear from the context.

Similarly, we de�ne constructible hypersheaves as hypersheaves F ∈ Shhyp(X;V) whose
restrictions to strata are locally constant hypersheaves after hypercompleting them. In
other words, for each p ∈ P there must exist an open cover (U (p)

i )i∈Ip of Xp such that all((
F |Xp)

hyp
∣∣
U

(p)
i

)hyp
=
(
F |

U
(p)
i

)hyp
(6.7)

can be written as (Γ∗V (p)
i )hyp for some V

(p)
i ∈ V.

Warning. As in the locally constant case, be aware that being a constructible hypersheaf
is not equivalent to being constructible and hypercomplete.

De�nition 6.3.2. A partially ordered set P is called noetherian if it satis�es the as-
cending chain condition, i.e. there exists no in�nite chain of elements p0 < p1 < p2 < . . .
in P . Equivalently, any subset of P has a maximum.

There are some useful criteria to check whether a given sheaf is locally constant or
constructible. In the following, assume that either

� V is presentable stable or the tensor product of a compactly generated∞-category
and an ∞-topos, and P is noetherian, or

� V is compactly generated.

We will call this the joint conservativity assumption.

Theorem 6.3.3 ([PT22] 5.22). Let X → P be a conically strati�ed space and V satisfy
the joint conservativity assumption. Then, for a sheaf F ∈ Sh(X;V), the following are
equivalent:

� F is a constructible hypersheaf
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� For all open subsets U ⊆ V ⊆ X such that the induced map SingP (U)→ SingP (V )
is an equivalence, the restriction F (V )→ F (U) is also an equivalence

� For each conical neighborhood Z × C(Y ) in X, any open subsets U ′ ⊆ V ′ ⊆ Z
such that U, V are weakly contractible, and all 0 < ϵ < ϵ′, application ot F to the
inclusions

U × C(Y ) ⊆ V × C(Y )

Z × C<ϵ(Y ) ⊆ Z × C<ϵ′(Y )

yields isomorphisms. Here, C<ϵ(Y ) denotes the open subset of the cone where the
real parameter is < ϵ.

Remark. If X is topologically strati�ed, every sheaf is hypercomplete by 1.4.9, so this
becomes a characterization of constructible sheaves.

Remark. In the cases of conically smooth strati�ed spaces and topological manifolds,
one can give a more re�ned characterization. If V is a presentable ∞-category and
F ∈ Sh(M ;V) on a topological manifold M , then F is locally constant i� it sends
inclusions of charts into each other to isomorphisms. This follows from the monodromy
correspondence 5.3.7 combined with the fact [Lur17, 5.4.5.2] that Sing(M) ≃ {Rn}×Mfdn

(Mfdn)/M , with Mfdn the ∞-category of topological n-manifolds with morphism spaces
given by the spaces of open embeddings Emb(M,N) equipped with the compact-open
topology. We only need V to be presentable in this case, since the criterion on V in
[PT22, 5.17] is satis�ed because M only has a single stratum.

Our next goal is to generalize the monodromy correspondence 5.3.7 to constructible
sheaves on strati�ed spaces. Since the abstract homotopy type of a strati�ed space
is described by its exit-path category, which is (on conically strati�ed spaces) an ∞-
category and not a Kan complex like Sing(X), we expect that there is some directionality
involved in the notion of parallel transport that classi�es a constructible sheaf. In the
classical setting, remember how the monodromy correspondence between locally constant
sheaves and representations of the fundamental groupoid was proven by using the local
constancy to transport germs along paths inside small open subsets.

Now, suppose we are given an exit path γ : [0, 1] → X such that x := γ(0) ∈ X1 and
γ((0, 1]) ⊆ X2, as well as a constructible 1-sheaf F ∈ Shcbl(X) and a germ s ∈ x∗F.
By de�nition of the stalk, there is a small open neighborhood U0 around y such that s
stems from a section of F (U0), meaning that we can parallel transport s from y to any
point in this neighborhood, in particular to some γ(ϵ) with ϵ > 0. From here on, we can
work with F |X2 which is locally constant and parallel transport further until we reach
γ(1) =: y, as indicated by the blue open sets in the picture below.

