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Abstract

In surgery theory, the obstruction to finding a manifold that is h-cobordant to a given
Poincaré complex is an element of the quadratic L-group of locally constant sheaves
L4(Z[m1 X]), specifying when global Poincaré duality on this complex can be lifted to a
local duality. In the search for a similar statement for stratified spaces, a logical pro-
gression would be to look for the obstruction in an L-group of constructible sheaves.
Motivated by this thought, the goal of this thesis is to define L-groups of several vari-
ations of sheaves, built from Verdier self-dual sheaves in the respective class modulo
algebraic bordism, and develop fiber sequences involving the corresponding L-spectra
that allow for their computation. This is carried out in the piecewise linear and topolog-
ical setting, on simplicial complexes and regular CW complexes. The results we obtain
exhibit a surprising similarity to statements about Browder-Quinn L-groups that arise
in stratified surgery theory.

Zusammenfassung

In der Chirurgietheorie ist die Obstruktion dazu, eine Mannigfaltigkeit zu finden die
h-kobordant zu einem gegebenen Poincaré-Komplex ist, ein Element der quadratischen
L-Gruppe von lokal konstanten Garben L% (Z[mr; X]); informell gesagt misst dieses wann
wir die globale Poincaré-Dualitit auf dem Komplex zu einer lokalen Dualitdt hochheben
konnen. Wenn wir {iber Verallgemeinerungen dieser Aussage auf stratifizierte Raume
nachdenken, scheint es naheliegend, diese Obstruktion in einer L-Gruppe von konstru-
ierbaren Garben zu suchen. Davon motiviert ist das Ziel dieser Arbeit die Definition von
L-Gruppen diverser Klassen von Garben, bestehend aus Aquivalenzklassen von Verdier
selbst-dualen Garben modulo algebraischen Bordismen, und das Entwickeln von Faserse-
quenzen der entsprechenden L-Spektra welche zur Berechnung dieser Gruppen herange-
zogen werden kénnen. Wir vollziehen dies sowohl im topologischen als auch im PL-
Kontext, weiter betrachten wir Simplizialkomplexe und regulire CW-Komplexe. Unsere
Resultate weisen iiberraschende Parallelen zu dhnlichen Aussagen {iber die klassischen
Browder-Quinn L-Gruppen auf, welche in der stratifizierten Chirurgie-Theorie eine Rolle
spielen.
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Introduction

A fundamental invariant of a finite-dimensional vector space is its dimension. It is
extended to perfect complexes of vector spaces by the Euler characteristic, which takes
values in the integers and is invariant under quasi-isomorphisms. For R-modules over
a commutative ring R, this is further refined by the Grothendieck group, as well as
higher K-groups, of the perfect derived category DP!(R): There is a canonical map
Ko(D(R)) — Z sending the class [P] of a perfect complex P to its Euler characteristic,
however generally the Ky-group will contain more information than this.

Just as algebraic K-theory generalizes the dimension of a vector space, the goal of al-
gebraic L-theory (also called hermitian K-theory) is to generalize the signature of a
quadratic form on a finite-dimensional vector space. This is done by first defining
quadratic forms on chain complexes, and then dividing the space of chain complexes
equipped with a quadratic form that exhibits them as self-dual by the relation of alge-
braic bordism.

Their main application lies in surgery theory, as was clarified in [WR99]. Given a
compact oriented topological n-manifold M, Poincaré duality says that the integration
pairing on C*(M;Z) is non-degenerate, exhibiting C*(M,Z) ~ Hom(C*(M,Z),Z)[—n]
as self-dual up to a shift so we obtain a class in L.5(Z). If n = 4k this recovers the
signature of M, but for n = 4k + 1 we obtain the new deRham invariant.

Conceptually, Poincaré duality follows from the fact that the constant sheaf Z on M
is Verdier self-dual up to a shift by n, as wx = DZ = Z[—n|. Tt therefore defines an
element of the visible symmetric L-group L2*(M,Z) of Verdier self-dual locally constant
sheaves on M, called the visual symmetric signature generalizing the ordinary signature
if M is not simply connected. Stemming from this observation, the visual quadratic
L-group L%(Z[m M]) appears in the surgery exact sequence, containing the obstruction
to finding a manifold homotopy equivalent/ h-cobordant to a given Poincaré complex
X, as it controls when the global Poincaré duality on X lifts to a local duality, i.e. can
be expressed using Verdier duality as just sketched.

If we however generalize from a topological manifold to a topological pseudomanifold
X, which is in particular equipped with a stratification, the sheaf Z will generally not
be Verdier self-dual anymore. Given that suitable conditions are satisfied, namely we
are working with a so-called Intersection Poincaré space, there exists a formidable re-
placement: The intersection homology sheaf IC™(X;Z) of middle perversity m. This
is however not a locally constant, but a constructible sheaf, meaning that it is locally



constant on strata of X. From this observation, we are lead to the guess that L-groups
of constructible sheaves on X might contain the appropriate surgery obstruction in this
case, or are at least related to it.

The main goal of this thesis is to define symmetric and quadratic versions of such groups,
and understand some of their proporties allowing a partial justification of the above
guess, as well as their calculation in some examples. We will not only do this for topo-
logically stratified spaces, but also in the piecewise linear case, for simplicial complexes
and (regular) CW complexes. Our main technical tool is the theory of oo-categories
and homotopy-coherent algebra, since this allows us to divert many complications from
our specific application into this well-developed apparatus. In particular, many results
from classical sheaf theory extend to greater generality in this context. Algebraic L-
theory in the setting of stable co-categories with quadratic functors (to be more specific,
Poincaré oo-categories) was first introduced in Lurie’s Lecture notes [Lurll], and further
developed in the series of papers [CDH™20al, [CDHT20b|, [CDH™21| by nine different
authors.

Apart from these works, our approach was motivated by fiber sequences for Browder-
Quinn L-spectra as discussed in [Bro7h|, [AP17], [Wei94] that seemed similar to the
sequences we derive in Corollary During the creation of this work, we learned
about the similar idea of building Witt groups of (constructible) Verdier self-dual sheaves
modulo algebraic bordism in [Woo08| and [SW20] in the classical setting, and our results
can be regarded as a generalization and further refinement, even though the techniques
we use to obtain them are different. In fact, the possibility of an extension of these
results using the hermitian K-theory of stable oco-categories was already a remark in
[Vol22, Remark 4.9], which we carry out in this work.

In Chapter [I} we lay the technical groundwork in Higher Category Theory and Higher
Algebra, in particular we introduce co-categories, oo-sheaves, stable co-categories and
spectra, (symmetric) monoidal co-categories, algebra and module objects, and brave new
algebra over ring spectra. Our goal is to make this text as self-contained as possible, the
reader is only assumed to have a good knowledge of algebraic topology and (ordinary)
category theory (including Kan extensions and model categories).

Equipped with these fundamentals, we introduce the algebraic L-theory of Poincaré oo-
categories in Chapter [2| as far as it is needed for the subsequent chapters. Also, we
discuss the special cases of derived oo-categories of ordinary rings, and perfect modules
over ring spectra.

Chapter |3| finishes the theoretical background by defining several ways to decompose
stable oo-categories and Poincaré oo-categories. This will later form the categorical
counterpart of decomposing a space into strata.

We begin with the actual applications in[4] constructing Poincaré co-categories of sheaves
on simplicial complexes and piecewise linear spaces. This has the technical advantage
of being fairly combinatorial, and the results are better behaved than in the topological
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world. We generalize Lurie’s work by allowing for a stratification on our spaces, and show
how the L-spectra of constructible sheaves can be iteratively decomposed into strata.

Things become more complicated in the topological case, so we first discuss the case
without a stratification in 5] This involves defining Verdier duality and the six-functor
formalism for oo-sheaves, and a study of locally constant sheaves and their monodromy
representations.

Finally, Chapter [l extends our results on stratified PL spaces to the topological setting; it
requires the introduction of a good deal of stratified homotopy theory and the exodromy
correspondence. We finish with a conclusion comparing the different settings.

What is new?

A large part of this text consists of introductions to the overwhelming amount of back-
ground material we need as well as to other expositions, so new developments are mostly

relegated to the later sections [3.4] and [6.6] which in turn

mostly consist of new results, unless otherwise specified. Apart from these chapters, we
also want to highlight

e A version of the classical 9-Lemma for (split) (Poincaré-)Verdier sequences

e A biduality statement for Verdier duality on hypersheaves with perfect stalks and
costalks

Finally, many of the other proofs we give are optimized to our setting, worked out
side-remarks from Lurie’s notes, or classical proofs that we adapted the oco-setting.

Notation and Conventions

e We denote the natural numbers including zero by Ny, and excluding zero by N*
to avoid confusion.

e A topological space is locally compact if any open neighborhood of any point con-
tains a compact neighborhood, i.e. we are using the strong version of this notion.

e CW complexes are always locally finite.

e Unless stated otherwise, we use cohomological grading for chain complexes. The
grading increases from left to right, and the shift acts as C[1]_; = Cj.

e We work with Grothendieck pretopologies instead of Grothendieck topologies.

e In an adjunction, the upper arrow is always the left adjoint.

1l



We denote Verdier duals of functors by a shriek !, exceptional right adjoints by a
minus and exceptional left adjoints by a plus. This distinction from the classical
notation using a ! for all of them is necessary since we will have to work with
Verdier duals of exceptional adjoints like f,,, and even further adjoints that we
denote in the following sequence:

oA fy A A A AL A A A AL

Most of the time, we ignore size issues for ordinary and co-categories; for the situa-
tions where they are important we fix a small, a large and a very large Grothendieck
universe.

The term "oo-categories" always refers to (0o, 1)-categories; and "ordinary cate-
gories" refers to 1-categories. We generally do not equip categorical constructions
with an oo-symbol in front of them, since we almost exclusively work in the oo-
setting and want to avoid cluttered notation. The reader is safe to assume we are
referring to these higher notions, unless explicitly stated otherwise.

Our model of choice for co-categories are quasi-categories, as developed in [Lur(9a).
In particular, higher categories are always weak, not strict.

An oo-category is called (co)complete if it admits small (co)limits, and bicomplete
if it admits both. We often suppress the "small" in this statement, but it is always
implicitly assumed.

A functor is left exact if it preserves finite limits, and right exact if it preserves
finite colimits. Similarly, precomposing with left cofinal maps leaves limits and
precomposing with right cofinal maps leaves colimits invariant.

We use the word "essential" if a specific property should be completed to a non-evil
notion, for example the essential image of a functor F' : € — D are those D € D
that are isomorphic to an object in the image. In 3] we often keep this implicit to
not clutter notion, see the remarks there.

By a non-full subcategory of an co-category, we always mean a subcategory that
is spanned by a subset of objects and morphisms, but still contains all of the n-
morphisms between those for n > 2. We never leave out those higher morphisms.

We usually denote (symmetric) monoidal co-categories as a pair (V,®) of an oo-
category and a product operation, even though more data are actually involved:
The associated functor Fin, — Cat., is usually denoted by v, and the classifying
coCartesian fibration by V® — Fin,.

v
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1 Higher Category Theory

In this chapter, we develop the background on oo-categories that is needed for our
further discussion; in particular stable co-categories, spectra (equipped with homotopy
coherent algebraic structure) and higher sheaf theory. We mostly follow [Lurl8al and
[Lurl7], while describing the structures of interest in a way that keeps technicalities and
amount of background material as low as possible.

1.1 oo-categories

We assume the reader is familiar with basic category theory (e.g. limits, adjunctions,
slice categories), enriched categories and Kan extensions. Let us still, for comparison,
repeat the definition of an ordinary category:

Definition 1.1.1. A (small) category € consist of

A set of objects,

For any two objects X,Y € € a set Home(X,Y") of morphisms between X and Y,

For all X,Y,Z € C an associative composition map

o: Home(Y, Z) x Home(X,Y) — Home(X, Z) (1.1)

For any X € € an identity morphism idxy € Home(X, X) that does not change
morphisms under composition.

Remark. Being small refers to the fact that objects and morphisms are sets (in a fixed
universe), we will also encounter many cases where this is not the case. Still, let us avoid
set-theoretic problems unless they are actually important.

Definition 1.1.2. A category if called a groupoid if every morphism f : C' — D in it is
invertible, i.e. there exists a g : D — C such that fog=1idp and go f =idc.

Example 1.1.3. e Examples of categories can be found all over mathematics, e.g.
the category Set of sets and maps between them, the category Top of topological
spaces and continuous maps, the category Ab of abelian groups and homomor-
phisms or the category Cat of categories and functors.



e There are also important examples of groupoids: For each group G, we can con-
struct a groupoid BG with one object x and Hompg (%, %) = G, where composition
is given by the group operation and inverses exist because GG has inverses.

e For X a topological space, we may also introduce the fundamental groupoid m<; X
with objects the points of X, and morphisms the homotopy classes of paths between
the respective points. Composition is given by concatenation of paths, and inverses
exist since paths can be followed in the inverse direction.

Some of these examples seem to possess further information that we were not able to
capture:

e Given two functors F,G : € — D, the category Cat allows for a space of nat-
ural transformations Nat(F,G). In other words, there are morphisms between
morphisms, and these can also be composed.

e It is a bit strange that m<; X contains a large amount of objects, uncountably many
for almost all manifolds; but the morphisms only consist of homotopy classes of
paths, instead of actual paths. Why is that? Note that concatenation of paths is,
in itself, not associative, but only so up to a reparametrization (i.e. a homotopy).
If we want to retain information about individual paths, we therefore need to add
information about homotopies into the mix.

Both of these problems can be resolved by 2-categories, also called bicategories. They
should consist of a set of objects, together with a set of morphisms between any two
objects and a set of 2-morphisms between any two morphisms that have a common
source and target. Also, they feature composition operations for morphisms and 2-
morphisms, as well as associativity constraints and identity (2-)morphisms. Composi-
tion of 1-morphisms should only be associative up to an invertible 2-morphisms (the
associator), and identity 1-morphisms should only act as identities up to invertible 2-
morphisms as well; we see this in the second example since concatenation of paths is
not strictly associative. We therefore always speak about weak 2-categories, instead of
strict 2-categories where associativity and identity conditions hold on the nose. Finally,
the invertible 2-morphisms in the above definition should be considered as extra data
in a 2-category, and they must themselves satisfy higher coherence relations, like the
pentagon identity (see [Lurl8al Tag 007Q)| for a precise definition).

e The (strict) 2-category Cat consists of (small) categories as objects, functors as
1-morphisms and natural transformations as 2-morphisms.

e The (weak) 2-category m<2X of a topological space X consists of points of X
as objects, paths in X as morphisms, and homotopy classes of homotopies as 2-
morphisms (we need to think about homotopy classes again to satisfy the strict
associativity for 2-morphisms). This is even a 2-groupoid, since morphisms and
2-morphisms are invertible.


https://kerodon.net/tag/007Q

But now, the second example suffers from a similar issue concerning homotopy classes as
before. This points us toward a straightforward idea: Why do we not define 3-categories,
4-categories etc., as well as fundamental n-groupoids m<3X, m<4 X, ... consisting of ob-
jects, morphisms, 2-morphisms, 3-morphisms and so on? The reasons why this is not a
priori a good idea:

e We need to add composition operations for each type of morphism, that can inter-
act with each other (horizontal composition, whiskering) and satisfy associativity
and identity constraints up to higher isomorphisms — that also need to be part of
our data! Also, these higher isomorphisms must satisfy their own coherence rela-
tions up to even higher isomorphisms, which are subject to even higher coherence
relations and so on. Even the definition of a (weak) 3-category is so complicated
that it is extremely hard to work with — of course, things are a lot simpler for strict
n-categories.

e Even if we could define an n-category (even n-groupoid) n<, X for each n € N,
this still would not resolve our problem since the n-morphisms are still given by
homotopy classes of maps.

Surprisingly, it is possible to resolve both issues at once by figuratively going two steps
forward and one step back: Things surprisingly become a lot simpler when we do not
look at n-categories, but at n-groupoids, where m-morphisms for all 1 < m < n are
invertible. Letting n go towards oo, there should be for each topological space X an oo-
groupoid m<., X that knows about points, paths, homotopies, homotopies of homotopies
etc. in X. Since homotopies from the constant path to itself are just embedding of
5% into X, and similarly for the other levels, this means that 7m<.,X knows about all
homotopy groups and hence, at least if X is a CW complex (by Whitehead), the full
homotopy type of X. Thus, oco-groupoids, which contain n-groupoids as special cases,
are intimately related to (CW) topology and homotopy theory — but their definition
should still be "algebraic", which can be achieved by working with simplicial complexes
as models. A bit of ordinary category theory is necessary to understand it:

Definition 1.1.4. We define the presheaf category of a given small category € as
PSh(€) := Fun(C%, Set), note that it is never small unless € = (). There is always
a fully faithful, limit-preserving functor h : € — PSh(C), the Yoneda embedding, which
sends C' — Home(—, C).

Theorem 1.1.5 (coYoneda Lemma). For € a (small) category, any presheaf F' € PSh(C)
may be written as a colimit of representable ones (i.e. those that lie in the image of the
Yoneda embedding):

ceC
VC' e C: F(C') = %olém Home(C', C) = / Home(C',C) x F(C) (1.2)
€C/p



Remark. C/p denotes the generalized slice category (also called comma category)
€ Xpgne) PSh(C),/r, which by the Yoneda lemma agrees with the category of elements
[ F (i.e. the category of pairs (C,a) with C € € and a € F(C')). The latter coend ex-
pression is also called the Ninja Yoneda Lemma |Lorl5], it tells us that the Hom-functor
acts as a delta distribution in the coend. We will not use it further, but it is helpful in
the proof.

Proof. We start by recalling the usual Yoneda Lemma:

F(C") = Nat(Home(—, C"), F) (1.3)

For G € PSh(C) any other presheaf, above colimit is characterized by
Nat(colim H —,C),G)= lim Nat(H —,C),G)= lim G(C 1.4
a(g%elfrpl ome(—, C),G) . at(Home(—, C'), G) i (@) (1.4)

As the last limit is taken in Set, we may describe it as the set of families

(bew € G(C))ceeacr(c) such that for any morphism f : C — C’ in €, we have the
compatibility bpcr) rir@) = G(f)(bc,a). Rewriting this, we see that ne : F(C) = G(C)
sending a — bc, assemble into a natural transformation ' = G. In other words, the
limit agrees with Nat(F,G), as claimed. O

Technical Remark. While this was quite cumbersome, proving the coend expression is
a lot easier (and the colimit expression can ultimately be derived from it, using how
weighted colimits/ Kan extensions can be written as coends). Let S € Set, then:

cee
Homgey (/ Home(C', C) x F(C),S> & / Homg,, (Home(C', C) x F(C),S) =
cee

~ / Homsy, (Home(C", €, Homse (F(C), S)) =
CeC

>~ Nat (Home(C”, —), Homge (F/(—), S)) = Homge (F(C), S)

Corollary 1.1.6. Let C,D be small categories, and let D contain all small colimits.
Then, precomposing with the Yoneda embedding h induces an isomorphism

Fun®™(PSh(@), D) = Fun(€, D) (1.5)

where Fun®™ denotes the colimit-preserving functors and the inverse is given by Yoneda
extension, i.e. Left Kan Extension Lany. In other words, any colimit-preserving functor
on the presheaf-category of C is determined by its action on €, which seems clear since
we have shown that C generates PSh(C) under colimits.

Intuitively, we should think of € as a category of model objects, and of PSh(C) as the
category of objects that can possibly be modeled, or tested, by objects in €. The Yoneda
extension allows us to define a functor on the simple models, and immediately extend
it to this much larger category. After this preparation, let us introduce the most-used
theorem in this chapter, which tells us that the extended functor we obtain always
possesses a right adjoint:



Theorem 1.1.7 (Nerve-Realization Paradigm). Let r : € — D be a functor, € be small,
and D admit all (small) colimits. This functor induces an adjunction

PSh(€) ' Y D

_ \
7

where the Yoneda extension | — | := Lany, r is called the associated realization functor,
and N (D) := Homp(r(—), D) the associated nerve. In fact, any adjunction containing
a presheaf category arises in this way.

Proof. The left Kan extension exists because D has all colimits, we show that | —| - .
For D € D, F € PSh(C), we must construct a natural isomorphism

Homq (Lany, r(F'), D) = Nat(F, Homyp (r(—), D)) . (1.6)

Both sides send colimits in the argument F' to limits, and by the coYoneda lemma above
the presheaf F'is a colimit of representable presheaves. Without loss of generality, we
may therefore assume that F' = Home(—, C) is representable. But then

Homqp(Lany, r(F), D) = Homq (r(C), D) = Nat(Hom(—, C), Homqp(r(—), D)), (1.7)

where we use in the first equality (the universal property of presheaf category and
Yoneda extension), and the Yoneda lemma in the second. ]

Now, let us apply this to construct models for co-groupoids and oco-categories:

Definition 1.1.8. The simplex category /A consists of the nonempty finite totally or-
dered sets [n] = {0 < 1 <2 < --- < n}, for n € Ny, as objects; and order-preserving
maps as morphisms.

Definition 1.1.9. A simplicial set is a functor X : A% — Set. Let us write sSet :=
PSh(A) for their category. We denote X,, := X ([n]), and the Yoneda embedding hi([n]) =
Homna (—, [n]) =: A™

By the coYoneda-Lemma, elements of sSet are colimits of representable presheaves A",
and the presheaf category is in some sense freely generated by such colimits. Morphisms
between the A" are, since the Yoneda embedding is fully faithful, the same thing as
morphisms in A, i.e. order-preserving maps. These can be written as compositions of
face maps that leave out one number, like [1] — [2] via 0 — 0,1 — 2; and degeneracy
maps that double one number, like [2] — [1] via 0 +— 0,1 +— 1,2 — 1. Geometrically, we
should imagine [n] and A™ as n-simplices, i.e. n-dimensional triangles/pyramids with



Figure 1.1: Objects of A regarded as topological simplices
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vertices labeled by the numbers 0 to n, so that these maps can be identified with face
inclusions, and regarding an n-Simplex as a degenerate (n + 1)-simplex (e.g. regarding
a line as a triangle with an angle of 0°).