If our path however starts at y and ends in the lower stratum X1 at z, we might run into
a problem as shown by the red sets. Since we can only parallel transport a germ inside
of open sets where the respective sheaf is constant, we might never reach X1 as there
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Figure 6.1: Parallel transport is only possible from lower to higher strata

y

x

z

X

X1

2

does not have to be an open neighborhood around z where F |X≤2
is constant. We realize

that constructible sheaves can only be transported along exit paths, an idea leading us
to the exodromy correspondence:

Theorem 6.3.4 (Topological Exodromy, [Lur17, A.9.3] and [PT22]).
Let (X → P ) be a conically strati�ed such that any stratum Xp is locally weakly
contractible, and V satisfy the joint conservativity condition, then constructible hyper-
sheaves are speci�ed by their exodromy representation:

Shhyp,cbl(X;V) ≃ Fun(SingP (X),V) . (6.8)

The functor SingP (X) → V associated to a sheaf F sends x ∈ X to the stalk x∗F . In
case all sheaves on X are hypercomplete (e.g. X is paracompact Hausdor� of �nite
covering dimension), the hyp can of course be dropped.

We may instead require that (X → P ) is a paracompact Hausdor� conically strati�ed
space that is locally of singular shape, P satis�es the ascending chain condition and V

the joint conservativity condition, then we can characterize constructible sheaves by

Shcbl(X;V) ≃ Fun(SingP (X),V) . (6.9)

Remark. The term exodromy stems from applications of this concept to study étale
sheaves in algebraic geometry, see [BGH18]. However, the original (topological) state-
ment for ordinary constructible sheaves is due to unpublished work by MacPherson.
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Technical Remark. We may rewrite this in analogy with 5.31 as

Shcbl(X;V) ≃ Fun(laxcolim
SingP (X)

∆0,V) ≃ laxlim
SingP (X)

V . (6.10)

Proposition 6.3.5. Let V be a small stable ∞-category, and (X → P ) satisfy the
conditions for the exodromy correspondence. Then, constructible hypersheaves in Ind(V)
whose stalks all lie in V are characterized by their exodromy representation in V:

Shhyp,cbl
V (X; Ind(V)) ≃ Fun(SingP (X),V) (6.11)

Proof. Since the exodromy representation of a sheaf F sends a point x ∈ X to the stalk
Fx, we can apply it to Ind(V) and restrict to the above full subcategories. In particular,
Ind(V) is by de�nition compactly generated so we do not always need to assume that P
is noetherian.

This allows us to extend several statements that we have used for locally constant sheaves
to constructible sheaves. Let (X → P ), (Y → P ) be strati�ed spaces and V an ∞-
category such that the conditions of the exodromy correspondence are satis�ed on both of
them. Depending on which situation we work with, the hypercompleteness assumptions
in the following discussion may be dropped.

Proposition 6.3.6 ([PT22, 5.20]). The full subcategory Shhyp,cbl(X;V) on constructible
hypersheaves in Shhyp(X;V) is closed under limits and colimits. Using the Adjoint
Functor Theorem, we obtain an adjoint triple:

Shhyp,cbl(X;V) Shhyp(X;V)

Rcbl

Lcbl

Proof. By the exodromy correspondence and our conditions on V, both categories are
presentable, so the Adjoint Functor Theorem can indeed be applied. Constructible
hypersheaves are closed under colimits since locally constant sheaves are by 5.3.9, and
the pullback functors to the strata preserve colimits. The case of limits follows from the
construction of the exodromy correspondence: By the given reference, there is a fully
faithful functor Ψhyp

X,P : Fun(SingP (X),V)→ Shhyp(X;V) that admits a right adjoint and
restricts to the exodromy correspondence.

Proposition 6.3.7 ([PT22, 6.13]). Let f : (X → P )→ (Y → P ) be a map of strati�ed
spaces. This induces an adjoint triple

Shhyp,cbl(X;V) Shhyp(X;V)

fcbl
+

fcbl
∗

f∗
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Proof. As in the case of locally constant hypersheaves, all we have to show is that
precomposing the exodromy correspondence with f agrees with the pullback by f on
sheaves. This is di�cult and we can not develop the necessary background, see 6.7 and
6.8 in loc. cit.