Due to the fact that presheaves are free gluings of these representables, we expect that
simplicial sets are abstract gluings of simplices along their faces, in other words a slightly
generalized version of simplicial complexes:

Example 1.1.10. e A" for any n > 0 are simplicial sets.

e The boundary A" is the sub-simplicial set of A™ that is obtained when erasing
the interior. For example, A : A% — Set sends each [n] € A to the order-
preserving maps [n] — [1] that are not surjective — there are precisely two of
those, corresponding to OA! = A% IT A%,

e The horn A7, for 0 < i < n, is the sub-simplicial set of A" that is obtained when
erasing both the interior and the face opposite to the vertex 1.

Figure 1.2: Example of a simplicial set

B
4“;%

Example 1.1.11. To gain a better understanding for the nerve-realization paradigm,
let us define the barycentric subdivision sd(K) of a simplicial set K. We start by defining
a functor 1y : A — sSet sending [n] the the nerve of the partially ordered set P~o([n])
consisting of nonempty subsets of [n] ordered by inclusion. If we imagine [n] as an n-
simplex, 75 ([n]) can be imagined as describing its subdivision, as it e.g. contains one
vertex for every non-degenerate simplex of A", which we can imagine as sitting in the
middle of that simplex. Since sSet has all colimits, we obtain an adjunction



sSet sSet
sd ’

where sd acts as above on every simplex in a simplicial set, and glues the result together
in the way the original simplices had been glued together. By definition, n-simplices
in Ex(K) are Ex(K), = Homgge(sd(A™), K), which we may as simplices in K that
are allowed to be folded around corners or edges. One can show that while Ex(K)
is weakly homotopy equivalent (as in to K, it is more flexible because of this
folding, in particular the infinite composition Ex™ is a fibrant replacement functor in
the Joyal-model structure as claimed at the end of this section.

Example 1.1.12. Let us define a functor r4,, : A — Top sending [n] to the topological
n-Simplex |A"| := {(zg,...,7,) € [0,1]"" |2y + -+ + z, = 1}, with the action on
morphisms that we geometrically expect. Since Top has all colimits, we may employ the
nerve-realization paradigm to obtain an adjunction

, Sing
sSet Top

\
= ’

where | —| is called geometric realization and Sing(X) = Homr,,(JA®], X) is the singular
simplicial set of a topological space X.

Definition 1.1.13. A Kan compler is a simplicial set K that satisfies the horn filler
property: Any map of simplicial sets A? — K can be filled, i.e. extended, to a map
A"™ — K such that the following diagram commutes:

A} — K

1
-
273
7

An

Theorem 1.1.14 (Homotopy hypothesis, [Lurl8a, Tag 012Y]). For any topological
space X, the singular simplicial set Sing(.X) is a Kan complex. The adjunction |—| 4 Sing
induces an equivalence of categories between CW-complexes and Kan complexes. In fact,
it even induces a Quillen equivalence between sSet (with the Quillen model structure)
and Top that induces above equivalence on homotopy categories.

Kan complexes are homotopy types!
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This resolves our first problem: Kan complexes should be the same thing as co-groupoids,
if we regard their vertices as objects, edges as morphisms, n-simplices as n-morphisms.
We say that a morphism A in a Kan complex K is a composition of morphisms f, g if
there is a 2-simplex o € K5 such that, identifying o with a map A? — K via the Yoneda
lemma, restriction of this map to the boundary component {0 < 2} agrees with h, while
the restrictions to {0 < 1} and {1 < 2} agree with f and g, respectively. We say that o
witnesses h as a composition g o f.

Such a composition exists for any morphisms f: X — Y and g : Y — Z as can be seen
by filling up A?%; but since this filling is not required to be unique, the composition of
morphisms is not uniquely defined. However, using higher horn fillers, one can show it
is unique up to a contractible space of choices. Composition of higher morphisms, as
well as associativity, are witnessed by higher horn fillers; and identity n-morphisms are
induced by the degeneracy maps. In particular, by filling up the other horns AZ and
A2 where one edge is degenerate, we see that every morphism in a Kan complex has an
inverse.

We have also solved our problem concerning fundamental oo-groupoids if we set
T<oo(X) := Sing(X). Because of the homotopy hypothesis, our wish that this should
know about the entire homotopy type of a CW-complex comes true. But what about
oo-categories?

Example 1.1.15. Let r.,; : A — Cat be the functor that sends the partially ordered
set [n] to the corresponding thin category with objects 0,...,n. Again, we can apply
the nerve-realization paradigm to obtain an adjunction

) N
sSet Cat

\
>

where hX is called the homotopy category of X. The nerve functor N is fully faithful,
so categories are a special case of simplicial sets; but NC is a Kan complex iff € is a
groupoid.

The problem is that if C is not a groupoid, then the horns A2 and A2 will not always
have fillers, since these would require the existence of inverse morphisms (in the case of

degenerate simplices). We therefore must relax the horn filler condition:

Definition 1.1.16. A simplicial set X is called quasi-category if it satisfies the weak
horn filler condition: Any inner horn AL, — X with 0 < i < n can be extended to A™.

A} — K

A?’L



We will interchangeably also use the terms oo-category or (oo, 1)-category for this con-
struction; the difference in terminology is useful to distinguish the explicit simplicial
model we have constructed from the abstract, ontological concept of a higher category
that we tried to motivate in the beginning. In particular, morphisms in an (oo, 1)-
category can be non-invertible, while one can show that all n-vertices in a quasi-category,
for n > 1, are invertible in some sense — this is what the 1 in the name refers to. Clearly,
every Kan complex is a quasi-category; also the nerve of an ordinary category is one
(in fact, ordinary categories are precisely those quasi-categories where the choice of an
inner horn filler is always unique).

But what about (oo, 2)-categories? To find a common generalization of (0o, 1)-categories
and 2-categories, we should as a fist step find a fully faithful functor from 2-categories
into simplicial sets, as we did for 1-categories.

Definition 1.1.17 (|[Lurl8al Tag 009T]). The Duskin nerve of a 2-category is defined
via the nerve-realization paradigm; applied to the functor ro..; : A — Cats, which is
given by composing r.,; with the inclusion of categories into 2-categories. It is fully
faithful, and the Duskin nerve of a (2, 1)-category is a quasi-category.

However, the Duskin nerve of a 2-category with non-invertible 2-morphisms can never be
a quasi-category. One can however proceed as above, and define a class of simplicial sets
that contains Duskin nerves to model (0o, 2)-categories. This is a lot more complicated
than for quasi-categories, see |[Lurl8al, Tag 01W6|.

There are also notions for (oo, k)-categories, with k € Ny, but these generally follow a
slightly different philosophy in their definition — see [Lur09b| for more. Also, there are
currently two different notions of (oo, co)-categories, via a projective or an inductive
limit in k; and both are still poorly developed. We only need &k = 0,1 in this text.

k\n| -2 -1 0 1 2 . 00
0 point boolean  set  groupoid 2-groupoid oo-groupoid
1 " " poset category (2,1)-category (00, 1)-category
2 " " " 2-poset 2-category .. (00, 2)-category
00 " " " " (00, 00)-category ?

The inclusion functors in vertical and horizontal direction in this chart have adjoint
functors that we will make use of regularly. We already know that the nerve functor
from categories to (oo, 1)-categories, and the Duskin nerve from 2-categories to (oo, 2)-
categories, have left adjoints (the homotopy category and the homotopy 2-category).
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Definition 1.1.18. Given an (oo, 1)-category C, we can forget all non-invertible 1-
morphisms, obtaining its underlying co-groupoid €~. Similarly, given an (oo, 2)-category
@, we can forget all non-invertible 2-morphisms, yielding an (oo, 1)-category Pith(€)
called its pith. These functors are right adjoint to the respective inclusions.

Left adjoints are harder to construct, but also of interest.

e By localizing (as defined in [1.2.3)) an oo-category at all 1-morphisms, one obtains
a Kan complex, a process called Quillen fibrant replacement (equivalently one can
apply Kan’s Ex>-functor we defined above).

e Similarly, a sort of localization of an (oo, 2)-category at all 2-morphisms is called
Joyal fibrant replacement.

In fact, both of these constructions can be applied to arbitrary simplicial sets; they are
fibrant replacements in the Quillen and Joyal model structures on sSet, respectively.

1.2 Higher Category Theory

Since oo-categories and ordinary categories both contain objects and (possibly non-
invertible) morphisms, the only difference between them is the existence of invertible
higher morphisms, i.e. homotopies, homotopies of homotopies and so on, that act as co-
herence data for composition, associativity and identity constraints for the 1-morphisms
in an oo-category. It seems reasonable to assume that, as long as work in a homotopy
coherent manner, most concepts from ordinary category theory should translate to oo-
categories without much change (similarly, concepts from 2-categories should translate
to (00, 2)-categories). Let C, D be oco-categories, then we can define:

Definition 1.2.1. The oo-category of functors Fun(C, D) is the internal Hom between
them in sSet. In other words, Fun(C, D), = Homgse (€ x A", D). Morphisms in this
functor oo-category are called natural transformations, and invertible morphisms are
called natural isomorphisms.

Definition 1.2.2. Functors F : € — D and G : D — € define an equivalence of oo-
categories if their compositions F' o G and GG o F' are both naturally isomorphic to the
respective identity functors.

Proposition 1.2.3. For € and oo-category and W a set of morphisms in it, there is
another oo-category C[W ™!, called the localization of C at W, equipped with a functor
C — C[W~1] such that for any oo-category D, precomposing with it induces a fully
faithful functor

Fun(€[W 1], D) — Fun(C, D) (1.8)

10



with essential image spanned by those functors F' : € — D that send each morphism
in W to an isomorphism. By this universal property, C[JW '] is uniquely determined
up to equivalence (unlike for ordinary categories, where it can be made unique up to
isomorphism).

Definition 1.2.4. For C, D € C, the morphism space
Map(C, D) := {C} x¢ Fun(A', €) x¢ {D} (1.9)

is always a Kan complex. It is homotopy equivalent to the left and right pinched mor-
phism spaces {C'} x¢ C/p and Ccy xe {D}.

Warning. For (oo, 2)-categories they are different; one has to work with the left pinched
morphism space (which is an (oo, 1)-category).

Proving the statements we make (e.g. that the functor category is again an oo-category)
uses a lot of simplicial combinatorics that we will not discuss; see [Lurl8a] for more. In
particular, we freely use:

e Join and slice constructions for simplicial sets, like C,- above. Note that there are
two simplicial models for those, that are equivalent as co-categories.

e The opposite simplicial set C°P.

e Special kinds of morphisms between simplicial sets, for example trivial fibrations,
Kan fibrations, left and right fibrations, Cartesian and coCartesian fibrations, and
many more. The last four will be motivated in [1.2.20]

Example 1.2.5.
e If C is the nerve of an ordinary category, then Map(C, D) is a discrete space.

e For X a topological space and z,y € X, the mapping space Mapg;,o(x) (7, y) is the
space of paths from z to y in X.

We have learned that morphism spaces of oco-categories are Kan complexes. Are oo-
categories the same thing as categories enriched over Kan complexes? This can not
literally be true, since enriched categories have strict composition maps, while compo-
sition in an co-category is, as we have seen, only defined up to a contractible space of
choices. But it is essentially true:

Definition 1.2.6. Denote by sSet -Cat the ordinary category of sSet-enriched categories,
and by 7eupe : A — sSet-Cat the functor that sends [n] to a simplicially enriched category
with objects 0,...,n and morphisms between i, j € [n] given by

Hom, . p(i,j) == N(P({i,i+1...,j}),C) € sSet . (1.10)

Tcube
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Putting this into words, we take the nerve of the ordinary category associated to the
poset of subsets of the set {i,i + 1...,j}, ordered by inclusion. For intuition: This
simplicial set is just a (¢ — j + 1)-dimensional cube.

Theorem 1.2.7. Applying the nerve-realization paradigm t0 Teuwpe yields an ad-
junction

Npe

sSet sSet-Cat
Path 7

where Np.(C),, = Fun(ruuwe([n]), €) is called the homotopy coherent nerve of the simpli-
cially enriched category €. This is a Quillen equivalence with respect to certain model
structures on both sides, yielding an equivalence of the homotopy categories: Quasi-
categories are the same thing as Kan-enriched categories!

Remark. Since Kan complexes are the same thing as (good) topological spaces, one
could via a change of enrichment also say that quasi-categories are the same thing as
topologically enriched categories.

Proposition 1.2.8 (|[Lurl8al, Tag 01YL|). Similarly, if C is a simplicially enriched cate-
gory where all morphism spaces are quasi-categories, then its homotopy coherent nerve is
an (0o, 2)-category. Every (0o, 2)-category can be obtained this way up to equivalence of
(00, 2)-categories. However, one can not proceed like this to obtain all (oo, 3)-categories.

Proposition 1.2.9 (|[Lurl8al Tag 01LG|). For € a category enriched over quasi-
categories and X,Y € C, there is an equivalence of the internal Hom with the left
pinched mapping spaces in the (oo, 2)-category Np.(C):

Hom(X,Y) ~ Homg, ((X,Y) ~ Homp, ¢ (X,Y)” (1.11)
In particular, if € is even enriched over Kan complexes, this is a homotopy equivalence

Home(X,Y) =~ Mapy, ) (X,Y). (1.12)

Example 1.2.10.

e Let Kan be the Kan-enriched category with objects Kan complexes, and mor-
phisms spaces Homy, (K, L) := Fun(K, L), which is indeed a Kan complex. The
homotopy coherent nerve § := N,.Kan is the co-category of spaces. Its role in
higher category theory is the same as the role of Set in ordinary category theory;
one might argue it is the most important co-category.

o 3, 1= §/n0 is the co-category of poinled spaces. Equivalently, it is the homotopy
coherent nerve of the Kan-enriched slice category Kan ao.

12
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e Denote by 8" the full subcategory of 8§ on Kan complexes with finitely many
non-degenerate simplices, and similarly 8.

e Let QC be the category enriched over quasi-categories, where objects are quasi-
categories and Homq(C, D) := Fun(C, D). The homotopy coherent nerve Cat, :=
Npe(QC) is the (00, 2)-category of all co-categories.

e If we denote by QC™ the Kan-enriched category with objects quasi-categories, and
morphisms given by the Kan complexes Homgo~ (€, D) := Fun(C, D)=, then the
homotopy coherent nerve is Caty := Np. QC™ =~ Pith(Cat,,), the co-category of
all co-categories.

e The homotopy coherent nerve of the quasi-category-enriched slice category
Cat o obj = Nie QC p0 is the (00, 2)-category of laz-pointed co-categories. We will
denote its pith oo-category by Cato obj-

After these very foundational definitions, let us introduce some universal constructions
for oo-categories:

Definition 1.2.11. Let K € sSet, and p : K — € be a morphism of simplicial sets,
that we interpret as a diagram in the oo-category C. Denote by K< the left cone on K,
formed by adding an initial object to it (i.e. taking the join A« K). The limit cone of
this diagram, if it exists, is a morphism p : K¢ — € with p(—o0) := lim(p), that induces
for all C' € € a homotopy equivalence

Map(C, lim(p)) ~ Nat(C, p) (1.13)

where C' : K — C it the constant diagram on C. Note how this agrees with the ordinary
limit if € is a 1-category. Oppositely, we can define a colim(p) by extending p to K
such that

Map(colim(p), C') ~ Nat(p,C) . (1.14)

Special cases of this construction yield (as in ordinary category theory) products, co-
products; pullbacks, pushouts; final, initial and zero objects; kernels, cokernels. While
coproducts and products can be treated with similar intuition as in ordinary categories,
pullbacks and pushouts behave like homotopy pullbacks and pushouts. For exam-
ple, (co)limits in 8 are precisely homotopy (co)limits of topological spaces by |[Lur09a,
4.2.4.1]; and kernels in the oco-category chain complexes are mapping cones, see m
To make this distinction clear, kernels are also called fibers in this setting, and cokernels
are called cofibers.

Lemma 1.2.12. Just as every set is a colimit (coproduct, since the indexing category

is discrete) over its elements regarded as one-element sets; every Kan complex K is the
colimit over the functor AY : K — 8 constant on AY.

13


http://www.math.ias.edu/~lurie/papers/HTT.pdf#theorem.4.2.4.1

Proof. We need to show that the induced map Mapg(K, C) — Nat(A°, C) is a homotopy
equivalence for each C' € §. We have defined 8 as the homotopy coherent nerve of the
Kan-enriched category Kan of Kan complexes, so the former mapping space is given by

the Kan complex Fun(K, C). On the right,
Nat(A°, C) ~ Funpo ¢ (A, Fun(K, 8)) =~ Fun(K, Funao ¢ (A, 8)) ~ Fun(K, Mapg(A°, C))

where in the beginning and end we use one of the equivalent definitions for the mapping
space, and in the middle identify both sidese as the same full subcategory of Fun(A! x
K, 8). We are finished once we notice Mapg(A®, C') = Fun(A°, C') ~ C since on simplices
Fun(A° C),, = Homgg (A° x A", C) = C,, by the Yoneda lemma. O

We need to be a bit more careful when defining cofinal functors and filtered (co)limits:

Definition 1.2.13. A morphism of simplicial sets f : L — K is called right cofinal if
for any oco-category €, every diagram p : K — C and any C € €, precomposing with f
induces a homotopy equivalence of Kan complexes

Nat(p,C') ~ Nat(po f,C) , (1.15)

where C' denotes the constant functors K — € or L — € with value C, respectively.

Proposition 1.2.14. In particular, if in the above situation p admits a colimit, then by
definition [1.2.11] this is equivalent to Mape(colim p, C') = Mape(colim(po f), C). In other
words, right cofinal morphisms are precisely those that preserve (universal properties of)
colimits! Similarly, left cofinal morphisms are those that preserve limits.

Remark. There are many equivalent characterizations of cofinality (see [Lurl8a, Tag
02NR]) that are often easier to check than ours, most prominently:

Theorem 1.2.15 (Quillen’s Theorem A, [Lurl8al Tag 02NY]).
A morphism of simplicial sets F': € — D with D an oco-category is

o left cofinal iff, for all D € D, the fiber €,p := C x D,p is weakly contractible,
e right cofinal iff, for all D € D, the fiber Cp, := € x Dp, is weakly contractible.

Definition 1.2.16. Here, a simplicial set K is weakly contractible iff the geometric real-
ization | K| is contractible, or equivalently (by the adjunction | — | 4 Sing), the space of
maps Hom (K, X) into any Kan complex X is contractible. Similarly, we define weak ho-
motopy equivalences as those maps of simplicial set that become homotopy equivalences
after applying | — |, or Hom(—, X) for any Kan complex. They are the weak equivalences
in the Quillen model structure on sSet.

14
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Definition 1.2.17 (|Lurl8al, Tag 02PB|). An oo-category C is called filtered if for each
simplicial set K, any map K — C can be extended to a map K* — C.

Proposition 1.2.18. An oo-category C is filtered iff for any simplicial set K, the di-
agonal map € — Fun(K, €) that sends C' to the constant functor C' : K — C is right
cofinal.

This generalizes filtered diagrams in ordinary categories; and colimits parametrized by
filtered simplicial sets have similarly nice properties as filtered colimits in ordinary cat-
egories.

Using the mapping space construction in a similar way, one can define adjunctions, Kan
extensions, and so on. Almost all the usual formulae for limits and colimits still hold.
Generally, almost all theorems from category theory still hold, like the Yoneda lemma,
colimits commuting with colimits, uniqueness of colimits and adjoints and so on.

There are notions of accessible, presentable (sometimes also called locally presentable),
and compactly generated oo-categories mimicking the ordinary notions. Intuitively, an
oo-category is accessible iff it is somehow controlled by a small collection of (compact)
objects, even though it is not small itself (e.g. how the ordinary category of R-vector
spaces is the Ind-completion of the category of finite-dimensional R-vector spaces); it
is presentable iff it is accessible and has all colimits (automatically also all limits), and
compactly generated iff it is accessible and some further size conditions are imposed on
how it is controlled by this small class of objects. For more details, compare [3.2.14] and
the Remark thereafter.

In fact, presentable oco-categories turn out to be "the same thing" as combinatorial
model categories! Higher category theory therefore trivializes many cumbersome model
category calculations. Another strong appeal are useful representability criteria:

Theorem 1.2.19 (Adjoint Functor Theorem, |[Lur09al 5.4.2.5]). A functor F': € — D
between presentable oco-categories has

e a right adjoint iff it preserves (small) colimits,

e a left adjoint iff it preserves (small) limits and r-small filtered colimits for some
regular cardinal &.

In fact, the first claim only requires D to be essentially locally small.

Finally, let us give a short comment on why higher category is so technically difficult (and
why loc. cit. is almost 1000 pages long). Giving a functor between two oco-categories,
and checking that it is indeed a functor, can be extremely difficult to do explicitly, for
example it is very hard to see why the mapping space construction we gave above is
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functorial in its arguments. However, to even define a Yoneda embedding, see that
limits are functorial and so on, we need to understand this. There is a very elegant,
roundabout way to define the mapping space functor:

Theorem 1.2.20 (Grothendieck construction, [Lur09al, Section 3.2]). For a fixed oo-
category €, functors F' : C — Cat,, are essentially the same thing as oco-categories M
equipped with a functor p : M — € that is a so-called coCartesian fibration (we define
those in a moment). More explicitly, the fiber of p over an object C' € € is equivalent to
the oo-category F'(C'), and the action of F' on morphisms in € is encoded via a version of
parallel transport that lifts morphisms of € to a certain class of morphisms in M, called
p-coCartesian morphisms. Conversely, one can obtain p from F' as the pullback

p - M:= (i’atoo,obj x@atme &) C. (116)

Similarly, functors F': C? — Cat., are essentially the same thing as Cartesian fibrations
over C, i.e. functors p : M — € such that p”? : M? — C is a coCartesian fibration.
To give a precise version of these statements, |[GHNI5, A.32| shows that there is an
equivalence of co-categories

Fun(€, Catoo) ~ CatdGe" (1.17)

where Gatgg%rt is the non-full subcategory of the slice category over C' on the coCartesian
fibrations, and functors preserving coCartesian morphisms. This equivalence is functorial

in C.

Remark. The total space M of the coCartesian fibration associated to a functor ¢ — Cat,
is classically also called its category of elements. We could interpret this result as saying
that the category Cat,, acts as a classifying space for coCartesian fibrations. Let us
sketch how those are defined; we also recommend [Lurl8a, Tag 01J2| for more on the
Grothendieck construction.
Definition 1.2.21. A map of simplicial sets f : K — L is called an

e inner fibration if for each 0 <7 < n

e right fibration if for each 0 <7 < n

o [eft fibration if for each 0 < i <n

e Kan fibration if for each 0 <i <n

with n € Ny, any commuting square of the form

A} — K

2
.
-,
-
-
-,
.

A" —— [

16


https://kerodon.net/tag/01J2

has a horn filler/ lift as indicated. It is called a trivial Kan fibration if even the inclusion
OA™ — A" can be filled in this manner.

Example 1.2.22. For K any simplicial set, the terminal map K — A° is an inner
fibration iff K is an oco-category; it is a left/ right/ Kan fibration iff K is a Kan complex;
and it is a trivial Kan fibration iff K is a contractible Kan complex.

Example 1.2.23. If f : K — L is an inner fibration and L is an oo-category, then K is
so as well, since the terminal map factors as K — L — A and the composition of inner
fibrations is still an inner fibration (applying the lifting condition twice).

Definition 1.2.24. A map of simplicial sets U : M — C is a coCartesian fibration if
it is an inner fibration, and for any vertex X’ € M and any edge e : U(X') — Y in C,
there is a vertex Y’ € M and a U-coCartesian edge ¢’ : X' — Y’ such that U(e’) = e.
In other words, any edge in C can be lifted to a U-coCartesian edge in M in covariant
direction.

If we assume that € is an co-category (and M automatically as well), an edge ¢’ : X’ — Y’
in M is called U-coCartesian iff for each W’ € M, the commuting square

Maps (W, X') —=— Map, (W', Y")

v v

, U(e')o— , ,
Mape(U(W'), U(X")) —— Mape(U(W’), U(Y"))
is a pullback square in 8 (not just of simplicial sets).

Remark. Our definition of U-coCartesian edges is wrong if C is no oo-category or U is not
an inner fibration (in particular, postcomposition does not make sense in any simplicial
set). It is equivalent to the correct definition in our case by [Lurl8al Tag 01TLJ.

Corollary 1.2.25 (Grothendieck Construction over Spaces). For a fixed oo-category C,
functors € — § are essentially the same thing as left fibrations over C, with a similar
explicit description of this correspondence as above. Oppositely, functors C? — § are
the same thing as right fibrations.

Remark. This would be immediate if we could show that a left fibration is precisely
a coCartesian fibrations where all fibers are Kan complexes, and similarly for right
fibrations. See [Lurl8a, Tag 01UM] for this.
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Remark. One can deduce that for an oo-groupoid K, the oo-categories Fun(K,8) =~
8,k are equivalent. This relies on a model categorical argument; given an arbitrary
map of Kan complexes M — K, we can always replace it by a left fibration that is
weakly homotopy equivalent to M. This induces an equivalence between 8,k and its
full subcategory spanned by the left fibrations, so we can apply [[.2.25] Note that this
argument would break down for K an arbitrary oco-category, where we would have to
work with this subcategory.

Example 1.2.26. One can show that for € an oco-category and C' € €, the projection
Ccy — € out of the slice category is a left fibration [Lurl8al, Tag 018F|. The associated
functor € — 8 sends D to the fiber Co/ xe{C'} >~ Mape(C, D), so it can be used together
with the analogous observation for the right fibration €, — C to define the mapping
space functor.

1.3 Sheaves and oo-Topoi

Definition 1.3.1. Let C be an oo-category, then denote by PSh(C) := Fun(C%,8) its
presheaf category, and by h : € — PSh(C) the fully faithful Yoneda embedding.

As in ordinary category theory, we often want to restrict our attention to a full subcat-
egory of PSh(C) that contains sheaves, which are presheaves that satisfy descent with
respect to a particular notion of covering.

Definition 1.3.2. A Grothendieck pretopology T on C consists of, for every U € C, a set
of coverings Cov,(U) whose elements are families (U; — U);e; with U; € €, such that
the following hold:

e Given an isomorphism U’ — U, the one-element family (U’ — U) is a covering.
e For any morphism V' — U, the pullbacks (U; xy V' — V); exist and form a covering
again.

o If for any i, the family (U;; — U;); is a covering, then the composition (U;; — U);;
is a covering.

Technical Remark. While every Grothendieck topology, as in [Lur(9al, 6.2.2.1], is a
Grothendieck pretopology, the latter or usually much smaller. However, every pretopol-
ogy specifies a unique topology by defining the covering sieves as those that contain a
whole covering family, see [Pst18 A.5]. We will therefore work with this simpler notion.

Definition 1.3.3. An oo-site C, is an oo-category € equipped with a Grothendieck
pretopology 7. Since covering families are invariant under isomorphisms (combining the
first and third axiom), it is enough to specify the pretopology on the homotopy category.
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Definition 1.3.4. Given a covering (U; — U), we define its Cech nerve C(U; — U) €
Fun(A° PSh(C)) as the simplicial diagram

o = Ui U ¢ R(;) 2 h(U) == Ly b0 2 h(U) —— L (D)

which by functoriality of h possesses a canonical morphism to h(U).

Definition 1.3.5. A sheaf on an oco-site C is a presheaf F': C? — § that is local with
respect to these morphisms; that is for every covering (U; — U),

lim Mapsg; ) (C(Us = U), F) = Mapsg, e, (hor, F) = F(U) . (L18)

In other words, we require

F(U) = 1im< [L F(U) — 1, FU x0 Uy) = - ) . (1.19)

Aop

Technical Remark. We denote the full subcategory on them by 8h(C,), leaving out the
topology if it is clear. This is equivalent to the definition in [Lur09al] by [Pst18 A.8,
A9

Theorem 1.3.6 ([Lur(09al, 6.2.2.7]). For any oo-site C, there is a sheafification func-
tor (—)*", which can be constructed as a transfinite composition of a plus construction
(mimicking the classical double-plus-construction) is left adjoint to the canonical inclu-
sion

sh(e) ' = " PSh(E) .

i

This leads to a general axiom for co-categories that "look like" categories of sheaves:

Definition 1.3.7. An oco-topos X is an oo-category that can be written as a left exact
accessible localization of a presheaf category. In other words, there must exist a (small)
oo-category € and an adjunction

< L

X _PSh(C)

such that ¢ is fully faithful and preserves s-filtered colimits for some regular cardinal k,
and L preserves finite limits.
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Technical Remark. The accessibility condition (preserving s-filtered colimits) is equiva-
lent to ensuring X is again presentable. It is currently not known whether it is automatic
(as it is in the case of n-topoi).

Remark. This definition is extrinsic, since it tells us how to construct co-topoi, but not
how to check if a specific co-category is one. There are also several intrinsic definitions,
for example the Giraud-Rezk-Lurie axioms.

Warning. Not every left exact accessible reflective localization of a presheaf category
arises as sheaves with respect to a Grothendieck category! It is not even known whether
any oo-topos can be written as sheaves on an oo-site at all.

Example 1.3.8. Since identity functors are always left exact accessible localizations,
presheaf categories are always oco-topoi. In particular, § = PSh(x) is an oo-topos. Also,
for any oo-site C,, the sheaves 8/(€;) form an co-topos using the adjunction [1.3.6]

Example 1.3.9. For X an oco-topos and C' an object in it, the slice topos X,c is again
an oo-topos.

Definition 1.3.10. A geometric morphism between oo-topoi is an adjunction

< I
X 9
fo

~

where f* preserves finite limits. Let us denote the subcategory of Cat., on co-topoi and
geometric morphisms by LTop.

Proposition 1.3.11. S is the terminal object of LTop. This means that every oo-topos
X is equipped with an essentially unique adjunction

X < r 9

I

~

In particular, for % the terminal object, I, = Mapy(*, —) and if X = 8h(C) over a oco-site,
I*(K) = (C'— K)*". Also, note that since I'* preserves colimits and every Kan-complex
is the colimit over its points, ['* can be understood via its value on A°.

Definition 1.3.12 ([Pst18 A.10 and A.12|). Given oco-sites € and D, a morphism of
sites is a functor F': € — D that sends coverings to coverings.

Further, F' has the covering lifting property if for any U € € and (V; — F(U)) covering
family in D, there is a covering (U; — U) in € such that for every j one can find an i
such that one can factor F(U;) — V; — F(U).
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Proposition 1.3.13 (|Pst18, A.11 and A.13]). For any morphism of sites ' : € — D,
precomposition F, := — o F' preserves sheaves and, together with sheafification of the
Left Kan Extension along it F* = (—)*" o Lanp, induces an adjunction

Sh(D) F* Sh(D) .

F 7

If F' has the covering lifting property, then F, commutes with sheafification, in particular
it preserves colimits and admits another left adjoint F~ : 8h(C) — Sh(D).

Let D be an arbitrary oo-category.

Definition 1.3.14. A functor F': C%? — D is a D-valued sheaf on C if, for any D € D,
the composition Mapq, (D, F(—)) : € — 8§ is a sheaf on €. We denote the subcategory
on them by 8A(C, D) C Fun(C, D).

Remark. Again, explicitly we impose that for any cover (U; — U), we have Cech descent:

Aop

FU) = 1im< [LFU) — L, FUi xp U;) — -+ ) . (1.20)
In particular, this limit should exist in D.

Proposition 1.3.15 ([Lurl8bl 1.3.1.7]). If D has all limits, there is an equivalence
Sh(€, D) ~ Fun™(8h(C)?, D) , (1.21)

where Fun™ denotes the subcategory of Fun on the limit-preserving functors.

This description can be further refined when we restrict to the class of presentable oo-
categories, which generalizes the class of (locally) presentable ordinary categories. To put
it loosely, an oco-category is presentable if is accessible, that is, generated under colimits
by a small subcategory of compact objects; and it has all colimits (and automatically
all limits).

Theorem 1.3.16 (|Lurl?, 4.8.1.17]). For € and D any presentable oo-categories, one
can define their tensor product € ® D := Fun'™(C, D) that is again a presentable
oo-category, and a natural functor € x D — € ® D such that for any presentable &,

Fun®'™(€ ®@ D, &) o~ Fun®i™lm(@ x D, €) . (1.22)

Here, Fun®™<lim denotes functors that preserve colimits in both variables.
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Remark. Even though it does not seem that way, C® D is symmetric in € and D because
of this universal property. Alternatively, a limit-preserving functor from C? — D is
a colimit-preserving functor ¢ — D, which by the Adjoint-Functor-Theorem
possesses an (essentially unique) right adjoint D? — € automatically preserving limits.

Corollary 1.3.17. For D a presentable co-category, Sh(C, D) ~ 8h(C) @ D.

Corollary 1.3.18. If D is a presentable (and/ or stable) co-category, then Sh(C, D) is
presentable (and/ or stable) as well.

Proof. For D presentable, Sh(C, D) = Sh(C) ® D is presentable by [1.3.16]

If D is stable, then Fun(C°, D) is stable because limits and colimits in a functor category
are computed pointwise, so we need to show that the sheaves form a stable subcategory
in the sense of This follows since the sheafification functor is left exact, so that the
category of sheaves is in particular closed under fibers and contains the zero object. [J

1.4 Sheaves on Topological Spaces

Let us apply this machinery to the probably most interesting case:

Definition 1.4.1. For X a topological space and D a complete oo-category, equip the
thin category of open subsets Open(X) with the Grothendieck pretopology 7 where
covering families are open coverings. We denote

Sh(X) :=8h(Open(X),), 8h(X;D):=8h(Open(X),;D). (1.23)

Remark. In particular, a functor F' : Open®(X) — D is an oo-sheaf if for any open
cover (U; CU),

F(U) = lim( [T, F(U) — [, FU;nU;) = --- ) . (1.24)

Aop

There are several different ways to intuitively make sense of this descent condition.
First of all, note the similarity with the Cech complex which also involves comparing
sections at higher intersections of the U;. One can show that for every ordinary sheaf
Fy € Sh(X;Z), the derived sections RI'(—, Fy) € 8h(X;D(Z)) form an oo-sheaf; by
we will see that the descent condition in this case is equivalent to the statement
that sheaf cohomology of F{, agrees with the Cech hypercohomology of RI'(—, Fp) on
any cover (which follows from the éech—to—sheaf—cohomology spectral sequence). In fact,
Sh(X; D(Z)) and the derived category of ordinary sheaves D(Sh(X, Ab)) almost agree
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as discussed in the only difference appears for very "infinite-dimensional" spaces
and is remedied by the notion of hypercompletion we define shortly.

As a second example, suppose we are given a collection of topological spaces (X;);c; and
open subsets U]@ C X, fori,j € I, together with homeomorphisms ¢;; : Uj@ = Ui(j) such
that ¢;i o ¢;; = ¢, on the respective intersections. Then, we can glue the spaces X;
together along the gluing maps ¢;;. Note how this involves triple intersections, unlike the
ordinary sheaf condition which only compares sections on intersections of two open sets
in a covering. A similar descent via triple intersections holds for the functors of points
of stacks in algebraic geometry. Since descent for co-sheaves involves intersections of

arbitrary order, they are sometimes called higher stacks.

Proposition 1.4.2. A continuous map of topological spaces f : X — Y induces a
geometric morphism

(f. 4 f7) : Sh(X) — SA(Y) . (1.25)

In particular, for F' € S8h(X) and z € X with inclusion z : {z} — X we can define the
stalk x*F of F at x.

Proof. This follows immediately from |1.3.13] since the inverse image f~!: Open(Y) —
Open(X) is a morphism of sites by definition of continuity. O

An oo-topos X can be understood as an exotic world to do topology in; in particular the
terminal oo-topos 8 describes usual topology (of CW complexes), and the topoi 8h(X)
describe (if X is paracompact and Hausdorff) topology relative to X. In particular, one
can define homotopy groups of objects in every co-topos. However, not all results from
usual topology still hold — in particular, the theorem of Whitehead can break down:

Definition 1.4.3. A morphism f : X — Y in an oo-topos X is called co-connected if
it induces an isomorphism on all homotopy groups internal to X (we do not define what
this means).

Proposition 1.4.4 ([Lurl7, A.3.9]). A morphism f: F — G in 8h(X) is oco-connected
iff for any x € X, it induces an isomorphism on stalks z*f : 2*F S Gl

Proof Sketch. The = direction is immediate since the pullback z* preserves homotopy
groups and hence oco-connected morphisms, but in § we can apply the Whitehead theo-
rem. For the <= direction, we need to show that f induces isomorphisms on all homotopy
groups m; ' — m;G. Those are however ordinary sheaves, so an isomorphism on stalks is
already an isomorphism. O]
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Definition 1.4.5. Let X be an oo-topos, then an object X € X is hypercomplete if it
is local with respect to oco-connected morphisms, meaning that for any oo-connected
f: C — D, precomposing with f induces a homotopy equivalence

— o f : Mapy(D, X) = Mapy(C, X) . (1.26)

Theorem 1.4.6. The full subcategory on the hypercomplete objects X"P is again an
oo-topos, the hypercompletion of X. The inclusion X™? C X is in fact a geometric
morphism, so that any X € X has an associated hypercompletion X"P.

The functor (—)"P is a reflection on the subcategory of £LTop on the hypercomplete
oo-topoi, in the sense that for Y hypercomplete, the spaces of geometric morphisms
MapLTop(Hv x) = MapLTop<y> :X:hyp) agree.

Definition 1.4.7. For € an oco-site, we call a D-valued sheaf F' € Sh(C, D) hypercomplete
if for any D € D, the composition Map, (D, F') € 8h(C) is hypercomplete. Denote their
full subcategory by Sh"(C, D).

Definition 1.4.8. We call hypercomplete D-valued sheaves on X hypersheaves, and
denote their category by Sh™P(X, D)

Proposition 1.4.9. If X is paracompact Hausdorff and of finite covering dimension,
every sheaf on X is hypercomplete.

Proof. This is very technical and only added for lack of reference. [Lur09a, 7.1.1.1]
assures that we can find a basis U; for the topology of X, such that every U; is itself
open, paracompact Hausdorff and of finite covering dimension; therefore [Lur09al, 7.2.3.6]
tells us that Sh(U;) has finite homotopy dimension. Since the Yoneda embeddings hy, €
Sh(X) generate Sh(X) under colimits and the slice topoi 8h(X),y, ~ Sh(U;), we even
know that Sh(X) is locally of finite homotopy dimension. Because of |[Lur09al, 7.2.1.12],
every oo-topos that is locally of finite homotopy dimension is hypercomplete. O

1.5 Stable oco-categories and Spectra
Definition 1.5.1. A zero object 0 in an oco-category € is an object that is both initial
and final; in other words for any C € C,

Mape(C,0) ~ Mape(0,C) ~ A° (1.27)

are contractible. Since this is a universal property, a zero object is (if it exists) unique up
to a contractible space of choices. Also, for C, D € €, the composition of the essentially
unique maps C' — 0 — D specifies a zero-morphism in every mapping space of C, so
they become pointed spaces.
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Definition 1.5.2. If € has a zero object 0, and f : C' — D is a morphism in C, then
its fiber fib(f) is the equalizer of f and the zero morphism 0 from C to D (just like the
kernel in ordinary category theory). Similarly, its cofiber cofib(f) is the coequalizer of
f and 0. Sequences of the form

fib(f) =€ 5 D
e LD — cofib(f)

(up to isomorphism) are called fiber sequences and cofiber sequences, respectively.

Definition 1.5.3. An oco-category C is called stable if:
e [t has a zero object 0,
e Every morphism in € has a fiber and a cofiber,
e Any cofiber sequence is also a fiber sequence.
One can show, using these axioms, that:
e A sequence is a fiber sequence iff it is a cofiber sequences
e All finite limits and colimits exist in C
e A square is a pushout square iff it is a pullback square

e The loop space functor €2 : € — C sending C' — 0 X¢ 0 is an equivalence of
categories, with inverse the suspension functor ¥ : C'— 01l 0.

e The homotopy category hC has a natural Ab-enrichment.

Theorem 1.5.4 ([Lurl7, 1.1.2.14]). If C is a stable oo-category, then the homotopy
category hC is a triangulated category. In particular, (co-)fiber sequences in € become
triangles in hC, cofibers become (functorial) mapping cones and ¥ becomes the shift
functor [1].

The upshot: Stable oco-categories are equipped to take over the role of triangulated
categories (and their dg enhancements), just like presentable co-categories took over the
role of (combinatorial) model categories. This is extremely nice, since their definition is
just a homotopy coherent formulation of the axioms of an abelian category, in particular
very simple compared to Verdier’s definition. Similarly, presentable stable co-categories
are one analogon of Grothendieck abelian categories.

Lemma 1.5.5. For f : C' — D a morphism in a stable oo-category €, the fiber and
cofiber fib(f)[1] = cofib(f) agree up to a shift.

Proof. This follows from the commutative diagram
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fib(f) y C » 0

where all small squares are pushouts or equivalently pullbacks, so the big square is a
pushout as well. ]

Proposition 1.5.6. For F': C — D a functor between stable co-categories, the following
are equivalent:

e [is left exact, i.e. preserves limits parametrized by finite simplicial sets
e [ is right exact, i.e. preserves colimits parametrized by finite simplicial sets
e F preserves the zero object and (co)fiber sequences

It is then called ezact, and we obtain an oco-category CatS. of stable oco-categories and
exact functors as a (non-full) subcategory of Cat ..

Proof. Tt suffices to show that the last point implies the first, since the converse is clear
and the second point follows using a dual argument. By [Lur09al, 4.4.3.2], all finite limits
are generated by the terminal object, equalizers and products. But equ(f, g) = fib(f —g)

and X ®Y = fib(X 2 Y[1]) as well as Y[1] = cofib(Y — 0) can all be expressed using
0 and (co)fibers, which F preserves. O

Proposition 1.5.7 (|[Lurld, 1.1.3.2]). A full subcategory D of a stable co-category €
that contains the zero object, and is closed under fibers and cofibers, is itself stable. We
call this a stable subcategory.

Proof. D has a zero object, fibers and cofibers since they can be calculated in € because
their universal properties restrict. For the same reason, fiber or cofiber sequences in D
are precisely fiber or cofiber sequences in € where every object lies in D, so the notions
coincide. O]

Proposition 1.5.8 (|[Lurl?, 1.1.3.1]). If € is a stable oo-category and K a simplicial
set, then the oo-category Fun(K, C) is also stable.

Proof. The limits and colimits involved in the definition of a stable co-category can be
calculated pointwise in Fun(X, C), as shown in [Lur09al 5.1.2.2]. O

Proposition 1.5.9 (|Grol6]). An oco-category C is stable iff it admits finite limits and
colimits, and finite limits and colimits commute.
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Let us construct a few examples.

Definition 1.5.10. A simplicial abelian group is an ordinary functor in sAb :=
Fun(A°, Ab). Forgetting about the group operation, it has an underlying simplicial set,
which can be shown to automatically be a Kan complex. Conversely, every X € sSet
defines a simplicial abelian group ZX : A — Ab by composing with the free Z-module
functor.

Definition 1.5.11. For X a simplicial abelian group, let its Moore compler C.(X)
be the chain complex (in homological convention) with C,,(X) = X,, concentrated in
non-negative degrees and differential induced by the face maps ¢, : X,, = X,,_1 in X:

n

Vee X, 0 dei=Y (—1)'6,;X, € Cu(X)nos (1.28)

=0

The normalized Moore complex N,(X) is the subcomplex of C,(X) spanned by the non-
degenerate simplices, where all contributions form degenerate simplices in the differential
are set to 0.

Both C, and N, are additive functors and preserve colimits. Therefore, N, is the left Kan
Extension along the (Ab-enriched) Yoneda embedding of its restriction to A (by [L.1.6),
and therefore arises by applying the nerve-realization paradigm to this restriction.
Hence, it has a right adjoint K : Ch(Z)>o — sAb sending C' — Hom(N,(—),C). We
call K(C) the Filenberg-MacLane space of C, in particular for A an abelian group,
K(A,n) = |K(A[n])| is the Eilenberg-MacLane space from topology.

Theorem 1.5.12 (Dold-Kan correspondence). The functors N, and K form an equiva-
lence of categories between non-negatively graded chain complexes and simplicial abelian
groups, Ch(Z)>o ~ sAb. This can be generalized to any abelian category, instead of Ab.