Example 6.3.8. As in the locally constant case, for x ∈ X a point and t : X → ∗ the
terminal map, we obtain functors

V Shhyp,cbl(X;V) V

xlc
+

xlc
∗

x∗

C∗

C∗

(−)

including variations of singular (co)homology replacing local systems by constructible
sheaves. In fact, it agrees with sheaf cohomology by [Vol22, 3.16].

6.4 Verdier Duality for Constructible Sheaves

The goal of this section is to show that Verdier duality restricts to the full subcategory
of constructible (hyper)sheaves in good cases. Assume throughout this section that
(X → P ) is a topologically strati�ed space.

Proposition 6.4.1 ([Vol22, 4.1]). If (X → P ) is a topologically strati�ed space, then
ωX is constructible.

Proposition 6.4.2. Let x ∈ X and F ∈ Sh(X;R) a sheaf, and assume that there exists
a basic neighborhood Ri × C(L) around x such that the exit-path category SingP (L) is
a �nite ∞-category (i.e. Joyal-equivalent to a simplicial set consisting of �nitely many
non-degenerate simplices). Then, the stalk x∗F is �nitely presented (or perfect) i� the
costalk x!F is.

Remark. This condition is satis�ed at all points for topological manifolds with corners,
(locally �nite) regular CW complexes, and for conically smooth strati�ed spaces by
[Vol22, 2.13]; we will refer to such spaces as having exit-�nite links. In particular, it is
true for Whitney strati�ed spaces and complex varieties.

Proof. This argument is due to the proof of [Vol22, 4.2]. Let U = X − {x} which is
open since X is Hausdor�, and j : U ↪→ X, then we obtain a �ber sequence x∗x

∗F →
F → j∗j

∗F by 3.2.7, and applying the exact (since right adjoint) global sections functor
Γ yields another �ber sequence

x!F = Γ(X, x∗x
!F ) −→ Γ(X,F ) −→ Γ(U, j∗F ) (6.12)
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exhibiting x! ∼= fib(F (X)→ F (U)) as the relative cohomology of F at x.

Now, use the fact that X is topologically strati�ed to choose a basic B = Ri × C(L)
around x. Since X = U ∪B−{x} B and by the sheaf condition, the diagram

F (X) F (U)

F (B) F (B − {x})

is a pullback square, so the above �ber is isomorphic to x! ∼= fib(F (B)→ F (B − {x})).
But just as in the case of manifolds, x∗F ∼= Γ(B) as indicated in [Vol22, 3.5], so all
we have to show is that F (B − {x}) is �nitely presented as it measures the di�erence
between �ber and co�ber. Use the fact from 6.3.8 that global sections of a constructible
sheaf can be calculated as a limit over its exodromy representation, then it su�ces to
show that SingP (X) is �nite (replacing by a Joyal-equivalent simplicial set does not
change the limit). By the Seifert-van-Kampen theorem for exit-path categories [Lur17,
A.7.1], the diagram

SingP ((Rn − {0})× R>0 × L) SingP (Rn × R>0 × L)

SingP ((Rn − {0})× C(L)) SingP (B − {x})

is a pushout square, so it su�ces to show the other involved exit-path categories are
�nite. But the exit-path category is compatible with cones and products, and SingP (L)
is �nite by assumption.

Theorem 6.4.3 (Verdier duality for constructible sheaves, [Vol22, 4.2]). If X is a topo-
logically strati�ed space with exit-�nite links, then the Verdier-duality functor D restricts
to an equivalence

D : Shcbl
fp(X;R)op ≃ Shcbl

fp(X;R) (6.13)

on constructible sheaves with �nitely presented stalks (and costalks, by the last propo-
sition). We could also have chosen perfect stalks; in fact the argument even works in an
arbitrary closed symmetric monoidal stable bicomplete ∞-category as indicated in the
reference.