Example 1.5.13. Applying C, to ZSing(X) yields the singular chain complex of a
topological space X.

Construction 1.5.14. Let C be a differential graded (dg) category (a category enriched
over Ch(Z)). Truncating the morphism complexes at 0 and applying K yields a category
enriched over simplicial abelian groups, and forgetting the group structure yields a Kan-
enriched category because of Finally, applying the homotopy coherent nerve
yields an oo-category Ny,C, called the dg-nerve of C.

Remark. There is an equivalent construction of the dg-nerve that is easier to compute;
the shortest way to define it is to apply the nerve-realization paradigm to a functor that
realizes objects of A as A.-categories, see [Faol3|. This paper also shows that if € is a
pretriangulated dg-category, then Ny, (C) is stable.
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Example 1.5.15. For R any commutative ring, let Ch(R) be the dg-category of chain
complexes of R-modules. Denote by Ch(R) := Ny, Ch(R) its dg-nerve, the stable oo-
category of chain complexes. Explicitly, its

e Objects are chain complexes of R-modules
e Morphisms are chain maps
e 2-morphisms are chain homotopies

e 3-morphisms are chain homotopies between chain homotopies, and so on.

Example 1.5.16. Localization (as in [1.2.3]) of Ch(R) at the quasi-isomorphisms yields
the derived co-category D(R) of R. Similarly for the bounded variants D°(R), DT (R)
and D~ (R), all of which are stable.

More generally, one can define the derived oo-category D(A) of any abelian category A
by inverting the quasi-isomorphisms in the oo-category of chain complexes in A. This is
particularly well-behaved for Grothendieck abelian categories, where D(A) actually is a
presentable oo-category by [Lurld, 1.3.5.21].

Example 1.5.17. For R a ring, we denote by D®(R) the smallest full subcategory
of D(R) generated by R[0] by shifts and fibers, i.e. the smallest stable subcategory
containing R[0] as in @L Similarly, we define by DP*"f( R) the smallest full subcategory
spanned by R[0] under shifts, fibers and direct summands (i.e. retracts by [2.1.11)).

Remark. By [Lurl7, 1.3.5.21], the derived oo-category D(A) of a Grothendieck abelian
category possesses a canonical t-structure, i.e. two full subcategories D>o(A) and D<y(A)
such that

o For Y € Dso(A) and Z € D<o(A), the mapping space Mapp 4 (Y, Z[—1]) is
contractible,

° Y[l] S DEO(-A) and Z[—l] S DS()(.A), and

e For X € D(A), there exist X' € Dso(A) and X" € D<o(A)[—1] and a fiber
sequence X' — X — X",

Explicitly, D>o(A) consists of chain complex concentrated in non-negative, and D<y(A)
of chain complexes in non-positive degree (equivalently, with homology concentrated in
the respective degrees). The heart of this t-structure is

D(A)® := Dso(A) N Deg(A) ~ A . (1.29)

Generally, the heart of any t-structure on a stable oo-category is an abelian 1-category.
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Example 1.5.18. For A a Grothendieck abelian category, using we see that
cofibers/ fibers in D(A) agree with the mapping cone/ cocone. Also, (co)products are
given by the direct sum. Every finite limit or colimit can however be expressed using
these constructions (as there is a zero object), so in theory we know how to calculate
them. Spelling out the combinatorics, we see that they are calculated using the bar con-
struction (see |[CG16, C.5.11] or |Riel4]). This is a well-known fact in model category
theory, where this construction calculates homotopy (co)limits.

Let us spell this out for a simplicial diagram F': A®” — D(A), to better understand the
descent condition for co-sheaves with values in D(A). We can associate to F' a Cech
double complex

where the vertical maps are the differentials in F([n]), and the horizontal maps are
induced by alternating sums over the boundary maps. The oo-limit, or homotopy limit,
over F'is the total complex of this double complex (using the direct product should it not
be bounded). Similarly for homotopy colimits over A, using the direct sum. In short,
the descend condition for an co-sheaf F' : Open(X)® — D(A) on a space X assures that
for (U;) a cover of U,

F(U) 2 C((Uy), F) (1.30)

is quasi-isomorphic to the Cech hypercohomology of F' on the cover U. In particu-
lar, as we have discussed after [1.24, the Cech-to-sheaf-cohomology spectral sequence is
associated to this double complex.

Example 1.5.19. Let 8" be the co-category of finite pointed spaces from [1.2.10, De-
note by Exc*(8f"8) the full subcategory of Fun(8fi", 8) on functors that are

e reduced, i.e. preserve the final object, and

e crcisive, i.e. send pushout squares to pullback squares.
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This is the stable oo-category Sp of spectra. Its homotopy category agrees with the
triangulated category of (symmetric) spectra. More generally, for € an oo-category with
finite limits, we denote by 8p(€) the stable co-category of spectrum objects in €, also
called spectrification. It is defined as

8p(C) := Exc*(8™ €) . (1.31)

Definition 1.5.20. Denote by Q> : Sp — § the functor that evaluates a pointed excisive
functor 8™ — § at the pointed space S°.

Proposition 1.5.21 (|[Lurl, 1.4.2.24]). The functors Q> o 3" : 8p — 8, evaluating a
reduced, excisive functor 8i* — 8, at the sphere S™ exhibit the stable oo-category of
spectra as the limit of the following diagram in Cat..:

$p == lim ( —8. -5, &SQ . (1.32)

In other words, we obtain Sp from the oco-category S, of pointed spaces by inverting the
suspension functor.

Remark. Given a sequence (FE;);eny of pointed spaces together with homotopy equiva-
lences QO E; = E;_; for all © > 0, we denote the corresponding spectrum under the above

correspondence by
E = [Ey, E1, Fy, E3, .. .] . (1.33)

This is the usual way spectra are introduced (in fact since the above maps must be equiv-
alences, we are working with ()-spectra; we are only interested in these fibrant-cofibrant
objects of the model category of spectra as they are the objects of the underlying oo-
category). In particular this explains the name Q°°; since QE = E, = QF, = Q'E; for
all 7 is an infinite loop space.

Example 1.5.22. For A an abelian group, the Eilenberg-MacLane space K(A,n) is the
unique space satisfying m, K(A,n) = A iff £ = n, and 0 otherwise. By this uniqueness,
we must have QK (A, n) = K(A,n — 1) since (2 shifts the homotopy groups by one, so

HA = [K(A,0), K(A, 1), K(A,2),...] (1.34)

is a spectrum, the Eilenberg-MacLane spectrum associated to A. We can replace A by a
chain complex using [1.5.12] see [L.7.1}

Corollary 1.5.23 ([Lurl7, 1.4.4.4]). The stable co-category Sp is presentable, and the
functor > : 8p — § admits a left adjoint X5° defined as

EP(X) = [X4, BX 1, 22X, (1.35)
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with X, the space X with an added disjoint base point. Similarly, 2> : 8p — 8, has
a left adjoint X°° where no extra basepoint needs to be added. The sphere spectrum is
defined as

S :1=3PA? =%>5", (1.36)

equivalently it corresponds to the pointed excisive functor 8 < 8, given by the canon-
ical inclusion.

Remark. To be precise, X% as defined above is no spectrum in our sense, since the
unit X, — QXX is generally no homotopy equivalence. We have to replace it by an
-spectrum, in the model category language, for example

QYTX = [QX 4, QXX 1, QX% X, ...] (1.37)

with QX = cgli}\r{n OFYk X, the free infinite loop space on X,
S

Definition 1.5.24. As a variant, we introduce the oco-category of finite spectra as the
colimit
Sp = coll\lim (an g 2, ) (1.38)

which can be embedded into Sp using a Yoneda-argument [Lurl, Introduction to 1.4].
In fact, this is the smallest stable subcategory of Sp containing S.

To be more explicit about this embedding, a finite spectrum may be thought of as a pair
(K,n) where n € N and K is a finite space. We identify it with the spectrum X"XFK,
and since X -  this can be checked to induce a fully faithful functor — see also the
classical discussion in [Sch12) Section 7.1].

Definition 1.5.25. A point of a spectrum E is a point of the underlying space Q>E.
Equivalently, it is an S-point of [E, since

Mapsg, (S, E) = Mapg, (57 A°, E) ~ Mapg(A”, Q*E) ~ Q*E . (1.39)

Proposition 1.5.26 (Universal Property of Sp, [Lurl?, 1.4.4.5]). For any presentable
stable oo-category D, the functor X° induces equivalences

Fun"™ (D, 8p) ~ Fun"™(D,8) ~ D

. : 1.40
Fun®(8p, D) ~ Fun"™(§, D) ~ D (1.40)

where Fun®"™ and Fun"™ denote limit- and colimit preserving functors. Note that both

rows are equivalent by the adjoint functor theorem, and the last equivalence follows from
the universal property of the presheaf category PSh(A°) ~ 8 in

Remark. One can define 8p as the unique oco-category satisfying this universal property.
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Definition 1.5.27. There is a notion [Lur09al 6.5.1.1] of homotopy groups of objects
in general presentable co-categories, in particular in spectra. Using the description as a
sequential limit of S, one can show that for E = [Fy, F1,...| € 8p they agree with the
stable homotopy groups

7, E := colim 7"t (E,,) . (1.41)

meN

Proposition 1.5.28 (|[Lurl7, 1.4.3.6]). There is a canonical t-structure on 8p, with Sp<
the full subcategory on those spectra E with contractible underlying space Q*E and 8p>
determined as its orthogonal full subcategory. By Whitehead, we could equivalently
define 8p>( to consist of connective spectra, i.e. those whose homotopy groups 7_,E = 0
for n > 0; and 8p<y as the coconnective spectra with m,E = 0. The heart §p° ~ Ab is
hence the category of abelian groups, as it spanned by spectra with a single non-vanishing
homotopy groups, i.e. Eilenberg-MacLane spectra.

Remark. All of the above results are still true if we replace & by any presentable oo-
category C, and Sp with Sp(C).

The oco-category Sp plays a similar role in the theory of stable co-categories as 8 plays
for general oo-categories:

Proposition 1.5.29. For C a stable co-category and objects C, D € C, the mapping
space Mape(C, D) can be refined to a mapping spectrum mape(C, D) such that

Q2 mape(C, D) = Mape(C, D) . (1.42)
In other words, every stable co-category is enriched over spectra.
Proof Sketch. We can construct the spectrum mape(C, D) as the infinite loop space
[Mape(C, D), Mape(C, D), Mape(C, 22D), ... ] (1.43)
which is clearly functorial in C' and D, and has the underlying space Mape(C, D). It

is also compatible with composition, but since we have not defined enrichments of oco-
categories we will not go into further details. O]

1.6 Ring and Module Spectra

Definition 1.6.1. Let Fin, be the ordinary category (or via its nerve, co-category) of
finite pointed sets (n) = {x,1,2,...,n} with pointed maps. In particular, denote by
pi + (n) — (1) the map that sends i — 1 and all other elements to *, for i =1,... n.
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Definition 1.6.2. A symmetric monoidal co-category with underlying co-category V is
a functor v : Fin, — Cat. such that for each n, the functors v(p;) are the projections
exhibiting v((n)) as the product V*".

Construction 1.6.3. For V a symmetric monoidal co-category, the unique morphism
u : (0) — (1) in Fin,, and the morphism ¢ : (2) — (1) sending * +— * and everything
else to 1, induce morphisms

Iy : A" =V, ®:VxV =V (1.44)

called the unit object and tensor product of V. Often, we therefore denote a symmetric
monoidal oco-category by (V,®) for clarity. Other morphisms in Fin, induce higher
coherence relations on 1y and ®, in particular the morphism (2) — (2) interchanging 1
and 2 induces a symmetric braiding VW =W @ V.

Remark. By [1.2.20, the functor v above classifies a coCartesian fibration commonly
denoted by p : V¥ — Fin,. The fiber of p over (n) € Fin, is by definition equivalent to
V" and the parallel transports along the p; induce the projections out of this product.

Remark ([Lurl7, 4.1.2.5]). Similarly, a monoidal co-category with underlying oo-category
V can be defined as a functor v : A’ — Cat., such that the images of the boundary
maps p; : [1] = [n] sending 0 — i — 1 and 1 + 4, for ¢ = 1,...,n, are the projection
maps exhibiting v([n]) = V*".

Construction 1.6.4 (|[Lurl7, 4.1.2.10]). There is a canonical cut functor ¢ : A°? — Fin,
that sends [n] to (n), and a monotone map « : [n] — [m] to the map (m) — (n)
that sends i € (m) — {*} to mina™*({i,7 + 1,...,m}) if this set is non-empty, and x
otherwise. Precomposition with this functor sends a symmetric monoidal co-category
to the underlying monoidal co-category.

Example 1.6.5.

e The trivial symmetric monoidal co-category is determined by the functor A° :
Fin, — Cat that is constant on A°. Its underlying oco-category is clearly A°,
and it is classified by the coCartesian fibration idg,, : Fin, — Fin,. Similarly, we
define the trivial monoidal oco-category.

e For R a ring, the oo-category of chain complexes Ch(R) is symmetric monoidal
with respect to the tensor product of chain complexes. Similarly for the derived
oo-category D(R) and the derived tensor product.

e Ch(R) is also symmetric monoidal with respect to ®, similarly for any symmetric
monoidal co-category.
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e The oo-category of Sp is symmetric monoidal with respect to the smash product A,
which is the unique (by tensor product preserving colimits in both variables
with the sphere spectrum S as the unit. On the homotopy category of symmetric
spectra, this agrees with the usual definition of the smash product; we will also
see a very abstract construction in a moment.

e Any oo-category with finite products is symmetric monoidal with respect to the
product, similarly for coproducts.

e For Pr" the non-full subcategory of Cat., on presentable co-categories and colimit-
preserving functors (i.e. by the Adjoint Functor Theorem left adjoint func-
tors), the tensor product € ® D := Fun"™(C, D) we have introduced in
induces a symmetric monoidal structure, with unit object 8 as by the co-categorical
analogon to [1.1.6]

e If we denote by Pr*® the full subcategory of Pr" on presentable stable co-categories,
the fact that functors into a stable oco-category form a stable co-category them-
selves tells us that the above symmetric monoidal structure restricts to Pr™.
Its unit is the oco-category of spectra Sp, since it satisfies the universal property
[.5.26l

Definition 1.6.6. A morphism « : (n) — (m) in Fin, is called inert if every i €
(m) — {x} that is not the pointing * has a unique preimage in (n). In other words,
a t:(m) —{x} = (n) — {x} is well-defined and automatically injective, determining .
Conversely, a morphism « as above is called active if o' ({*}) = {*}. Any morphism in

Fin, can uniquely be factored as the composition of an active after an inert morphism.

Definition 1.6.7. A morphism « : [n] — [m] in A is called inert if it is injective and
embeds [n] into [m] as an interval, i.e. (i) = «(0) +i. On the other hand, it is called
active if «(0) = 0 and a(n) = m. Again, any morphism in A can be factored as an inert
after an active morphism (so in A, we obtain a factorization as above).

Remark. Intuitively, inert morphism encode trivial operations in symmetric monoidal
oo-categories, for example the map (2) — (1) sending *,2 — % and 1 +— 1 induces the
map V*? — V projecting on the first component. On the other hand, active morphisms
encode the interesting operations, like the tensor product of n objects, the identity or
the braiding above. Similarly in the monoidal case, or for general oo-operads.

Definition 1.6.8. Let p : V¥ — Fin, be a coCartesian fibration classifying a symmetric
monoidal oo-category. A morphism f in V® is called inert if p(f) is inert and f is
p-coCartesian (i.e. it encodes a non-trivial operation in V), and active if p(f) is active.
These again form a factorization system by [Lurl?, 2.1.2.4].
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Definition 1.6.9. For (V;,®), (V2, ®) symmetric monoidal co-categories, a symmetric
monoidal functor F': Vi — Vy is a natural transformation between the corresponding
functors vy, vs : Fin, — Cat,,. Equivalently, it is a functor of the underlying oo-categories
that preserves unit, tensor product and its braiding up to coherent isomorphism, as well
as the higher coherences encoded by higher compositions.

A lax monoidal functor F' : Vi — Vs is a morphism F' between the classifying coCartesian
fibrations \7? — Fin, and \7? — Fin, in the slice category Caly ,rin, that sends inert
morphisms in V; to inert morphisms in V,. Using [I.2.20] we see that this induces a
symmetric monoidal functor iff F' preserves all coCartesian edges, not just those over
inert morphisms in Fin,.

Technical Remark. We could also define lax monoidal functors without resorting to the
Grothendieck construction, they are given by (lax) natural transformations of the com-
posites vy, vg : Fin, — Cato, C Cat, regarded as functors of (0o, 2)-categories.

Definition 1.6.10. Let us define an oco-category
Fun®(Vy, V) := Mapg(rin. catro) (V15 V2) (1.45)
of symmetric monoidal functors between V; and V,. Similarly, denote by

Funlax(vl, Vy) € Mapg,, Ve VY (1.46)

oo / Finx (
the full subcategory on lax monoidal functors (those preserving inert morphism), which
by the discussion above contains the full subcategory of functors preserving coCartesian
edges which is equivalent to Fun®(Vy,V,).

Remark. The intuition for these classes of functors is the same as in the classical case.
A functor F : V¢ — VS is symmetric monoidal if (among higher relations) it preserves
the tensor product up to isomorphism,

FIX®Y)2FX)® F(Y). (1.47)

It is lax monoidal if there is a natural map F(X)® F(Y) — F(X ® Y), which does not
have to be an isomorphism and should be regarded as part of the data contained in F
(among higher relations). A lax monoidal functor is monoidal iff these maps are always
isomorphisms.

Definition 1.6.11. Similarly, we define monoidal functors between monoidal oo-
categories vy, v9 : A? — Cat,, as natural transformations; and lax monoidal functors as
morphisms between the classifying coCartesian fibrations in the slice category Cato / pin,
preserving inert morphisms. Again, a lax monoidal functor is monoidal iff it preserves
all coCartesian edges.
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Definition 1.6.12. For (V,®) a symmetric monoidal oo-category with symmetric
monoidal structure determined by p : V¥ — Fin,, a commutative algebra in V is a
lax monoidal functor A : idgi,, — p in Cat ) Fin,, from the trivial commutative algebra
in Cat, to V. In other words, it is a section A : Fin, — V¥ of p preserving inert mor-
phisms, in particular A(p;) : A((n)) — A((1)) is p-coCartesian for i = 1,...,n. But the
definition of a symmetric monoidal oo-category entails that the coCartesian transports
along the p; are the projections exhibiting v((n)) = v({1))*™; and we have seen that
these the A(p;) are coCartesian, so they exhibit A((n)) = (A((1)),...,A((1))) € V*".

If we abuse notation by denoting A({1)) =: A, we obtain composition maps
AR - @A=A% 5 A (1.48)

for each k£ > 1, inducing a unit and an algebra multiplication on A satisfying higher
coherences. We denote the oo-category of commutative algebra objects in V¥ by
CAlg(V) := Fun™(A° V).

Definition 1.6.13. Similarly, we define (associative) algebra objects in a monoidal oo-
category (V,®) as lax monoidal functors from the trivial monoidal oco-category to V.
Spelling this out yields, for each k& € Ny and ever total order on {1,...,k}, a morphism

ARA® - ®A— A (1.49)

with k factors of A := A([0]) on the left, together with compatibility conditions among
them. The oo-category of algebra objects in V¥ will be denoted by Alg(V).

Definition 1.6.14. For A an algebra object in V, we define the opposite algebra object
with reversed multiplication by conjugating the defining functor A : A”” — V with the
functor rev : A — A sending [n] — [n] and « : [n] — [m] to rev(a) : [n] — [m] with
rev(a)(i) := a(n —i). The functor A% := revoA orev is still an algebra object since
rev? = Ida and it preserves inert morphisms in A° (which agree with inert morphisms in
A? = (A%)® regarded as the trivial monoidal co-category). Explicitly, the composition
map

ARA® - @ A=A% - A (1.50)

in A associated to a fixed total order on {1,...,k}, is the composition map in A
associated to the reversed total order.

Definition 1.6.15. A ring spectrum is an associative algebra object in the symmetric
monoidal category of spectra (8p, A), regarded as a monoidal co-category using the cut
functor. A commutative ring spectrum is a commutative algebra object in (Sp, A).

Example 1.6.16.

e For (V,®) an ordinary symmetric monoidal category, algebra objects in its nerve
regarded as a symmetric monoidal co-category coincide with the usual definition
of algebra objects, namely objects of V with unit and associative multiplication.
Similarly in the commutative case.
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e For C any oo-category and C' € C, the endomorphism space End(C') := Mape(C, C)
is an associative algebra object in (8, x), with multiplication determined by the
composition of endomorphisms.

e If C is even stable, this can be lifted to an endomorphism spectrum end(C) :=
mape(C, C) which is an associative algebra object in (Sp, A), in other words a ring
spectrum.

e For (V,®) a monoidal co-category, the unit 1y comes equipped with a multipli-
cation 1y ® 1y = 1y and similar higher multiplications, making it into the initial
algebra object. Similarly, the unit in a symmetric monoidal oco-category is the
initial commutative algebra object.

e The category of algebra objects in the oo-category (Cat, X) of oo-categories
equipped with the Cartesian product is the category of monoidal oco-categories,
with monoidal functors as morphisms. Similarly, commutative algebras in
(Cato, X) are precisely the symmetric monoidal co-categories.

e Since we have seen that Sp is the unit in Pr™, it is naturally equipped with an
algebra structure as explained above. By the last point, this makes 8p into a
presentable stable symmetric monoidal co-category itself, with multiplication given
by the smash product of spectra A that preserves colimits in both variables. This
is of course very inexplicit, but agrees with the usual definition.

Proposition 1.6.17 ([Lurl7, 4.1.2.10]). If A : Fin, — V¥ is a commutative algebra
object in a symmetric monoidal co-category V defined by v : Fin, — Cat.,, then Aoc:
A — V? is an algebra object in the underlying monoidal oo-category of V define by
voc: AP — Cats.

Now, let us define modules over algebra objects. Just as the multiplication in an algebra
object A had to be defined via giving all maps of the foom ARA® - - ®A - AR ---®RA
over morphisms of A, not just the multiplication A ® A — A and unit 1y — A; we
have to specify not only the action M x A — M to give a left module M, but maps of
the forms

ARA® - QA5 A®---QA,
MRAQAR - ®A—-MA®---QA,
MRQARAR - A3 AQ---®A.

This are precisely the edges of the simplicial set Fin, x A or A°? x A!, depending on
whether we put an ordering on the multiplications in A or not.
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Definition 1.6.18 (|[Lurl7, 4.2.2.2|). Given an algebra object A : A’ — V in a symmet-
ric monoidal co-category V¥, a left module object over A is a functor M : A% x Al -V
such that

® M|porxq1) agrees with A

e For each [n] € A%, the map M ([n],0) — M([n],1) induced by the identity on [n]
and the map M([n],0) — M([0],0) induced by [0] — [n] sending 0 — n exhibit
M([n],0) = M([n], 1) x M([0], 0).

Similarly, one can define right module objects over A by using the map [0] — n sending
0 +— 0 instead. Denote the full subcategory of Fun(A® x Al, V) on left modules over A
by LMod(V), and the full subcategory on right modules by RMod4(V), omitting V if
it is clear.

Definition 1.6.19. Given a commutative algebra object A : Fin, — V in 'V, a module
object over it is a functor M : Fin, xA' — V such that

® M|pin, x{1} agrees with A

e For each (n) € A, the map M ((n),0) — M({n), 1) induced by the identity on [n]
and the map M ({n),0) — M ((0),0) induced by the unique map (n) — (0) exhibit
M((n}),0) =~ M((n),1) x M((0),0).

There is no directionality involved in this definition since the map (n) — (0) is unique,
so left and right modules do not have to be distinguished. Denote the full subcategory
on A-modules by Mod4 (V) C Fun(Fin, xAl, V).

Remark (|[Lurl7, 4.5.1.6]). If we regard a commutative algebra A as an associative algebra
object in the underlying monoidal co-category to V, then LMod4(V) ~ Mod(V) ~
RMod 4 (V).

Definition 1.6.20. Given a ring spectrum R, we define the oo-category of left module
spectra LModpg as the category of module objects over it in (Sp, A), and similarly the
category of left module spectra RModg.

Proposition 1.6.21 (|[Lurl?, 7.1.1.5|). The oco-categories LModg and RModg are again
stable, and the forgetful functor LModg — 8p sending M : A°? x Al — 8p to the image
of ({0),0) in 8p is exact.

Example 1.6.22. Every object V' of a monoidal co-category V is both a left and a right
module over the unit 1y, with module actions induced by the isomorphisms 1y ® V =
V 2V ® 1y. In particular, any spectrum is a module over the sphere spectrum S; and
every ring spectrum R is both a left and right module over itself, with module action
determined by the ring multiplication.
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Technical Remark. In particular, every presentable stable co-category is a module over
the unit object (Sp,A), we say that it is tensored over spectra. If all involved oo-
categories are presentable and all functors colimit-preserving, a tensoring is equivalent to
an enrichment by the Adjoint-Functor-Theorem, compare [GHI5, Chapter 7]. Generally,
this is however false; a general stable co-category is enriched over spectra as explained
in [1.5.29] but only tensored over finite spectra (see [CDH 204, 5.1.1]) since the colimits
involved in tensoring with infinite spectra may not exist.

Definition 1.6.23. We define the stable oco-category of finitely presented R-module
spectra LModﬁg as the smallest stable subcategory (as in containing R. In other
words, it contains all module spectra that can be generated by R using fibers and shifts
(and consequently also direct sums).

Similarly, the stable oo-category of perfect R-module spectra LMod®™ is the smallest
full subcategory containing R that is closed under fibers, shifts and direct summands
(ie. if M = N@ P € LMod®™, then N and P as well).

Definition 1.6.24. For R, S ring spectra, a R-S-bimodule is a spectrum M equipped
with both a left module structure over R, and a right module structure over S. In
particular, there are multiplication maps of the form

RA---NRAMANSAN---NS.
Denote the oco-category of R-S-bimodules by
rBiModg C Fun(A%” x A x A% 8p) .

Remark. We could by |[Lurl7, 4.3.2.7] also define pBiMods ~ RModg(LModg(8p)) ~
LModgr(RModg(8p)), and all of these characterizations work similarly in general
monoidal oco-categories.

Technical Remark. What we call ring spectra are also referred to as [£;- or A, -ring
spectra in the literature, as they are modules over the Ei-operad in (8p, A). Similarly,
commutative ring spectra are algebras over the E -operad.

The abstract definitions of (commutative) algebra objects and modules over them obtain
a nice geometric interpretation employing the theory of E,;-algebras (also called locally
constant factorization algebras): To any manifold M with boundary we can associate
an oo-operad [Ej; describing how disjoint unions of charts in M may be embedded into
each other. In the case M = R this recovers the E;-operad, where the ordering of factors
in a tensor product corresponds to the ordering induced on disjoint open intervals in R;
in the case M = R" with n — oo we recover E,, since there is enough space to move
charts around each other almost freely.

For R™ with 1 < n < co we obtain E,-algebras where multiplication is symmetric, but
higher coherences break down, this allows e.g. for the definition of braided monoidal oo-
categories Algg, (Cato,). For M = R, we obtain pairs of [E;-algebras and left modules
over them. See [Zet23| for more.
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1.7 Brave New Algebra

In many aspects, ring spectra behave similarly to ordinary rings — many constructions
and statements from commutative algebra still hold, which is why their theory is called
brave new algebra. Both settings can be compared using:

Construction 1.7.1. Recall from [1.5.22 that the stable co-category of spectra Sp con-
tains the ordinary category of abelian groups Ab as a full subcategory (its heart), by
sending each A € Ab to the associated Eilenberg-MacLane spectrum

[K(A,0), K(A, 1), K(A,2),...] = HA (1.51)

with homotopy groups concentrated in degree 0. Using the universal property of the
derived oco-category and its t-structure [Lurl7, 1.3.3.2], this extends to a functor D(Z) —
Sp. For an arbitrary commutative ring R, compose it with the forgetful functor D(R) —
D(Z) (since forgetting the R-multiplication preserves quasi-isomorphisms) to obtain the
Eilenberg-MacLane functor

H:D(R)— 8p. (1.52)

In particular, H(R][0]) is the Eilenberg-MacLane spectrum H R on the underlying abelian
group of R, and the module structure of elements of D(R) over R[0] translates into a
module structure over H R on the right since it turns out that H is lax monoidal.

Remark. An alternative, more explicit way to construct H would be to use the (Ab-
enriched) nerve-realization paradigm to extend H : Ab — 8p to simplicial abelian
groups, which by the Dold-Kan Correspondence are equivalent to Ch*(Z). Since the
homotopy groups 7, HC agree with the homology groups of the complex C' as the sim-
plicial sphere is identified with the complex Z[n], we see by Whitehead that H sends
quasi-isomorphisms to homotopy equivalences and thus factors through D" (Z). Extend
to all of D(Z) using shifts.

Theorem 1.7.2 (Stable Dold-Kan Correspondence, |[Lurl?, 7.1.2.13]). For R an ordi-
nary commutative ring, the Eilenberg-MacLane functor induces an equivalence of oo-

categories
D(R) ~ LModygr (1.53)

that restricts to equivalences of the stable subcategories DP(R) =~ Ll\/[odlfﬁ%f and

D™(R) ~ LMod/?,.

This statement may be seen as a conceptual reason for why derived categories are in-
teresting in the first place. Its proof relies on the following recognition criterion for
oo-categories of module spectra:

40


http://www.math.ias.edu/~lurie/papers/HA.pdf#theorem.1.3.3.2
http://www.math.ias.edu/~lurie/papers/HA.pdf#theorem.7.1.2.13

Definition 1.7.3. For C a stable co-category, an object C' € C is a compact generator
if it is compact, i.e. the functor

mape(C, —) : € — 8p (1.54)

it corepresents preserves filtered colimits, and it generates € in the sense that for each
D € €, if mape(C, D) =0 € 8p, then D = 0.

Theorem 1.7.4 (Schwede-Shipley recognition criterion, see [Lurl?, 7.1.2.1]). If Cis a
presentable stable oo-category with a compact generator X, and end(X) is the asso-
ciative ring spectrum of endomorphisms of X, then there is a canonical equivalence of
categories

Cr~ LMOdend(X) . (155)

Proof of [1.7.9. We already know that D(R) is stable and presentable by [1.5.16 The
complex R[0] concentrated in degree 0 is a compact generator since the it represents the
identity functor

MapD(R)(R[O], —) = RHom(R[0], —) = Idp(r) (1.56)

which is in particular faithful and preserves filtered colimits. By the recognition criterion,
we thus know that D(R) ~ LModenq(r). But

R forn =0,

] (1.57)
0 otherwise

mpend(R) = Extp" (R, R) = {

so we can identify end(R) = H R, with multiplication given by the Yoneda product on
Ext groups, which in this case is just the product in R.

The perfect and finitely presented cases follow from the very definitions of the respective
subcategories as the smallest ones generated by R[0] or H R respectively via shifts, fibers
and potentially direct summands. O

This result explains one of the main ideas behind brave new algebra: Instead of trying
to understand derived categories, we could do algebra over general ring spectra which is
formally very similar to algebra over ordinary rings, but when restricted to Eilenberg-
MacLane spectra automatically lives in the derived world. Many definitions and results
from commutative algebra and algebraic geometry carry over to the theory of ring spec-
tra, for example localizations, étale maps, Kéhler differentials, Henselian rings, schemes
and stacks. As long as we are working over a base (ordinary) ring containing @, the
resulting geometry, called spectral algebraic geometry, is by [Lurl7, 7.1.4.11] equivalent
to derived algebraic geometry over commutative differential graded algebras or simplicial
rings, but in non-zero characteristic, over general discrete rings or even ring spectra it is
different and superior for some applications, like chromatic homotopy theory or elliptic
cohomology.

Let us develop some more elementary results on ring and module spectra.
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Definition 1.7.5 ([Lurl7, Section 4.4]). If A, B, C are ring spectra, we define the relative
tensor product

Xp ABiMOdB X BBiMOdC — ABiMOdC (158)
using the two-sided bar construction
—
— —
M®@pN:=colm | ...MABABAN — MABAN <— MAN (1.59)
A — —_—
—

where maps from the right to the left are induced by multiplication, and from the left
to the right by the unit in R. This operation is associative, with unit B regarded as a
B-B-bimodule.

Remark. Compare with the definition of the tensor product of ordinary bimodules as

the coequalizer coequ ( M® B® N M ® N >, or with the Hochschild complex

that arises via the similar cyclic bar construction. One can also define the relative tensor
product as a representing object for bilinear maps, just like the ordinary tensor product

of rings.

Proposition 1.7.6. The relative tensor product is equivariant with respect to the func-
tor (=) : 4BiModg = perBiMod 40r applied to both arguments (and exchanging them)
or the target, in the sense that (M ®p N)? = N?Qpe» M. In particular, if R is a com-
mutative ring spectrum so that we can regard any R-module as a left or right module,
i.e. as a bimodule, the relative tensor product

— Q@p —: MOdR X MOdR — MOdR (160)

is symmetric in its arguments.

Definition 1.7.7. The relative tensor product has adjoint internal Hom functors

HOHIC : BBiMOdC X ABiMOdC — ABiMOdB
2Hom : 4BiModg x 4BiMods — gBiMode

equipping the mapping spectra mapgyoq, (—, —) and mapyygq,(—, —) with bimodule
structures.

Remark. While we distinguish between 4Hom and Hom , in this statement for clarity,
in the next chapters we will always use the latter, more common notation.

Proof. Since the smash product preserves colimits separately in each variable, and the
relative tensor product is defined as a colimit, it preserves colimits in each variable as
well (compare |[Lurl7, 4.4.2.15] for a more general statement). Hence, by the adjoint
functor theorem, the functors M ® p— and —®p N admit right adjoints 4Hom (M, —) and

42


http://www.math.ias.edu/~lurie/papers/HA.pdf#theorem.4.4.2.15

Hom. (N, —) respectively, which are also functorial in M. In particular, pHom(B, —)
is adjoint to the identity functor for A = B, so it is isomorphic to the identity functor
itself. Similarly for Homp (B, —).

For M an A-C- and N a B-C-bimodule, the spectrum underlying Hom. (N, M) is
Mapgyod, (B, Home (N, M)) ~ mappy,q. (B ®p N, M) ~ mapgryq,. (N, M)

and similarly for 4Hom. O]

Definition 1.7.8. For f : A — B a map of commutative ring spectra, precomposition
with f induced the change-of-coefficients or restriction-of-scalars functor

(—=)a : Modg — Mod 4 (1.61)
which by [Lurl7, 4.5.3.1] has a left adjoint, the eztension-of-scalars functor
B®4 —: Mody — Modpg (1.62)

which is symmetric monoidal.

Remark. Explicitly, if M : A? x A! — 8p is a B-module, then M4 : A? x A — 8p is
determined by Ma|peryqo) = M| porx oy and MA|ADP><{1} = B together with the natural

transformation M |aorx {0} M4l B

Similarly, for N an A-module, the B-module B ®4 N is indeed defined as a relative
tensor product, where we view N as an A-S-bimodule and B as a B-A-module with
module structure

B®B®..BRA®R---A—B (1.63)
defined by applying f to the factors of A and then multiplying in B.
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2 Algebraic L-Theory

In this chapter, we introduce the notion of Poincaré oo-categories, which are stable
oo-categories equipped with a notion of quadratic forms. We associate L-groups and
L-spectra to them, generalizing several variations of classical L-theory as developed
for example in [Ran92|. Our constructions are originality due to Lurie’s Lecture notes
[Lurll], and have been refined in the series of papers [CDH™20al, [CDH™20b|, [CDH™21]|
by several authors that we use as a main reference.

2.1 Bilinear and Quadratic Functors

As algebraic L-theory is classically all about classifying quadratic or symmetric forms
modulo algebraic bordism (i.e. dividing by Lagrangian subspaces), its formulation via
oo-categories will rely on categorifying these concepts. We follow a very straightforward
analogy: For us, stable oo-categories should be regarded as a categorification of vector
spaces or modules.

Remember that functor F': € — D between stable co-categories is called
e reduced if it preserves the zero object,
e cxcisive if it sends pushout squares to pullback squares,

e ezact if it preserves finite limits (or equivalently, finite colimits).
Proposition 2.1.1. A functor F' as above is exact iff it is pointed and excisive.

Proof. First of all, a square in a stable co-category is a pushout iff it is a pullback. Since
terminal object and pullbacks are special cases of finite limits, the if direction is clear.
For the only if direction, every finite limit can be written using the terminal object and
pullbacks by dualizing [Lur(9al, 4.4.2.5]. O

Under above comparison of stable co-categories with vector spaces, reduced functors are
zero-preserving maps of vector spaces, excisive functors are affine maps, while exact func-
tors are linear maps. More generally, any smooth function between finite-dimensional
real vector spaces can be Taylor expanded as the sum of a constant, a linear function,
a quadratic function and so on. Similarly, a functor between stable (and even slightly
more general) co-categories can be Taylor expanded:
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Definition 2.1.2. Let p: (A')" — € be an n-cubical diagram in an co-category € that
possesses finite limits, and let K, be the simplicial set obtained from (A')" by removing
the point (0,...,0) and all simplices containing it. p is called

e Cartesian if, identifying (A" = K

n?

it is a limit cone,
e strongly Cartesian if for every 2-dimensional cubical face
fodiny <o x{igr b x A Ligg } o x {ip g x A x i px- - x {i, } € (AD”

with 1 <k <l <mnandi; €{0,1} for j € {1,...,]%,...,[,...,71}, the restriction
po fis a Cartesian square.

In particular (by a cofinality argument), strongly Cartesian squares are Cartesian. Sim-
ilarly, one can define (strongly) coCartesian cubical diagrams.

Definition 2.1.3. A functor F' : € — D between oco-categories C with finite colimits
and D with finite limits is called n-ezcisive if it sends strongly coCartesian (n+ 1)-cubes
in C to Cartesian (n + 1)-cubes in D. Again, by a cofinality argument, an n-excisive
functor is automatically (n + 1)-excisive.

Remark. In stable oo-categories, strongly coCartesian and strongly Cartesian cubes
agree; however one can also implement this definition and the Goodwillie calculus that
builds on it more generally, where this distinction is important.

Example 2.1.4.

e A functor F': € — D is 0-excisive iff it sends every morphism to an isomorphism,
since for a 1-cube being strongly (co)Cartesian is a vacuous conditions, while being
Cartesian is equivalent to being an isomorphism.

o [ is l-excisive iff it is excisive.

These are the functors that replace polynomials of degree n for Taylor expansion. Of
interest for us will be a characterization of 2-excisive functors.

Let us first take a slight detour into the theory of quadratic forms: Fix R be a commu-
tative ring and M a (projective) R-module.

Definition 2.1.5. A map b: M x M — R is bilinear if for any m € M, the induced
maps b(m,—): M — R and b(—, m) : M — R are linear. We say that b is symmetric if
b(m,m') = b(m/,m) for all m,m’ € M.

If we denote the dual of M by MY = Hompg(M, R), then a symmetric bilinear map
b induces an adjoint map b* : M — MV sending m > b(m,—), and b is called non-
degenerate if b* is an isomorphism.
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Definition 2.1.6. An inhomogeneous quadratic form on M is a map ¢ : M — R such
that ¢(0) = 0, and for any m, m’ € M the polarization by(m,m’) := q(m+m') —q(m) —
q(m') is symmetric bilinear. It is a quadratic form if for any n € N and m € M, we
have g(nm) = n?q(m).

Proposition 2.1.7. If 2 € R is invertible, then the map ¢ — b, from quadratic forms
to symmetric bilinear forms is a bijection.

Proof. To a symmetric bilinear form b : M x M — R, we may conversely associate a

quadratic form g,(m) := 1b(m, m) with polarization

by, (m,m') = gp(m +m') — gp(m) — g(m’) = b(m +m',m +m') —Qb(m, m) — b(m/,m’) _

= %(b(m, m') + b(m',m)) = b(m,m’) .

In particular, this expression is bilinear; also ¢,(0) = 0 and g¢(nm) = n%q(m) hold so g,
is indeed quadratic. Finally,

1 1
a,(m) = 5 (¢(2m) —g(m) —g(m)) = 5(4 =1 = 1)q(b) = q(b) . O
Proposition 2.1.8. Let 2 € R still be invertible and ¢ : M — R be an inhomogeneous

quadratic form with polarization b, then the difference [(m) := g(m)—qy(m) is a Z-linear
map and ¢ is a quadratic form iff [ vanishes.

Remark. This means that an inhomogeneous quadratic form can uniquely be decomposed
into a quadratic and a Z-linear form, and conversely it is clear that any sum of a quadratic
and Z-linear form is inhomogeneous quadratic.

Proof. Additivity of [ follows from the calculation

1
I(m+m') :q(m+m’)—§b(m+m’,m+m’) =

= q(m) + q(m’) + b(m, m') — %(b(m, m) + b(m’, m’) + 2b(m, m')) =

1 1
= a(m) — Zb(m,m) + gm') — b’ ) = 1m) + ().
Further, [ vanishes iff ¢ = ¢, but in this case g,(nm) = 1b(nm, nm) = n’q,(m) making ¢
quadratic. Conversely, if ¢ is quadratic, the difference | = q — g satisfies I[(nm) = n%l(m)
as well, but for n = 2 this means that [(n)+1(n) = l(n+n) = [(2n) = 2%I(n) so 2I(n) = 0,
implying that [ must vanish. O]

We will categorify these statements in the course of this section, allowing us to drop the
invertibility requirement on 2.
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Proposition 2.1.9 (|[Nik20] 5.7). For P a finitely generated projective R-module, let
B(P, P) be the R-module of bilinear forms b : P x P — R, and equip it with the
So-action determined by sending b +— bo 7, where 7 : P x P — P x P exchanges the
components. Then, the space of orbits (i.e. the coinvariants of this action)

B(P, P)

B(P,P)s, = R(b—borlbe B(P,P))

(2.1)
is isomorphic to the R-module ?(R) of quadratic forms.

Proof. Given an orbit [b] € B(P, P)s, with representative b : P @ P — R, we can
associate to it the map ¢° : P — R that sends p — ¢°(p) := b(p, p). This clearly satisfies
¢(0) = 0 and ¢°(np) = n’¢®(p), also its polarization b + b o 7 is bilinear. We need to
show that the construction b — ¢® is injective and surjective. First, let us restrict to the
case where P is finitely free with basis (e;)Y,, so b is determined by a quadratic matrix.

Injectivity: If ¢°(p) = b(p,p) = 0 for all p € P, then for p’ € P we have b(p,p’)+b(p',p) =
bp+p,p+p)—0bp,p) —b,p) =0 so that b is antisymmetric. But this means that
we can write b = 0" — D" o 7 where b"* is the upper triangular part of b regarded as a
matrix, so [b] = 0 in the coinvariants.

Surjectivity: Given any quadratic form ¢, we define b? via the upper triangular matrix
with diagonal entry on the basis element e; given by ¢(e;, €;), and upper non-diagonal
entries determined by the polarization b, of ¢. Then,

N
Z)\Gl = )\161 +Q<Z)\€Z>+b (/\16172)\7;@@-> R —
=2

=2

_Zq (Nie;) +Zb (Ai€is Aje;) Zb Ni€is Aj€5) (Z)\ez>

1<j

Now, for P finitely generated, we may write it as the quotient 7 : P/ — P = P/N
of a finitely free R-module P’ to which we can apply the above argument. Since P is
projective, the short exact sequence

0—N—->P —-P—=0 (2.2)

splits, so P’ =2 P & N. By definition, quadratic forms on P are the same thing as
quadratic forms P’ — R that factor through P; and similarly bilinear forms on P are
precisely those homomorphisms P’ ® P’ — R that send P® P’ & P'® P to zero. Such a
form b € B(P, P) can be written as by — by o 7 for some b € B(P, P) iff b =b; — by o7 for
by € B(P', P'), since we can just subtract from b its projection to the direct summand
P'® P & P® P. Our isomorphism constructed for the free P’ thus identifies the
respective subspaces of forms on P on both sides. O]
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Remark. Similarly, invariants of this action are precisely the symmetric bilinear forms,
and the canonical map B(M, M) — B(M, M)g, sending a symmetric bilinear form to
its orbit is an equivalence if 2 is invertible, as we have seen.