Proof Sketch. First, we show that F 7→ Fc restricts to constructible (co)sheaves. If F is
locally constant, then by passing to an open cover, we may assume it is actually constant
so F = t∗M for some M ∈ LModR and t : X → ∗ the terminal morphism. But then
Fc = (−)c ◦ t∗Mc = t!M ∼= t∗M ⊗ t!R = M ⊗ ωX , using [Vol21, 6.16], is constructible
as ωX is. The general case for F locally constant follows by passing to basics, we leave
it to the reference. By the last proposition, the stalk x∗Fc = (−)c ◦ x∗Fc = x!F of Fc
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is �nitely presented i� the stalk of F is, so (−)c in fact induces an equivalence between
Shcbl

fp(X;R) and coShcbl
fp(X;R).

Since Verdier duality is given by the composition (−)c ◦ DR, it su�ces to show that
DR induces a similar equivalence between sheaves and cosheaves. But on exodromy
representations, DR acts by postcomposition since x∗(DRF ) = DRx

∗F on stalks. Since
DR itself is an equivalence on perfect, in particular �nitely presented modules, we are
�nished.

De�nition 6.4.4. Again, we de�ne a category Sh⊥cbl(X;R) of constructibly balanced
sheaves as the left orthogonal to the full subcategory Shcbl(X;R) ⊆ Sh (X;R). Equiva-
lently, it is the kernel of Lcbl. We also de�ne

Sh⊥cblfp (X;R) := Sh⊥cbl(X;R) ∩ Shfp(X;R) (6.14)

as the subcategory on those sheaves with �nitely presented stalks.

Theorem 6.4.5. Let (X → P ) be a topologically strati�ed space, then the inclusion of
the full subcategory of constructibly balanced sheaves and the left adjoint L from 6.3.6
form a right split Verdier sequence

Sh⊥cbl(X;R) ↪→ Sh(X;R)
Lcbl→ Shcbl(X;R) , (6.15)

adjoint to the split Verdier sequence

Shcbl(X;R) ↪→ Sh(X;R)→ Sh⊥cbl(X;R) . (6.16)

Proof. As always, this follows from 3.2.12 since we know about the involved adjoints.

De�nition 6.4.6. De�ne the stable ∞-category of �nitely presented constructible
sheaves as the Verdier quotient

Shcbl(X;R)(fp) := Shfp(X;R)⧸Sh⊥cblfp (X;R) . (6.17)

As usual, this is the full subcategory of Shcbl(X;R) spanned by sheaves of the form LcblF
for F ∈ Shfp(X;R).

Theorem 6.4.7. Let (X → P ) be a topologically strati�ed space, then there is a
Poincaré-Verdier sequence

(Sh⊥cblfp (X;R), ϘqD) ↪→ (Shfp(X;R), ϘqD)→ (Shcbl(X;R)(fp), ϘqD) . (6.18)

and similarly for symmetric L-theory, where all quadratic functors are restricted from
Verdier-duality on Sh(X;R).
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Proof. As in the previous sections, we only need to show that the left subcategory is
closed under duality. This however follows from the proof of 6.4.3.

Corollary 6.4.8. The split Poincaré-Verdier sequence above induces a �ber sequence
of spectra

Lq(Sh⊥cblfp (X;R),D)→ Lq(Shfp(X;R),D)→ Lq(Shcbl(X;R)(fp),D) (6.19)

and similarly for symmetric L-theory. We obtain a long exact sequence of L-groups:

. . . Lq
1(Sh

⊥cbl
fp (X;R),D) Lq

1(Shfp(X;R),D) Lq
1(Sh

cbl(X;R)(fp),D)

Lq
0(Sh

⊥cbl
fp (X;R),D) Lq

0(Shfp(X;R),D) Lq
0(Sh

cbl(X;R)(fp),D)

Lq
−1(Sh

⊥cbl
fp (X;R),D) Lq

−1(Shfp(X;R),D) Lq
−1(Sh

cbl(X;R)(fp),D) . . .

Proof. Combine 6.4.7 with 3.3.9.

6.5 L-Groups of Constructible Sheaves

Lemma 6.5.1. For (f : X → P ) a �ltered space, and (P−, P+) a slicing of P , the inverse
images X− := f−1(P−) and X+ := f−1(P+) are a decomposition of X into a closed and
an open subset.