Our next step will be to categorify these definitions.

Definition 2.1.10. Let € be an arbitrary oo-category, and X,Y € €. We call X a
retract of Y if there is a retraction diagram of the following form, exhibiting r o7 = idx:

X/Y\X

Proposition 2.1.11. If C is a stable co-category with X,Y € €, then X is a retract of
Y iff there is an object X+ € € such that we can write Y = X @ X*. In other words,
retracts and direct summands are the same thing in the stable case.

Proof. fY = X@®X*, then the canonical inclusion and projection maps X -5 X@X+ 2
X associated to a biproduct exhibit X as a retract of Y.

Conversely, given maps X 5y 5 X that compose to the identity, one can set X+ :=
fib(r) to obtain the commutative diagram

Xt Xt
Y
X X

where the map 7’ is obtained by applying the universal property of fib(r) to factor the
morphism (1 —ir) : Y — Y through X*. By the universal property of the biproduct,
these maps combine to a composition X ® X+ — Y — X @& X*. We need to show that
it agrees with the identity, and that the inverted composition ¥ — X & X+ — Y does
so as well.

The first claim follows from r o7 = idy and ' o4’ = idy., where the latter equality
holds since 7/ 0’ is obtained by uniquely factoring (1 — ir)i’ through X+, but ri’ = 0 be
definition.

For the second claim, it suffices to show that 7 or + i’ o7’ = idy by the definition of the
sum of morphisms in a stable co-category. But ¢/’ = 1 — ir by definition of r’. ]
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Proposition 2.1.12. In the situation of [2.1.11], the complementing direct summand X+
is essentially unique.

Proof. Assume that we have an isomorphism a : X & Z — X @ Z’, that induces the
identity on X. To show that in this case Z = Z’, we write down the diagram

X~ X Z — cofib(iy)

|
|
a |
!
. +

X — X @2 — cofib())

where the left square commutes by assumption, and the right square by functoriality
of the cofiber. Using its universal property or a pasting argument, it is clear that
cofib(i1) = Z and cofib(7}) = Z’, and these are isomorphic since we have seen 7; = ;. [J

Let in the following € and D be stable co-categories.

Definition 2.1.13. Given a reduced functor B : €xC — D and X,Y € €, the inclusions
and projections of the biproduct X @& Y induce morphisms

B(X,X)®»B(Y,Y) —BXa®Y,X®Y) — B(X,X)® B(Y,Y) (2.3)

that compose to the identity. This exhibits B(X, X) ® B(Y,Y) as a direct summand of

B(X®Y, X®Y), and we call its complement B(X,Y") the polarization of B.

Proposition 2.1.14. The polarization B : € x € — D of a reduced functor B is bire-
duced, i.e. B(0,—) and B(—,0) are identical to the O-functor. In fact, the construction
B — B is left and right adjoint to the inclusion of bireduced into reduced functors, in
particular it is functorial itself.

Proof. By definition, B(X ® Y, X @Y) = B(X,X)® B(Y,Y)® B(X,Y). If X = 0,
this means B(Y,Y) = 0@ B(Y,Y) & B(0,Y) so by uniqueness of the complement,
B(0,Y) 2 0. Conversely for Y = 0. The second claim is [CDH"20a) 1.1.3], in particular
the (co-)units of these adjunctions are given by the identity transformation on bireduced
functors, and the transformations B(X,Y) — B(X,Y) — B(X,Y) which are induced
by the inclusions and projections out of the direct sums in B(X @Y, X & Y). O

Definition 2.1.15. For ? : € — 3p a reduced functor, the functor B : C® x C® — 8p
determined by B(X,Y) := X & Y) is reduced. We can use [2.1.13| to construct its
polarization Be(X @ Y'), which is also called the polarization of Q.
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From this construction, it is automatic that there is an isomorphism nxy : Be(X,Y') =
Be(Y, X) for all X|Y € € since the direct sum @ is symmetric in its arguments. In fact,
this isomorphism is natural in X, Y and there is a 2-simplex o witnessing nx yony x = id.
Also, the whiskerings o o nxy and nxy o o are isomorphic 2-simplices, and there are
infinitely many higher coherence relations of similar forms. A great advantage of our
oo-categorical approach is the following elegant way to phrase this:

Definition 2.1.16. For € an oco-category and G a group (or a monoid), an object with
G-action in C is a functor f : BG — €, and the image X = f(x) of the unique object of
BG in € is its underlying object.

The homotopy invariants X" are the limit over the diagram f if it exists, and the
homotopy coinvariants X,q are the colimit over f.

Example 2.1.17. Let C be the derived category D(R) of a commutative ring R, and M
a (projective) R-module equipped with a G-action 7, : M — M for g € G. Then, using
1.5.18| the homotopy coinvariants of this action on M|[0] € D(R) can be calculated as

Mth<~-—>@Mﬂ>@M$M%O—>...> (2.4)
g,heG geG

with e.g. di(my) := > (9 — 1)my, so its zeroth homology yields precisely the ordinary

coinvariants M/G. Note that the above is precisely the complex computing the group
homology of the G-module M. Similarly, the homotopy invariants M"“ compute group
cohomology.

Construction 2.1.18. For G finite and C a stable oco-category, there is a canonical
norm map Xne — X", and the cofiber

X' = cofib (Xpe — X"9) (2.5)

is the Tate spectrum of X. We refer to [Lurl7, 6.1.6] for a precise construction of this
map, since we will only need it in a special case where it simplifies a lot (see the next
construction). Intuitively, an orbit in X is sent to the sum over all of its elements,
which is an invariant in X"¢. In the case of a finite group action on an R-module as
above, this agrees with the ordinary norm map, and the mapping cone construction for
the cofiber shows that the complex M[0]'¢ calculates Tate cohomology.

Remark. We will mainly deal with Ss-actions and their (co)invariants, for Sy the sym-
metric group on two objects.
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Construction 2.1.19 (JCDH"20a| 1.1.10). If By is the polarization of the reduced
functor ? : C? — 8p, there are canonical natural transformations

Bo(X, X)ns, — 2X) — Bo(X, X)"52 (2.6)

in X whose composition is the norm map. They are induced by the codiagonal and
diagonal maps V: X ® X — X and A : X — X & X, inducing

Bo(X, X) = (X & X) = 9(X) = (X, X) = Be(X, X) (2.7)

where the first and last map are inclusion of and projection onto a direct summand, which
factor through the homotopy (co)invariants with respect to the Sy-action exchanging the
summands of X. Alternatively, they are induced by the (co)units of the adjunctions in
when setting X =Y and taking homotopy (co)invariants.

Definition 2.1.20. A functor B : € x € — D is called bilinear if for each C' € G, the
functors B(C, —) and B(—, (') are exact. In particular, it has to be bireduced.

Additionally, B is called symmetric bilinear it is a homotopy fixed point under the Ss-
action on the oo-category of bilinear functors that exchanges both arguments. Explicitly,
B(X,Y) = B(Y,X) for all X,Y € €, and this natural isomorphism satisfies higher
coherence relations.

Proposition 2.1.21 (JCDH™20a] 1.1.13). For € a stable oo-category, a reduced functor
?:C? — Sp and By its polarization, the following conditions are equivalent:

e Qis 2-excisive.

e The functor A¢ : C? — Sp mapping X to the fiber of the canonical map
Ao(X) := fib ((X) — Be(X, X)"?) (2.8)
is exact, and By is bilinear.

e The functor X — cofib (Bo(X, X)ns, — ?(X)) is exact, and By is bilinear.

If any of those conditions hold, ¢ is called a quadratic functor, and the pair (C,?) is then
called a hermitian oco-category. In this case, By is automatically symmetric bilinear,
as it is defined as the polarization of (X @ Y') which is of course symmetric, compare
[CDH™20al, 1.1.9].

Remark. The letter @ ("Qoppa", pronounced "Koppa") stems from the early greek al-
phabet.
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Definition 2.1.22 ([CDH™20a, 1.2.1]). A hermitian functor F : (C,?) — (D, ®) be-
tween hermitian oco-categories consists is an exact functor F': € — D, equipped with a
natural transformation ¢ = F*® := ® o [P, Formally, we can construct an co-category
Cat”, of hermitian co-categories and hermitian functors as the (cartesian) Grothendieck
construction of the functor

(Cat®™)? — Cato, (2.9)
that associates to each stable co-category € its category of quadratic forms, defined as

—

a full subcategory on Fun(C?, 8p). We need to work with large co-categories Cat,, since
Catsl is large.

Remark. The natural transformation 1 : @ = ® o F°? induces transformations By =
Bg(F—, F—) and hence

Mape(C, DoC") — Mapg (FC, D F'C)
natural in C,C". Setting C' = DeC" and inserting idp,cr, we obtain 7, : F'Dg = D¢ F'°P.

One can also go in the inverse direction:

Proposition 2.1.23 (JCDH™20al 1.1.17, 1.3.5]). A symmetric bilinear functor B : C% x
C? — Sp induces two quadratic functors C? — Sp:

o °4(X) := B(X, X)ps, is the spectrum of quadratic forms on X,
o ?5(X) := B(X, X)"2 is the spectrum of symmetric forms on X.

Given any quadratic functor Q : € — Sp with polarization By, the natural transforma-
tions
0%, = ¢ = %, (2.10)

from [2.1.19] are (co-)units exhibiting these constructions as the left and right adjoint of
the functor sending ? — Bs.

Remark. Usually, there will be several quadratic functors with the same polarization B.
The above proposition may be interpreted as saying that 9% and 9% are the left and
right extremes in this set, while other quadratic functors lie between them in a way.

We will be interested in a more refined situation:

Definition 2.1.24. A bilinear functor B : C? x C? — 8p is called right non-degenerate
if for any Y € €, the functor B(—,Y") : C°%? — 8p is representable by an object DgY € C
in the sense that

B(X,Y) = mape(X, DgY) (2.11)

The representing objects assemble (using the Yoneda Lemma) into an exact functor
Dpg : C? — C, called the duality functor associated to B. Dually, B is left non-degenerate
if B(X, —) is always representable.
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Definition 2.1.25. A symmetric bilinear functor B : C%? x C? — 8p is called non-
degenerate if the underlying bilinear functor is right (or equivalently left) non-degenerate.
Also, a quadratic functor ? is called non-degenerate if By is, and we denote Dp, by Ds.

Definition 2.1.26. For B a symmetric bilinear functor as above, the composition

mapG(Y7 X) = mapGDP(X7 Y) — mapG(D(l)?pX7 DBY) = B(D%DX7 Y) =
~ B(Y. DYX) = mape(Y, DpD¥'X)

induces a natural transformation id = DpD9, called the evaluation map. If this is
a natural isomorphism, we call Dg and B perfect. Similarly, a quadratic functor @ is
perfect if By is.

Definition 2.1.27. A hermitian oo-category (C,?) is called Poincaré oco-category if @ is
perfect. A hermitian functor between Poincaré oo-categories I : (C,?) — (D, ®) with
associated natural transformation 7 : ¢ = ® o F'? is called duality-preserving if the
natural transformation 7, : F' o D¢ = Dg o F'°P canonically induced by 7 is a natural
isomorphism.

The oo-category of Poincaré oo-categories Catl, C (?atgo is the non-full subcategory
spanned by Poincaré co-categories and duality-preserving functors.

Technical Remark. The non-fullness might seem strange at first glance, but it is a shadow
of the fact that Gatzo should actually be an (oo, 2)-category, while Cat?, gets rid of some
lax information.

While we have used ? to construct Be and Dy, one could also go the other way around:

Definition 2.1.28. A stable co-category with duality (C, D) is a stable oo-category C
equipped with an exact anti-autoequivalence D : €°? — € such that Ide = Do DP holds,
as well as higher coherences. To be precise, there is an action of Sy on CatS sending
C +— €% and we require (€, D) to be a homotopy fixed point of this action.

Construction 2.1.29. Starting from a stable co-category with duality (C, D), one can
construct an associated symmetric bilinear functor B(—, —) := mape(—, D(—)) : C% X
C°? — Sp which is automatically perfect. Via [2.1.23| one obtains associated quadratic
functors

% : C? — 8p, C + mape(C, DC)ys, ,
Q%1 C? — 8p, C + mape(C, DO)"2
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Example 2.1.30 (|Nik20, 5.7]). For R a commutative ring, equip the stable co-category
DrPei(R) with the functor

Q% DP(R) — 8p, M s map p gy (M " M, R[0])"52 (2.12)
and also define 9% by replacing homotopy invariants with coinvariants. For M

P[0] with P a finitely generated projective R-module, map g (P[0] ®" P[0], R[0])
Hompg(P ® P, R)[0] since we are already working with a projective resolution, so that

[raml!

7095(M) = Ho(Homp(P ® P, R)[0]"") = Homg(P ® P, R)*’ (2.13)
is the R-module of symmetric bilinear forms on M. Similarly, using we see that
2% (M) agrees with the R-module of quadratic forms on M.

To show that 9% and 9% are quadratic functors equipping DPf(R) with the structure
of a Poincaré co-category, we calculate their polarization

Boy, (M, N) @® 94(M) @ 93(N) = 93(M ® N) = mapp ) (M @" M, R[0])">@
hs
D (mapD(R)(M ®" N, R[0]) ® map p gy (V ®" M, R[0]))" @ map p gy (N ®" N, R[0])">>
Since M @ N =2 N @ M, and the non-cross terms cancel, we are left with
BQ%(Ma N) gmapD(R)(M ®L Na R[OD = B?%(M7 N) (214)

after performing the same calculation in the quadratic case. In particular, we can read
off De: (N) = RHom(N, R[0]) = Dea (V) where RHom is the internal Hom right adjoint
to —®% N, in other words the ordinary derived Hom functor. Clearly Dga is exact, and
it is known (compare that Des o Dos =~ Id ppert(pp) for perfect complexes. Since 9%
and 9% are clearly the two universal quadratic functors associated to D , which is a
duality functor by its construction, we are finished.

Remark. This also works for D'(R) and several other subcategories of the derived cat-
egory, and for non-commutative rings. For more, see the section on module spectra and
apply the stable Dold-Kan correspondence.

2.2 L-Groups of a Poincaré oco-category
Let (C,?) be a Poincaré oo-category.

Proposition 2.2.1. For n € N, the n-shifted quadratic form 2" := ¥"09 makes (€, 2I"))
into a Poincaré oo-category as well.
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Proof. We can calculate By = X" o By and Dgn) = 3" o Dg from their definitions. As
3™ is exact, it preserves reducedness of @, bilinearity of By and exactness of A¢, making
QM quadratic. Also since De is exact, Y¢ 0 Dg = Dg 0 3%, = Do o (Q)° and therefore
Do) © Dgﬁl] >~ Do o Q"o X" o DgF o Ide so Q is perfect. O

Definition 2.2.2. A quadratic object (C,q) in € is an object C' € C equipped with a
point ¢ € Q*(C). We call ¢ a quadratic form on C, and identify it with a map of
spectra S — ?(C'). Similarly, an n-dimensional quadratic object (C,q) of € shall be
defined as a quadratic object in (€, 2=").

Definition 2.2.3. A quadratic object (C,q) in (C,?) induces a point in
q € QC) — Q*B(C,C) = Q> map(C, DeC') = Mape(C, DoC) (2.15)

where the arrow ?(C) — ?(C @ C) — B(C,C) is again induced by the diagonal map.
If the corresponding map ¢; : C' — DeC' is an isomorphism, we call (C,q) a Poincaré
object. Similarly, we define n-dimensional Poincaré objects.

Example 2.2.4. Let M be a compact topological n-manifold; then for R a commutative
ring, the singular complex C*(X; R) € DP*(R) is an n-dimensional Poincaré object,
with quadratic form induced by the Kronecker pairing making use of its fundamental
class. It is difficult to show that C*(X; R) is perfect; this is equivalent to the cohomology
groups of M being bounded and finitely generated, which follows from the fact that as
an absolute neighborhood retract M is homotopy equivalent to a finite CW complex.
Being a Poincaré object is then just restatement of Poincaré duality; the map

—N[M]:C*(M;R) — Dg-nC*(M; R) = RHom(C*(M; R), R)[—n| = C,_«(M; R)
(2.16)
representing the Kronecker pairing is a quasi-isomorphism. Note that RHom is the usual
internal Hom since C*(M; R) is free in each degree.

Definition 2.2.5. The functor Q29 : C? — § sends P € € to the space of quadratic
objects with underlying object P. Applying[1.2.25] this functor classifies a right fibration
He(C,?) — € with fiber over P given by Q>°?(P). We call the total space the co-category
of quadratic forms in C, and its largest subgroupoid Fm(C,?) := He(C, ?)™ the space of
quadratic forms in C.

Similarly, the full subgroupoid of this space spanned by the Poincaré objects is the space
of Poincaré objects Pn(C,?). By construction and functoriality of the Grothendieck con-
struction, Pn, Fm : Cat?, — § are functorial with respect to duality-preserving functors.

Remark. In particular, it follows from the definition of Pn(C,?) that an isomorphism
between two quadratic objects (P, ¢) and (P’,¢') is an isomorphism f : P — P’ together
with a path from f*¢’ to ¢ in Q>*°?(P). Here and in the following, by f* we mean the
map ?(f) : (P") — 2P).
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Definition 2.2.6. Let (P, q) be a Poincaré object in C. A Lagrangian of it is a morphism
f: L — Pin C, together with a path n: f*¢ — 01in Q>Q(L), where f* := Q>¢(f); such
that the sequence
q
L5 P=pep 2 Do (2.17)

is a fiber sequence in C, where we identify P and DoP using the fact that (P,q) is a
Poincaré object. This involves in particular the vanishing of the composition of the
above maps, which we require to be witnessed by the path in Mape(L, DeL) induced
by the path n in Q°9(L). If (P,q) admits a Lagrangian, it is called metabolic. We also
extend this definition to n-dimensional Poincaré-objects replacing ¢ by ="

Remark. We may rewrite this as requiring that n induces an isomorphism
L 2 fib(DoP — DyL) = Dy cofib(L — P) (2.18)

Example 2.2.7. For M a compact oriented topological n-manifold with boundary i :
OM — M, the pullback
i C*"(M;R) — C*(0M; R) (2.19)

is a Lagrangian of the (n — 1)-dimensional Poincaré object C*(OM; R) € DP*(R), with
1 induced by capping with the relative fundamental class. This is a restatement of
Poincaré-Lefschetz duality, as we require the map

DoC*(OM; R)[—n] = Cp,—.(OM; R) ~ cofib(i*) = C*(M,0M; R) (2.20)
induced by n to be a quasi-isomorphism.
Example 2.2.8. Equip the zero object 0 € C with its unique quadratic form, making

it into an n-dimensional Poincaré object for arbitrary n. A terminal map f : L — 0 for
L € C together with a path n: f*0 =0 — 0 is a Lagrangian iff the sequence

L—0— Do L[—n] (2.21)
is a fiber sequence, in other words the loop n € QQ>QI="(L) = Q~el-1(L) —
Mape(L, Do L[—n — 1]) induces an isomorphism

n: L —» DeL[—n — 1] (2.22)

making L into an (n + 1)-dimensional Poincaré object. Compare this with the last
example: A null-bordism of the empty n-manifold is the same thing as an (n + 1)-
manifold.

Proposition 2.2.9. The set of isomorphism classes of Poincaré objects mo Pn(C, ?) forms
a commutative monoid under the operation
[(P.ole(P,d)]=[(P&PF.qoq). (2.23)

where the orthogonal sum q & ¢ € Q®P & P') = Q®Q(P) & Q™(P') & Q*°By(P, P')
corresponds to (¢,¢’,0). The classes of metabolic Poincaré objects form a commutative
submonoid my Pn?(€C,?).
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Proof. This operation well-defined on isomorphism classes as it is clearly functorial, also
it is associative since the direct sum is. The zero Poincaré object 0 equipped with its
unique quadratic form acts as a unit since P & 0 = P, and we know & is commutative.
Finally, the metabolic objects form a submonoid since 0 is metabolic, and the orthogonal
sum of two metabolic objects admits the direct sum of the respective Lagrangians as a
Lagrangian. [

Definition 2.2.10. Let (€, ?) be a Poincaré co-category, then we define its n-th L-group
as the quotient of commutative monoids

Pn(€, ="
Ln(C,9) = = Ig( ) (2.24)
7o Pn?(C, Q=)
Lemma 2.2.11. For C a stable co-category and C' € C, the sequence
oL 00t (2.25)

is always a fiber sequence.

Proof. Via matrix multiplication (id¢,id¢)o (idg, —ide)? = 0, we see that this sequence
composes to the zero map (witnessed by a canonical homotopy). We have to show that
the left square in the diagram

C 25 CcepC s C
[ e |
0 y C > 0

is a pushout, which by the pasting lemma and the fact that pushout and pullback squares
agree is equivalent to the right square being a pushout. Since the middle vertical map
agrees with m — mo, by definition of addition and subtraction of morphisms we may shift
o to the right horizontal arrow, obtaining V = m; + m5. We reduce to showing that the
lower right square in the diagram below is a pushout, which again follows by iteratively
applying the pasting lemma.
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Proposition 2.2.12. The commutative monoids L, (C, ?) are actually abelian groups.

Proof. The inverse to [(P,q)] is given by [(P, —q)] where —¢ arises from Q°?(P) being
an infinite loop space, in particular we can invert loops. To see this, use the Lagrangian
A: P — P @ P given by the diagonal map. In the induced sequence

A Q@(fq) DeA
P—P@P = DoP@P)— DoP |, (2.26)

the right map (DeA)o (¢ ® (—q)) : P® P — DgP is isomorphic to g o (idp, — idp) since
the diagonal map in C° is the codiagonal in C, so the square

PopP—Y P

Joor |

Do(P & P) 225 DoP

commutes by definition of ¢ & ¢. Therefore, we are finished after we apply the previous
Lemma and the fact that ¢ : P — DeP is an isomorphism. m

2.3 Tensor and Cotensor Poincaré Structures

Construction 2.3.1 (J[CDH™20a, 6.3.2]). Given an arbitrary oo-category J and a her-
mitian oo-category (C,?), let us define the cotensor hermitian co-category (C,?)? with

underlying stable co-category given by Fun(d, €). The corresponding quadratic functor
Q9 : Fun(g, C)°? — 8p is defined as

NF) = lign QF (7)) (2.27)
1€4°P
which means that
BYF, F) = lim B(F (i), F'(i)) . (2.28)
1egop

If ? is non-degenerate, admitting a duality functor D : C°? — €, then

D¥F)(i):= lim  DF(j) (2.29)

(i—4)€(i)oP

is a duality functor for 99, if all involved limits exist in C.