Proof. By de�nition of a slicing, P− is downward and P+ upward closed and P−∪P+ = P .
Thus, X− ∪X+ = f−1(P− ∪ P+) = X and by de�nition of the Alexandrow topology on
P , the subset P− is closed and P+ is open, so their inverses under a continuous function
are so as well.

Theorem 6.5.2. Let (X → P ) be a topologically strati�ed space, and (P−, P+) a slicing
of P with inverse images X−, X+ ⊆ X. Then, there is a square diagram

Sh⊥cbl(X−;R) Sh(X−;R) Shcbl(X−;R)

Sh⊥cbl(X;R) Sh(X;R) Shcbl(X;R)

Sh⊥cbl(X+;R) Sh(X+;R) Shcbl(X+;R)
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where all rows are right split and columns are split Verdier sequences. In fact, this holds
for any V satisfying the conditions of 3.1.5.

Proof. The middle column is a split Verdier sequence since LModR is presentable stable,
see 3.1.5. Also, by 6.4.5, the rows are split Verdier sequences. Hence, we are �nished if
we can show that the right column is split Verdier, applying the 9-lemma 3.3.8. The fac-
torization condition we need for this Lemma follows as in 4.6.5 by pulling a constructibly
balanced sheaf back to X−, since this preserves the property of being constructibly bal-
anced as pushforward along a closed immersion preserves constructibility as we now
show.

Write i : X− ↪→ X and j : X+ ↪→ X for the respective inclusions; we need to show
that i∗, i

∗, i∗, j∗ preserve constructible sheaves, since their restrictions are in this case
still pairwise adjoint, and respectively fully faithful or jointly conservative and left exact
(since the full subcategory of constructible sheaves is closed under limits). For the
pullback functors i∗ and j∗ this is clear: With F ∈ Shcbl(X;V) and ip : Xp ↪→ X
the inclusions of strata, the restrictions F |Xp = i∗pF are all locally constant. But then,
(i∗F )|Xp = (ip|X−)∗i∗F = i∗pF for p ∈ P− are locally constant so that i∗F is constructible,
and similarly for j∗F .

Now, let G+ ∈ Shcbl(X+;V), G− ∈ Shcbl(X−;V) and p ∈ P ; we need to show that i∗pj∗G+

and i∗+i∗G− are locally constant for each p ∈ P .

� If p ∈ P+, the inclusion ip = j◦ip|X+ factors through j, so using j∗i∗ = 0 on sheaves
we see that i∗pi∗G− is the constant zero sheaf. Also, i∗pG+ = ip|∗j∗j∗G+ = ip|∗G+

is locally constant by de�nition of G+, using j∗j∗ ∼= Id.

� If p ∈ P−, factoring ip = i◦ ip|X− , the case of G− follows analogously to the case of
G+ above. It remains to show that ip|∗i∗j∗G+ is locally constant, which is tricky
without further preparations.

See [PT22, 6.35, 6.37] for a full and abstract proof.

Remark. As follows from the reference given at the end of the proof, this result holds more
generally if X is locally weakly contractible, working with constructible hypersheaves
instead.

Corollary 6.5.3. The family of decompositions (Shhyp(X−;V), Sh
hyp(X+;V)) of

Shhyp(X;V) for (P−, P+) any slicing of P form a (stable) P -slicing, which for �nite
P is equivalent to other decomposition data of this stable ∞-category over P by 3.5.8.
Similarly for Sh⊥hyp,cbl(X;V) and Shhyp,cbl(X;V). For V compactly generated, one can
get a stronger statement in the case of in�nite P using 3.5.9.

Theorem 6.5.4. Let (X → P ) be a topologically strati�ed space and (P−, P+) a slicing
of P with inverse images X−, X+ ⊆ X. Then, one obtains a square diagram
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Sh⊥cblfp (X−;R) Shfp(X−;R) Shcbl(X−;R)(fp)

Sh⊥cblfp (X;R) Shfp(X;R) Shcbl(X;R)(fp)

Sh⊥cblfp (X+;R) Shfp(X+;R) Shcbl(X+;R)(fp)

where all rows and columns are Poincaré-Verdier sequences with respect to Verdier
duality restricted from Sh(X;R).