Proof. Seeing that B? is the polarization of ¢ is straightforward since limits commute
with direct sums (as those are also limits). Clearly, 97 is reduced and B is bilinear.
Similarly, we calculate

N(F) = fib(2(F) — Be(F, F)"2) = lim A¢(F(i)) (2.30)

1€J°P
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which is also exact. For the duality functor, rewrite

nat(F, D?(F')) ~ /

1€

map | F(i), lim DF’):/ lim  Bo(F (i), F'(j
J ( ) (i=7)€(dsy)°P b) icg (i=3)€(diy)°P o(F(0), F5)
[t remains to show that this limit diagram (regarding the end as a limit) just calculates
the limit over J°°. As explained in the reference, one can rewrite it as a limit over the

double twisted arrow category TW(TW(C)), and using Quillens Theorem A [1.2.15| we
could show that:

e The projection TW(TW(J)) — Fun(A!,J) to the ordinary arrow category, induced
by sending an object

|

™~

—

oL Y .

to the diagonal ¢ — k which is covariant in ¢ and k, is left cofinal.

e The diagonal J — Fun(A'!,J) sending an object to its identity morphism is left
cofinal.

From the explicit expression for D?, and the fact that limits in a functor category are
calculated pointwise, it is clear that the duality functor is exact, so we are finished. [

Example 2.3.2. Even if J is finite and (C,?) is a Poincaré oo-category, the cotensor
(C,9)7 need not be Poincaré. As an example, set J = (x — % < *) and let F': J — C be
given by the diagram (A — C <« B). Then,

D'F = (lim(A — C) — im(F) « lm(B — C)) = (C'%$ ¢ ¥ ¢) (2.31)

since all involved limit diagrams contain C' as a final object, and (D?)2F ~ (C ¢ o 'de
C') for the same reason. This is clearly not isomorphic to F.

Example 2.3.3. If J is the ordinary category (% < x — %) and (€, ?) is Poincaré, then
Fun(d, €) consists of spans

L
RN
P P’

and the dual is DI(P <~ L — P') = (DP < DP xp, DP' — DP'). In particular,

(DY)?*(P «+ L — P') = (D*P «+ D*P X p(ppxp,ppy D*P' — D*P') =
¥ (P+ Pxpu,p PP—P)=(P+ L—P)
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since pushout squares and pullback squares agree, so (€,9)? is again Poincaré. A span
as above is a Poincaré object iff it is equipped with a quadratic form g € Q> (2(P) x¢(1)
Q(P")) = Q>9P) xqury 2P') that induces compatible isomorphisms

P~ DP, P~ DP'| L~ DP xp, DP' . (2.32)

More explicitly, a Poincaré object of this cotensor consists of two Poincaré objects

(P,q),(P',q) in € and a span P LpLhp together with a path n : f*¢ — f"¢
in Q>°9(L) such that the induced map n : L — DP xpp DP" = D(P 1 P') from the
square below is an isomorphism, where 7 witnesses commutativity.

f/

L p 2, pp

|

P . Dy’
|

DP » DL

Df

Equivalently, we could have required the map
fib(L — P) 2 fib(P' — P11, P)) 5™ fib(P' — DL) =

(2.33)
~ fih(DP' — DL) = D cofib(L — P') & (D fib(L — P'))[—1]

to be an isomorphism.

Definition 2.3.4. A Poincaré object (P <— L — P’) as in the example above is called
a Lagrangian correspondence or algebraic bordism between P and P’

Lemma 2.3.5. A diagram (P « L — P’) together with a path n : f*¢ — "¢’ as above
is a Lagrangian correspondence iff the map —f & f' : L — P & P’ equipped with an
induced path ' : (—=f ® f')*(¢ ® ¢') — 0 is a Lagrangian.

Proof. Rewrite the defining property of a Lagrangian correspondence as
L~ DP xp, DP'=(DP & DP') xp, (DP ® DP')=fib(f® f': DP&® DP' — DL)

where we switch the side of DP in the pullback, inducing a minus sign. Identify n with a
path —f*q¢+ f"*¢’ — 0, and note that the left agrees with (—f ® f')*(¢®¢’) by definition
of the orthogonal sum ¢ & ¢’. Going through the above calculation, the induced path n’
exhibits —f @& f as isotropic. H
Example 2.3.6.

e By this Lemma, a Lagrangian correspondence (0 «— L — P) is a Lagrangian of P.
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e A Lagrangian correspondence from the zero Poincaré object to itself is a La-
grangian of 0, i.e. a 1-dimensional Poincaré object by

e Let IV be a compact oriented topological (n + 1)-manifold with boundary 0W =
—M U N where M, N are closed oriented topological n-manifolds, in other words
W is a bordism from M to N. Then, for R a commutative ring, the restrictions

C*(M; R) « C*(W;R) — C*(N; R) (2.34)

of singular cochain complexes form a Lagrangian correspondence between n-
dimensional Poincaré objects in DP*'(R) by virtue of Poincaré-Lefschetz duality:
Capping with the relative fundamental class induces a quasi-isomorphism

where the right agrees with the relative singular chain complex C"*1=*(W, N; R).

Remark. If J is the poset sd(A™)? = ({S C {1,...,n}|S # 0},D) of simplices in A"
ordered by containment (not inclusion), we will see in a moment that (C,?)? is also
Poincaré, retaining the above example as a special case for n = 1. We can regard the
Poincaré objects in (€,9)? as higher algebraic bordisms in €, i.e. bordisms between
bordisms and so on. This will be exploited in the p-construction to define the
L-spectrum.

Construction 2.3.7 (JCDH'20a, 6.5.8]). Let J be a strongly finite oo-category, i.e.
with a finite set of objects and finite mapping spaces, and (€, ?) a Poincaré co-category.
We then dually define the tensor hermitian co-category (€, )5 by equipping Fun(J, C)
with the quadratic functor

?4(S) = coliam ?(S(1)) (2.36)
1€
inducing the bilinear functor
By(S,8") ~ cqligm B(S(4), S'(7)) (2.37)
1€

for 5,5’ : J°° — C. If ? is non-degenerate with duality functor D : C°? — €, then

DyS(i) == colim D(S(j))Marla:d) (2.38)
J
is a duality functor for 25, where the involved finite colimits always exist in a stable oo-
category. We have also used the cotensoring of any stable co-category over finite spaces,
defined as CM*PU) = lim peppap(.i) C over the constant functor. This formula becomes
particularly simple if J is finite poset, since the mapping spaces are either empty or
contractible in this case:

DyS(i) = colim

{D(S(j)) if j <1 (2.39)
j€d

0 otherwise
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Proof. Analogous to the tensor hermitian oo-category, once we check that Dj is the
correct duality functor. We calculate

nat (S, DgS") = /

i€d

map (S(i), C(gleign DS(j)1\4ap(j7i))

The functor map(S(i), —) preserves limits, hence also finite colimits by similarly
for the end. We therefore may pull the colimit out, obtaining

colim [ map(S(i), DS(j)"**0Y) = colim  lim  map(S(i), DS(5))"*0
= icg JEJ [i—4'|€TW(J)°oP

by universal property of the cotensoring. But (—)M*PU) = lim seprap(ji) (—), and we can
combine both limits into a limit over TW(J,,)°?. The functor TW(J;,)” — d;, sending
a morphism to its target is right cofinal, and J;, has an initial object id;, so we are
finished. O

Remark. This can be extended to oco-categories J that are not strongly finite as done in
[CDH™20al, 6.4.1], which is however fairly complicated and we will not need it.

Proposition 2.3.8 ([Lurlll Lecture 19, Proposition 3]). Let J be the poset I%¥ of faces
of a finite simplicial complex as defined in ordered by containment (not inclusion),
and (€,?) a Poincaré oo-category. Then, the cotensor hermitian co-category (€, ?)? and
the tensor hermitian co-category (€, ?) are both Poincaré; we then call them (co)tensor
Poincaré oco-categories.

We will give a proof in the tensor case in [4.1.19, the cotensor case follows formally as
explained in the reference.

Remark. In this case, as indicated in the examples above, the cotensor hermitian oo-
category describes data on simplicial complexes satisfying a Poincaré-Lefschetz-type
duality the boundary of each simplex, in a compatible way. In particular, the value
D3F (o) on any simplex o is obtained by "dividing out" the values of F' at its boundary
faces. Dually, in the tensor hermitian oo-category, DyS (o) depends on the simplices
that o is a face of, it is related to the relative homology H*(| K|, |K|—|o|). Therefore, it
can be used to model Verdier duality on simplicial complexes and PL spaces, see [4.1.18]

2.4 L-Groups of a Ring Spectrum

For this section, fix a commutative ring spectrum k € CAlg(8p) that we use as a ground
ring, and a ring spectrum R € Alg(Mody) that is a k-algebra. For k = S this just means
that R is a ring spectrum, but e.g. for k = HZ this allows us to make statements about
differential graded algebras using the stable Dold-Kan correspondence [1.7.2]
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Definition 2.4.1. The oo-category LModgg, r of spectra with two compatible left R-
module structures admits an Ss-action exchanging the two factors of R. An R-module
with involution is a homotopy fixed point of this action; in other words an (R ®j R)-
module M together with an isomorphism of spectra o : M — M that is linear over the
exchange isomorphism 7 : R ®;, R — R ®; R in the sense that ¢ : M = 7,M is an
isomorphism of R-modules. Further, o2 = id,; together with higher coherence relations
on this isomorphism.

Example 2.4.2. If R is an ordinary ring and M an (R ®% R)-module, equipped with
an isomorphism o : M — 7, M interchanging the two R-module structures, then M[0] €
D(R ®% R) ~ LModpype,,nr becomes a HR-module with involution, where higher
coherence relations are trivial.

Definition 2.4.3. An R-module M with involution is called an invertible R-module if

e It is perfect with respect to either of the A-module structures (applying the invo-
lution, it is then automatically perfect with respect to the other).

e If we equip M with the first R-module structure, the second can be rewritten as
an action of R on M, i.e. a morphism R — Homp(M, M). We require this to be
an isomorphism. Equivalently, applying the involution, we could have exchanged
the roles of both module structures.

Example 2.4.4. If R is a commutative ring spectrum, we may regard it as an (R®y R)-
module over itself by restricting the scalars of its canonical R-left-module structure along
the multiplication map R®;, R — R, in other words we define the module multiplication
as (ry ® rg) - r :=1ry - 19 - . Since the multiplication is symmetric in its arguments, this
canonically makes R into a homotopy invariant with respect to the S action exchanging
the factors of R, so it becomes a module with involution. In fact, the map R —
Homp(R, R) is the identity be definition, making R into an invertible R-module.

In nature, invertible modules often arise via the following construction:

Definition 2.4.5. The category Alg(Mody) possesses an Sp-action sending a k-algebra
A to its opposite, in the sense of [1.6.14] A k-algebra with anti-involution is a homotopy
fixed point of this action, i.e. a k-algebra A together with an isomorphism 7: A — A%
satisfying higher coherence conditions.

Proposition 2.4.6 ([CDH'20a, 3.1.9]). If (A,7) is a k-algebra with anti-involution,
then it comes naturally equipped with the structure of a (A ®; A)-module by applying
T to the second component, so the module action looks like

(ArA)@r A=A, (a®d)-b:=a-b-7(d). (2.40)

This naturally makes A into an invertible A-module.
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Proof. Since 7 is a morphism of k-algebras this does define a module action, restricting
coefficients of the canonical A-A°-bimodule structure on A. Also, A is by definition a
finitely presented A-module, so it suffices to check that the map A — Hom 4(A, A) =2 AP
is an isomorphism. The op appears since the A-module structure on the right side is
induced by the second module structure of A, which was multiplication precomposed
with 7. Hence, the map agrees with 7, which is an isomorphism by definition. O]

Now, let us use invertible modules to define Poincaré structures on R-modules.

Proposition 2.4.7 ([Lurl?, 7.2.4.4]). For P € LMod"™(R) a perfect R-module, the
canonical biduality morphism

P — Homp(Homg(P, R), R) (2.41)

is an isomorphism.

Remark. This generalizes the statement that a perfect complex P over an ordinary ring
R is quasi-isomorphic to its bidual RHom(RHom(P, R), R), by the stable Dold-Kan
equivalence [I.7.2] In particular, any finite-dimensional vector space is isomorphic to its
bidual space.

Proposition 2.4.8. Given an invertible R-module M, we can define the functors
Q% : LMod® — 8p, P~ mapgry, r(P ®r P, M)hs? (2.42)

and 9%, involving coinvariants on the stable co-category LMod®™ of R-module spectra.
The associated bilinear functor is in both cases given by

By (P, P') = mappg, p(P ®r P', M) (2.43)
so we can identify the duality functor as
Dy (P) = Homp (P, M) € LModg (2.44)

where we may equip M with either of its R-module structures. The pairs (LMod%erf, )
and (LMod%erf, Q4,) are Poincaré co-categories, and if M is finitely presented with respect
to either of its module structures the same holds in the finitely presented case.

Proof. This is a generalization of, and works precisely like the example of derived cate-
gories 2.1.30L We have to check that for P a perfect R-module, Hom (P, M) is perfect
as well, and similarly if P, M are finitely presented. Also, we need to show biduality:

e If P = R, by assumption Dy (R) = Homg(R, M) = M is perfect/ finitely pre-
sented. Also, Dy Dy(R) = Dy(M) = Homp(M, M) = R as M is invertible.
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e Any finitely presented R-module P is generated by R under cofibers and shifts,
and both of the above properties are preserved under these operations.

e If Pis a direct summand of P" = P®Q and Dy, (P') = Homg(P', M) = Dy(P)®
Dy (Q) is perfect, then its direct summand D)y, (P) is also perfect since perfect
modules are by definition closed under direct summands.

e Similarly if P’ = P®(Q satisfies biduality, then DDy (P) is the direct summand of
Dy Dy (P) = P on homomorphisms that send Hom (@, M) to zero, which itself
is the summand of homomorphisms in Dy;(P’) sending P to zero. By construction
of the evaluation map P’ — Dy, Dy (P’) we can hence identify it with P. O

Definition 2.4.9. For R an associative ring spectrum and M an invertible R-module,
we define the projective quadratic and projective symmetric L-groups

LPY(R, M) := L,(LMod>™ 9%),  LP*(R, M) := L, (LMod%™ ¢3,) . (2.46)

Similarly, if M is additionally finitely presented with respect to either of its R-module
structures, we define the quadratic and symmetric L-groups Li(R, M) and L:(R, M) by
replacing perfect by finitely presented R-modules.

Remark. If M = R with both R-module structures induced by multiplication in R, we
simply denote the respective L-groups by LZ(R), L (R) etc., without specifying M.

Remark. By their construction, the stable Dold-Kan correspondence identifies the
quadratic functors 2% and 25, with those on derived categories from [2.1.30

Theorem 2.4.10 (Ranicki periodicity, [CDH"20a, 3.5.14.(i), 3.5.16]).

Let ko be an ordinary commutative ring and k = Hkq. Then, the (projective) symmetric
and quadratic L-groups of any ring spectrum R over k with respect to an invertible R-
module M are always 4-periodic, in the sense that

L2, \(R, M) = LL(R, M) (2.47)

and similarly in the other cases. If we further denote by —M the invertible R-module
obtained by replacing the involution ¢ : M = 7,M by —o, then in all cases

L1 5(R. M) = LL(R,~M). (2.48)

Proof Sketch. Let (P,q) be an n-dimensional Poincaré object representing a class of
L2 (R, M), the other cases are analogous. This means that the quadratic form

q € X" map(P ®g P, M)"*2 (2.49)

induces an isomorphism P = > "Hom (P, M). But then X P = X~""'Hom (P, M), so
it appears that ¢ makes ¥ P into an (n + 2)-dimensional Poincaré object. This is not
completely true:
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Since M, P are modules over the k-algebra R, they themselves are modules over k = Hk
as well, so by the stable Dold-Kan correspondence we may represent them by
(finitely presented) chain complexes M, P € D(ky). Here, g corresponds to a symmetric
bilinear form b : P ® P — M with respect to the involution o of M, however by the
Koszul sign rule ¥b : YP ® Y P — Y2M is antisymmetric. This can be remedied by
changing the sign of o, because it is involved in the Ss-action making sense of which
forms are symmetric, and which antisymmetric.

The functor X thus associates to an n-dimensional Poincaré object with respect to M
and (n 4 2)-dimensional Poincaré object with respect to —M, and is clearly invertible
by applying 2. We obtain the second claimed isomorphism of L-groups; and applying it
twice yields the first isomorphism as —(—M) = M. O

Example 2.4.11 (|[Lurlll Lectures 13, 15, 16]). If we regard the integers Z as a com-
mutative ring spectrum HZ with trivial involution, its L-groups are given by

87, for n = 0mod4 Z, for n = 0 mod 4
L3(Z) = 0, for n = 1 mod4 Liz) = 7)27, for n =1mod4
7)27, for n =2mod4 0, for n = 2mod4
0, for n = 3mod4 0, for n = 3mod4

where the component in degree 0 corresponds to the signature of a quadratic form, while
the Z /27 component is called the Arf-Kervaire and deRham invariant respectively.

For k a field of characteristic # 2, the L-groups Li(k) = L7 (k) vanish unless n = 0
modulo 4, where they agree with the classical Witt group of quadratic spaces W (k). If k
is algebraically closed the W (k) = Z /27, while for any real-closed field (in particular the
real numbers) W (k) = Z via the signature. The Witt group W(Q) is however infinite
and complicated. See the referenced lectures for proofs of our statements, or [CDH™21].

Warning. If R is an ordinary ring, there are several non-equivalent ways to extend the
notion of quadratic and symmetric forms to LModyg. Recall from that the space
of quadratic forms on a finitely generated projective R-module P is given by

Quady(P) = Homg(P ® P, R)g, (2.50)

while the space of symmetric forms Symm (M) is obtained by replacing coinvariants
with invariants. Extending to D(R) ~ LModgg seems straightforward: We need to
derive the functors Quady and Symmpy. However, they are not additive!

Still, this can be done using the concept of a non-abelian derived category or animation,
where we resolve by simplicial objects instead of chain complexes. The derived functor
@99 : LModyr — 8p of Quady does not agree with ?7; similarly for symmetric forms 99°
does not agree with ?°. Their associated L-groups are non-periodic and called genuine
quadratic and genuine symmetric L-groups. We will not need them, but want the reader
to be aware that L-groups depend not only on De, but also @ itself in a subtle way.
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2.5 p-construction and L-spectra

We give an alternative, more geometric definition for the L-groups of a Poincaré oo-
category (C,?) that mimics the classical definition of a Quinn-spectrum or an ad-
theory.

As a motivation, we remind the reader that the singular chain complex C*(M;Z) of
a closed oriented n-manifold M™ equipped with the Kronecker pairing determines a
class in L#(Z), and for a bordant manifold N", the associated class agrees. In fact,
one should regard algebraic L-theory as an algebraic analogue of bordism theory, and
many geometric constructions and results should have analogues in the algebraic world.
Particularly interesting is the following example:

Theorem 2.5.1. Let (P, q), (P’,¢') and (P”,q") be n-dimensional Poincaré objects and

PELL L Paswellas P& 1% pr Lagrangian correspondences with associated
paths n: f*q ~ f*¢ and 1 : g*¢' — g*¢”. Then, the span P <— L xp/ L' — P” induced
by the diagram

LXP/ L

2
m
LN, N
P Pl P//
is also a Lagrangian correspondence, with associated path 73n’ o win.

Proof. We know that P = PY[—n] induced by ¢, and similarly for P’ and P”. Also,
L, L’ being Lagrangian correspondences amounts to isomorphisms

L %PV[—n] XLV[,n] P’v[—n] s
I 2P/V[—n] X LN ] P”V[—n

induced by n,7n’. Consequently we can use the Pasting Lemma to dualize and extend
the above commutative diagram to

(L xpr L')V[=n] «—— LY[-n] «—— PY[-n]

| |

V[-n] ¢— PV[-n] ¢ /I

[ |

P”V[—n] ¢ I < L X prv[_n] L
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where every square is a pullback (and by stability also a pushout). This implies, using
P' = P"[—n] and pasting, that L X p L' & PY[—n] X (1, 1/yv[—n) P"" [-n]. Compatibility
of the required witnessing 2-morphisms can be verified by chasing them around the
diagram. O]

Remark. Compare this with the observation that a bordism W between closed oriented
manifolds M and M’, and a bordism W’ from M’ to M", can be glued along a collar to
a bordism from M to M”. In particular, if (P,q) is an n-dimensional Poincaré object
and f: L — P, f': L' = P equipped with n,n" are two distinct Lagrangians, then the
pullback L xp L' comes equipped with the structure of an (n + 1)-dimensional Poincaré
object, with quadratic form ninonin' : 0 — «nff*q = 75 f"*¢' — 0 being a path from 0
to 0 in Q®°"(L xp L), i.e. a point in the loop space

QL x p L) = Q0= U(L xp L)) .

This is analogous to how two null-bordisms of an n-manifold can be glued to an (n+1)-
manifold.

Figure 2.1: Gluing two null-bordisms W, W’ of N to a closed manifold

Nx[0,1]

This tells us that classes in L, q, being (n + 1)-dimensional Poincaré objects, can be
constructed from Poincaré objects of dimension n by gluing two Lagrangians, just as for
example the circle S* can be constructed from S° by gluing two intervals (i.e. nullbor-
disms). Tteratively, we could also glue S? from the obtained S* by gluing two disks that
we regard null-bordisms, and so on. Similarly, Poincaré objects of higher degree can
be obtained from ordinary Poincaré objects by gluing of Lagrangians and “higher La-
grangians". The underlying combinatorics are captured by the following construction:

Construction 2.5.2 (p-construction). For n € Ny and [n] = {0,...,n}, let sd([n])°? be
the power set of [n] equipped with the opposite ordering to the one given by inclusion.
The cotensor hermitian co-categories

Pn(C,9) == (€, )%™ — (Fun(sd([n])?, @), @)™ (2.51)
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are Poincaré co-categories by and are functorial in the sense that they naturally fit
into a simplicial object pe(C,?) € Fun(A, Cat,), as can be deduced from |[CDH™20al
6.6.1, 6.6.2]. Composing this with any functor F : Catl, — 8 consequently yields a
simplicial space Fpo(C,?) : A%®? — 8.