Proof. All rows are Poincaré-Verdier sequences by 6.4.7, so using the 9-Lemma 3.3.8 it
su�ces to show that the �rst two columns are Poincaré-Verdier, since the factorization
condition can be veri�ed by restricting a sheaf toX− as in 4.6.5. For the middle sequence,
this is the statement of 5.2.18. The left sequence fully faithfully embeds into it and the
left sequence of 6.5.2, in fact it is their intersection, and its quadratic functor is restricted
from both. Unwinding the de�nitions, as in 4.6.6 this shows our claim.

Corollary 6.5.5. The pairs (Shcbl(X−;R)fp, Shcbl(X+;R)fp) associated to any slicing
(P−, P+) of P form a Poincaré P -slicing of Shcbl(X;R)(fp). Similarly, we obtain Poincaré
P -slicings for Sh⊥cblfp (X;R) and Shfp(X;R). In particular, on L-spectra

Lq(Shcbl(X;R)(fp);D) = fib
(
Lq(Shcbl(X+;R)(fp);D) −→ Lq(Shcbl(X−;R)(fp);D)[1]

)
(6.20)

where the map is following 3.3.10 constructed by pushing a Verdier self-dual sheaf F
forward from X+ to X, and forming the co�ber cofib(F → DF ) which by assumption
vanishes on X+, yielding a Verdier self-dual sheaf on X− with a di�erent shift.

Let us apply this to a few examples.

Example 6.5.6. For M a topological manifold equipped with the trivial strati�cation,

Sh lc(M ;R)(fp) ≃ Shcbl(M ;R)(fp) (6.21)

as there is only a single stratum (note that the �niteness conditions are de�ned in the
same way). In particular, the L-groups with respect to Verdier duality agree as well,
which means that if M is connected,

Lq(Shcbl(M ;R)(fp),D) ≃ Lq(π0R[π1M ]) (6.22)

as discussed in 5.4.9. Similarly for manifolds with several connected components.
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Generally, the L-groups of constructible sheaves also depend on the L-groups of the
fundamental groups of the strata, but they can be glued together in a non-trivial way
since the above Poincaré-Verdier sequences need not be orthogonal.

Example 6.5.7. Let M → [1] be a topological manifold with boundary equipped with
its canonical strati�cation, and let the interior M̊ and the boundary ∂M be connected.
Then, there is a Poincaré-Verdier sequence

Sh lc(∂M ;R)(fp) → Shcbl(M ;R)(fp) → Sh lc(M̊ ;R)(fp) (6.23)

inducing a �ber sequence of L-spectra

Lq(π0R[π1∂M ])→ Lq(Shcbl(M ;R)(fp);D)→ Lq(π0R[π1M̊ ]) . (6.24)

Using π1(M) ≃ π1(M̊) we can calculate the L-group of constructible sheaves as the �ber

Lq(Shcbl(M ;R)(fp);D) = fib (Lq(π0R[π1M ]) −→ Lq(π0R[π1∂M ])[1]) (6.25)

of the map described in 3.3.10: After we have lifted a locally constant sheaf from the
interior to all ofM , which is automatic in above formula because the fundamental groups
agree, we take the co�ber of the canonical map into its Verdier dual, which leaves us with
a sheaf that is pushed forward from the boundary, where it is locally constant. We do not
know how this construction is related to the push-pull i∗j∗ that, as discussed in [Ban07,
8.2], also sends self-dual sheaves to self-dual sheaves up to a shift � we doubt they are
the same, since informally speaking we are thinking about Verdier-duality (related to
the tensor hermitian structure), while the bordism theory of self-dual sheaves is about
Poincaré-Lefschetz type dualities (related to the cotensor hermitian structure). Again,
a generalization to multiple connected components of interior or boundary is evident.

Example 6.5.8. A similar calculation can be carried out for �nite simplicial complexes
and �nite regular CW complexes � alternatively, one can also use the results from Section
4.6 that can be adapted without change the CW case using our knowledge about the exit-
path category from 6.2.12. Explicitly, can build a �nite simplicial complex K by starting
with its 0-simplices, and iteratively gluing higher simplices to it that are maximal in the
strati�cation of the simplicial complex we have built up to that point. At every step, we
apply the �ber sequence of L-groups 6.5.5 to the slicing where the added simplex makes
up the open part. While we do not know enough about the boundary map we glue along
to give a general result, this procedure can in principle be used to �nd Lq(Shcbl(K;R)(fp))
starting from Lq(R).

Remark. While we were not able to show it, we suspect that for a topologically strati�ed
space without strata of odd codimension (for example a complex variety), the �ber
sequence of spectra in 6.5.5 splits, exhibiting

Lq(Shcbl(X;R)(fp)) ∼=
⊕
p∈P

⊕
ν∈Vp

Lq(π0R[π1Xp,ν ]) (6.26)
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where Vp parametrizes the connected components Xp,ν of Xp. In other words, the total
L-group of constructible sheaves splits into the L-groups of locally constant sheaves on
the individual strata, glued together in a trivial way. Compare the discussion in [SW20].

6.6 Conclusion

Let us compare our results in the topological case to the large diagram we had obtained
for a compact PL space, or a simplicial complex, in 4.5:

Lq
(
Sh⊥cblfp (X;R)

)
Lq
(
Shcomb

fp (X;R)
)

Lq
(
Shcbl(X;R)(fp)

)
Lq
(
Sh⊥lcfp (X;R)

)
Lq
(
Shcomb

fp (X;R)
)

Lq
(
Sh lc(X;R)(fp)

)
Σ∞X+ ∧ Lq(π0R) Lq(π0R[π1X])

A

∼= ∼=

A

On a topological manifold, we had in 5.5.2 derived the sequence of L-groups:

Lq(Sh⊥lcfp (X;R))→ Lq(Shfp(X;R))→ Lq(Sh lc(X;R)(fp)) (6.27)

In 6.4.5, we obtained the following �ber sequence of L-groups on a topologically strati�ed
space:

Lq(Sh⊥cblfp (X;R)) ↪→ Lq(Shfp(X;R))→ Lq(Shcbl(X;R)(fp)) (6.28)

We can not join the �rst two sequences together like this, since Verdier duality on a
topologically strati�ed space will generally not preserve the class of locally constant
sheaves. In fact, this only works in the latter case because of the somewhat naive way
we have incorporated Verdier duality in the combinatorial setting without using the
dualizing sheaf.

In the topological case, Lq(Sh lc(X;R)(fp)) was still identi�ed with the L-groups of the
group ring Lq(π0R[π1X]). However, we suspect that Lq(Shfp(X;R)) does not satisfy
excision, since the∞-category of all sheaves is too big and acted on by arbitrary homeo-
morphisms of X, which is also a fairly big group. In particular, the map between them,
while inducing an equivalence on the point, is probably not an assembly map; but for
trivial reasons the assembly map for the L-groups of the group ring factors over this
map.

Our decomposition results for L-groups bear great similarity to the decomposition of
Browder-Quinn L-groups in [Wei94, p. 129] for the PL case and loc. cit. p. 134 for the
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topological case (compare [AP17, Section 7.1] for a more extensive discussion). For X0

the minimal stratum in a Whitney-strati�ed space X, there is a �ber sequence

LBQ(X −X0 rel ∂)→ LBQ(X)→ L(Z[π1X0]) (6.29)

that allows us to inductively calculated the Browder-Quinn L-spectrum of X from the
strata and the relative groups on the right where X0 is removed, assuming that we
understand the boundary map which is given by a form of transfer to a collar of X0.
This sounds somewhat similar to our �ber sequence

Lq(Shcbl(X−;R)(fp);D)→ Lq(Shcbl(X;R)(fp);D)→ Lq(Shcbl(X+;R)(fp);D) (6.30)

and description of the involved map in 6.5.5. Note however that the open and closed
stratum have changed sides, which is very peculiar. Of course, both groups agree on
topological manifolds as they specialize to Lq(π0R[π1X]) in that case.
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