Definition 2.5.3. A simplicial space is a functor X : A? — §, where we denote
X, := X([n]). The geometric realization |X| € 8 is defined as the quotient topological
space

| X = |7|X” 1At (2.52)

by the relations introduced by the face maps in X, which we regard as a Kan complex.
This is an analogue of the geometric realization of a simplicial set, since it is formally
obtained by applying the nerve-realization paradigm to the functor regpace : A — 8
sending [n] to a Quillen-fibrant replacement of A" like Sing |A"[:

neA
|X| := Lany, rspace(X) = colim rpace([n]) = / X, x Sing |A"| (2.53)
h([n])—X

The colimit or coend introduces the mentioned gluing.

Definition 2.5.4. For (€, ?) a Poincaré oo-category, its L-theory space L(C,?) is defined
as the geometric realization of the simplicial space determined by Poincaré objects in
the p-construction:

£(C,9) := | Pnp(C,9)| (2.54)

This yields a functor £ : Cat!, — § since the geometric realization, Pn and the p-
construction are functorial.

Example 2.5.5. For X a simplicial space, let us calculate mo|X|. This only depends
on the 1-skeleton, and can be identified with the set of vertices divided by the relation
identifying vertices connected by an edge in | X|. But since | X is a quotient of | |, X, x
|A™], its edges either come from edges of Xy, or vertices of X;. This means that mo|X|
agrees with the quotient of moX by the relation generated by [z] ~ [y] for z,y € X if
there is a z € X such that z = X (dy)(z) and y = X (dy)(z).

In particular, this means that £y(C, ?) is the quotient of mo Pn(€, ?) by the relation gen-
erated by Lagrangian correspondences, agreeing with our definition of Ly(C,?) because
we may equivalently divide by metabolic objects by [2.3.5] Let us try to generalize this
to the higher L-groups and homotopy groups.

Proposition 2.5.6 ([CDH™20b, 3.5.8]). In the above situation, there is a natural ho-
motopy equivalence
QL(e,Q) = £(e ey . (2.55)
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Proof Idea. This is difficult to show without further preparations, let us first explain
what happens on objects. On the left, those are loops in £(C,?), but we have seen that
the edges in this space consist of isomorphisms of Poincaré objects and of Lagrangian
correspondences. The former are a special case of the latter, so such a loop at the zero
objects is equivalent to a Lagrangian correspondence from the zero Poincaré object to
itself. By [2.3.6] this is the same thing as a 1-dimensional Poincaré object. Hence, the
difficulty lies in extending this to higher simplices.

To do this, we need to make the set of Lagrangian correspondences into a space. We
have already done this in where we had noticed that Lagrangian correspondences
are precisely the Poincaré objects in the cotensor Poincaré oo-category C*<*7%) Let us
look at the stable subcategory on diagrams of the form (0 <— L — P) on correspondences
beginning at the zero object; one can show [CDH™20a, 2.3.5] that the cotensor quadratic
functor restricts to a Poincaré structure on it. We call this to metabolic Poincaré oo-
category Met(C, ?) associated to (C,?), and its Poincaré objects are pairs of Poincaré
objects in C and associated Lagrangians.

There is a canonical duality-preserving functor (€, 21=1) — Met (€, @) sending C' + (0
0 — C); such that the associated functor on Poincaré objects maps a 1-dimensional
Poincaré object in C to the associated Lagrangian of the zero object by the above dis-
cussion. Together with the duality-preserving functor (0 < L — (') — C sending a
Lagrangian to the underlying Poincaré-object, we obtain by [CDH™20b, 1.2.5| a split
Poincaré-Verdier sequence (see the next section)

(€, — (Met(@,9),9™) — (C,9) . (2.56)
We are finished after noting the following:

e The functor £ : Gatopo — & sending a Poincaré oo-category to its L-theory space is
additive as defined in [CDH7T20bl 1.5.4], which means in particular that it sends
Poincaré-Verdier sequences to fiber sequences.

e The functor £ is also bordism-invariant, so by [CDHT20b, 3.5.4] it sends metabolic
Poincaré oco-categories to the contractible space £(Met(C, ™)) = . This is intu-
itively clear, since in the L-theory space there is a path joining any metabolic
object to zero and similarly for higher simplices, but in Met(C, ™) every-
thing is metabolic by definition — alternatively, show that the homotopy groups
T L(Met(C, ™)) are trivial as in [CDH™20b, 3.5.5].

]

Definition 2.5.7. For (C,?) a Poincaré co-category, its L-theory spectrum L(C,?) is the
infinite loop space

L(€,9Q) := [£(€,9),£(e, M, £(e, 92, .. .]e8p (2.57)

where the transition maps are induced by the last proposition. By its construction from
L, the association L : Cat? — 8p is functorial.
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Theorem 2.5.8. The homotopy groups 7,L(C, ?) agree with the L-groups L, (C,?) we
have defined in [2.2.10} For n > 0, they also agree with the homotopy groups m,£(C, ?).

Proof. By [2.5.6, we know that the structure maps £(€, ™) — Q£(€, @™+ are homo-
topy equivalences (classically, spectra with this property are called Q-spectra), so

T L(C, M) = 1 Qr(e, o) =, (e, em 1y = x, (@ em)
for all m € Z,n € Ny and ¢ = 0,...,n. This implies for ¢ = n, m = 0 that
T L(C, Q) =2 mpL(C, o) = L, (€, 9)

proving one of the equivalences. Also, it follows that for n > 0 the colimits calculating
its stable homotopy groups are essentiall constant:

(€, 9) = colim m, ., £(C, olmhy = moL(@,90) = L, (€,9)
me

by the same argument as above. This also works for n < 0 if we ignore the terms in the

colimit where n +m < 0. O

While calculating the L-groups, or the L-spectrum, of a given ring spectrum R equipped
with an invertible module M as in the last section seems like a very daunting task,
a powerful tool called algebraic surgery theory can be used for this purpose. While it
would take a while to properly introduce (see [CDHT21, Section 1] or [Lurlll Lecture
11-16]), we close this section by stating an important result that can be derived in this
manner:

Definition 2.5.9. A module M over a ring spectrum R is called projective if it is a
direct summand of R™ for some n € N. In particular, this implies that M is perfect.

Theorem 2.5.10 (Algebraic m-m-theorem, [CDH'21, 1.2.33]). Let M be a projective
invertible module over a connective ring spectrum R, then there is a canonical equiva-
lence

LI(R, M) = L(mo(R), mo(M)) . (2.58)
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3 A Zoology of Decompositions

Just as a topological space can be decomposed into an open subspace and its closed
complement, or how an R-module may be written as a direct sum or more general ex-
tension of two other R-modules, there several different ways to define a decomposition
of a stable or Poincaré oo-category. We follow [CDH™20b| in introducing (split) Verdier
and (split) Poincaré-Verdier sequences as well as several useful results about them, and
draw a comparison with the notion of recollement in [Lurl7, A.8| as well as semiortho-
gonal decompositions of triangulated categories. After a brief digression on the much
stricter orthogonal decompositions, we generalize some of the above construction to the
case where we decompose our oco-category in more than two parts.

3.1 Recollements

This section summarizes parts of the discussion of recollements of categories with finite
limits in [Lurl?], and specifies to the stable case.

Definition 3.1.1 ([Lurl7, A.8.1]). An oo-category € with finite limits is called the
recollement of two full subcategories Cy, C; C € if:

e The inclusions g, i1 : Gy, C; < € are reflective, i.e. they admit left adjoints Lg, L;.
e The reflections L, L, are left exact.
o If X € Gy, then L;(X) = % is the terminal object.

e Ly and Ly are jointly conservative: If v is a morphism in € such that Lo(a) and
Li(«) are isomorphisms, then « is an isomorphism.

Remark. Many authors also assume that Cy, C; C € are replete, i.e. closed under iso-
morphism. We do not assume this as, being an evi]E] notion, it is ultimately irrelevant;
however we sometimes abuse notation in the sense that if for C' € € we say C' € C,
we actually mean that C' is isomorphic to an object in Cy. Should confusion arise, be
assured that we always use non-evil notions.

LA property in category theory is called ewil if it is not invariant under equivalences of categories.
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Lemma 3.1.2. Conversely to the third point, if X € € and L;(X) = %, then the unit
no : X — LoX is an isomorphism since Liny : * — * and Lony : LoX — L2X are, so X
(essentially) lies in Cy. In other words, Cy agrees with the kernel of L.

Lemma 3.1.3. If in the above situation Cy € Gy and C € €y, then
Mape(Co, C1) = Mapg, (L1Co, C1) = Mapg, (*, C) = A°

is contractible. Conversely, if C' € € and Map(C, Cy) ~ A° for all C} € €y, then by the
Yoneda Lemma L;C' = 0 so by the last lemma, C' € Cy.

Proposition 3.1.4 (|[Lurl7, A.8.16]). Let X be a topological space, j : U < X an open
subset, and ¢ : X — U =: Z — X the complementary closed subset. Then, the fully
faithful pushforward functors i, : Sh(Z) < 8h(X) and j. : Sh(U) — Sh(X) exhibit
Sh(X) as a recollement of 8h(Z) and Sh(U), with reflections the pullbacks i*, j*.

Remark. By virtue of this example, we call €y the closed and C; the open subcategory
of the above recollement datum. Also, we will often denote g, 7, by 7, and j, and L, L4
by ¢*, 7* following this analogy.

Remark ([Lurl?, A.8.5], [Lurl?7, A.8.13]). In a similar manner to the later proof of 3.2.7]
one can show that
e If Cy has an initial object, the functor j* has a fully faithful left adjoint j, : ¢, — C.

e If C has a zero object meaning that its terminal object is also initial, the inclusion
Co — € admits a right adjoint i~ : C' +— fib(C' — j.5*(C)), the fiber of the unit of

75 7.
Proposition 3.1.5 (JHPT20, 5.20|). Let the oo-category V be
e presentable and stable, or
e the tensor product of a compactly generated oo-category and an oo-topos.

Then, tensoring with V preserves recollements of presentable co-categories. In particular
in the situation of 3.1.4] the oo-category 8h(X;V) of V-valued sheaves is the recollement
of 8h(Z;V) and Sh(U;V).

Remark. The case where V itself is compactly generated is particularly well-behaved,

compare [3.5.9

Proposition 3.1.6 (|[Lurl7, A.8.17]). Let C be the recollement of €y and €;. Then, C is
stable iff both €y and C; are stable and Lgle, : Co — C; is exact. We call this situation
a stable recollement.
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Proof. For the only if direction, Cy and C; are the essential images of the left exact
localization functors Ly and L; and therefore, as subcategories of €, closed under finite
limits. In particular, they contain the zero object and are closed under fibers and finite
products, and thus form stable subcategories by [1.5.7 Further, Lole, = Lo o i1 is a
composition of left exact functors (since i; is a right adjoint), but being left exact is
equivalent to being exact in the stable case.

The if direction is more involved; since € has finite limits it suffices to show that
e The terminal object * = Lg(0) = L;(0) in C is initial,
e A sequence C' — C' — C” in C is a (co)fiber sequence iff its images under Lg, L4

are (co)fiber sequences both in Cy and C;.

The first point is clear since Lg, L1 preserve colimits; note that the indicated sequence
of isomorphisms follows from joint conservativity. Similarly, the second claim follows
from the fact that Lo, L, preserve finite limits and colimits and are jointly conservative,
for example C" = fib(C' — C") iff the analogous statements for Ly(C") and L;(C”) hold.
For a more abstract argument, see the reference. O]

Remark. In the stable case, the extra adjoints j; and ¢~ always exist.

3.2 Verdier Sequences

Definition 3.2.1. Given an exact functor F': € — D between stable co-categories, we
call a morphism f in D an equivalence modulo C if its fiber fib(f) lies in the smallest
stable subcategory of D spanned by the essential image of F. Note that if F' is the
inclusion of a stable subcategory, this just means fib(f) € € C D. The Verdier quotient

®/€ is defined as the localization (see|1.2.3)) of D with respect to this class of morphisms.

Proposition 3.2.2 ([CDH"20b] A.1.5, A.1.6). In the above situation, ®/€ is stable and

the localization functor D — 9/6 is exact. Conversely, every localization of a stable
oo-category with these properties is a Verdier quotient.

Definition 3.2.3 (JCDHT20b| A.1.10). A sequence C I5 D L5 € of stable oo-categories
and exact functors is called a Verdier sequence if:

e The composition j* o i, is the zero functor,
e j* exhibits € as the Verdier quotient 9/6,

e i, is fully faithful, embedding C as the full subcategory spanned by the objects
D € D satisfying j*(C) =0
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Verdier sequences of stable co-categories are the analogue of short exact sequences, in
our earlier analogy between stable oo-categories and R-modules. However, the following
proposition does not hold any more:

Proposition 3.2.4 (Splitting Lemma).
A short exact sequence 0 — M’ LM % M = 0 of R-modules splits if it is isomorphic
to the trivial extension 0 — M’ 5 M’ @& M” 23 M” — 0 in the sense that there is an

isomorphism M = M’ & M"” making both involved squares commute. This is equivalent
to any of the following statements:

e There is an R-module-homomorphism s : M — M’ such that so f = idy,.

e There is an R-module-homomorphism ¢ : M"” — M such that g ot = idy».

To develop a partial analogue to these splitting criteria for stable co-categories, we need
some background on localizations.

Definition 3.2.5. Let C be an oo-category, W a class of morphisms in € and L : € —
C[W 1] the associated localization. We call L a reflection or left Bousfield localization if
it admits a fully faithful right adjoint, exhibiting €[W~!] as a reflective subcategory of
C. Dually, L is a corefiection or right Bousfield localization if it admits a fully faithful
left adjoint.

Lemma 3.2.6 (JCDH"20bl A.2.1]). A localization functor L : € — C[W '] is a reflection
iff for every C' € @, there exists and object C' € € together with an isomorphism
LC = LC’ such that the functor

Mape(—,C") : @ — 8 (3.1)

sends all morphisms in W to isomorphisms. Dually, L is a coreflection iff for each C' € C
there is a ¢’ € C such that LC' = LC" and Mape(C’, —) sends morphisms in W to
isomorphisms.

Proof. We only prove the case of reflections, the other case is dual. For the only if
direction, let i : C[W~!] < € be the inclusion right adjoint to L and set C" := iL(C),
then LC' = LiL(C) = LC since the counit Li = Idgpy-1) is an isomorphism as ¢ is fully
faithful. Further, Map(C’, —) = Map(LC, L—) sends W to isomorphisms since L does.

Conversely, if an object C’ with these properties always exists, it suffices to show that it
represents the functor Mape(L—, LC') since L is essentially surjective by construction of
the localization so LC' covers all objects of the localization, and the representing objects
C' =:iLC assemble into the desired left adjoint. Note that i is fully faithful since the
counit LC" = LC' is an isomorphism.
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By assumption, Map(—, (") factors as M o L with M : C[W~1]» — § and we may
calculate that for any other G : C[W™!|? — § we have

Nat(M o L,G o L) = Nat(Map(—,C"),Go L) =2 G o L(C") 2 G(LC)

by the Yoneda Lemma. The last expression agrees with Nat(Map(—, LC), G) while
the first, by the universal property of a localization exhibiting Fun(ClW 1], 8?) C
Fun(@, 8%) as a full subcategory, agrees with Nat(M,G). Hence, Map(—, LC) = M
so Map(—, LC) o L = M o L = Map(—, ("), as claimed. O

Remark (JCDHT20b, A.2.2]). In fact, if ¢ : ¢’ — C is fully faithful and admits a left
(or right) adjoint L, then by |[Lur09al 5.2.7.12| the functor L is a localization at those

morphisms that are sent to isomorphisms by the functor (co)represented by any object
in €.

Proposition 3.2.7 ([CDHT20b, A.2.5]). Let Gy = € 25 €, be a sequence of stable
oo-categories and exact functors such that j*i, = 0. Then, the following are equivalent:

e The functor ¢, is fully faithful and exhibits Gy as the full subcategory of C on
objects C' with j7*C' = 0, and j* possesses a fully faithful left adjoint j, (or fully
faithful right adjoint j,)

e The functor j* exhibits C; as the Verdier quotient of 7, : Gy — C, and i, is fully
faithful and admits a left adjoint ¢* (or right adjoint i~)

Proof. If a left adjoint j, - j* exists, we may define |i* := cofib(j,j* — ide) | as the

cofiber of the counit, which takes values in Cy = ker(j*) since
J i*C = cofib(j*j4+7°C — 57C') = cofib(id;«¢) =0 .
This defines a left adjoint to 7, since
Map(i*C, Cy) ~ fib (Map(C, Cy) — Map(j.j*C, Cy)) = Map(C, 1,Cy)

as the second mapping space is contractible because j. - 7* and j*Cy = 0. Since j* by
assumption admits a fully faithful left adjoint, it is a localization and in fact even the
Verdier quotient by Cy as a morphism « is sent to an isomorphism iff fib(a) € ker(j*) =
Co. Also, ¢* is fully faithful by assumption.

Conversely, given i*, let us define | j, := fib(ide — i,:*) | as the fiber of the unit; while

this is a priori a functor € — € it factors through €¢; — € as for « is a morphism in C
with fiber F' in €y, we have
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so jy(a) is an isomorphism. If Cy € C; is represented as the localization j*él,
Map(j,.C1, C) = Map (ﬁb(é’l — i,i*Cy), C’) ~ cofib (Map(i*i*él, C) — Map(Ch, C’)) :

In the case that C = 1i,Cy is in the essential image of Cy, this evaluates to
cofib (Map(i*C", Cy) — Map(C",i.Cy)) = 0 using that i, is fully faithful. Hence, by
the same argument as above, Map(j, C1, —) factors through ©;. But j*j, = fib(j* —
j*i,i*) = ide, regarded as a functor on C;. This verifies both conditions of [3.2.6] so we
are finished.

For the case of right adjoints, given j, we construct |~ := fib(C' — j,j*C) | which lies in

Co since j*i~C = fib(j*C — 7*5,5°C) = 0 as j* is a left-exact reflection. Then,

Map(Cy, i~ C') ~ fib(Map(Cy, C), Map(Cy, j.7*C)) = Map(C, Cy)

again by [3.1.3] Conversely, | j, := cofib(i,i~ — ide) | also uses |3.2.6| [

Remark. As indicated by the boxes, behold the canonical fiber sequences

ivi- = Id=j,J% Juj" = 1Id=id4". (3.2)

Definition 3.2.8. A Verdier sequence Cg el C; is called split if, equivalently (by
above Lemma),

e 7 admits both a left and a right adjoint,
e i, admits both a left and a right adjoint.

It is called left or right split if only the left or right adjoint exist. The adjoints of p are
automatically fully faithful.

Warning. Not every split Verdier sequence is equivalent to an orthogonal decomposition
C—C®D — D. More on this in [3.4]

Theorem 3.2.9. The following data are equivalent:

e A split Verdier sequence Cq LNCER Gy

e A stable oo-category C that is a (stable) recollement of Cy and €y, with inclusions
1%, J» and reflections ¢*, 7*.
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Proof. Given a split Verdier sequence as above, we have seen that 7, and the right adjoint
Jx of j* are fully faithful, so they exhibit €y and C; as full subcategories of C. Also, 7.
possesses a left adjoint ¢*, and 7%i, = 0 by definition, so we only need to show that ¢*, j*
are jointly conservative.

If a is a morphism in € such that i*«, j*« are isomorphisms, then j* fib(a) = fib(j*a) =0
so fib(«) € ker(j*) ~ Cy. But this means that fib(a) = i,i* fib(a) = i, fib(i*a) = 0, so «
is an isomorphism.

Conversely, let € be a stable recollement of Gy and C; as above, then €y = ker(j*) by
Also, the localization j* : € — C; sends a morphism « in € to an isomorphism iff
fib(j*a) = j* fib(a) = 0, i.e. fib(a) € ker(j*) = Cy. This means that j* exhibits C; as a
Verdier quotient of C by €y as claimed. Existence of the remaining adjoint follows from
3.2.7] ]

Proposition 3.2.10. If the middle sequence in the diagram

— i —J+
e i —> D i — &

is a split Verdier sequence with indicated adjoints, then the upper and lower sequences
are right and left split Verdier sequences.

Proof. We already know from that 7., . are fully faithful; also by construction
i~,1* have fully faithful left/ right adjoints making them (co)reflections. Finally, by
the proof of the mentioned proposition ker(i*) consists of precisely those D € D with
J+7*D = D, i.e. the essential image of j,. Similarly for i~. [

Definition 3.2.11. If ¢y C € is a stable subcategory of a stable oco-category, denote
by Cg the full subcategory spanned by those C' € € such that for each Cy € €y, the
mapping space Mape(Co, C) is contractible. Dually, define 1€y as the full subcategory
on those C' € € with Mape(C, Cy) contractible for Cy € €.

Proposition 3.2.12. If G, C C is a reflective and coreflective stable subcategory of a
stable oo-category, then € is a stable recollement of €, and Cj.

Dually, if C; C € is a reflective stable subcategory such that the reflection j* : C — €
has an additional left adjoint j*, then € is a stable recollement of +C; and €.

Proof. For the first claim, we need to show that the inclusion j, : €5 < € has a
left adjoint j* such that ker(j*) = @y, since as a reflection it is then automatically a
localization at the morphisms with fiber in Gy and all required adjoints exist. Define
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JH(C) = cofib(i,i~C — C') where i* 44, 44~ and i, : €y < C is the inclusion, then for
CO 6(30 and Gl GG&,
Map(Cy, j*C) = cofib(Map(i,Cy, i.i~ C') — Map(i.Cy, C)) =
= cofib(Map(Cy, i~ C) — Map(i.Cy, C)) =0
Map(5*C, Cy) = fib(Map(C,i,C}) — Map(i,i'C,i,C1)) = Map(C,4,Cy)

0 j* : € — Cf is well-defined and left adjoint to j,. Finally, j*(C) = 0 iff i,i~C = (' iff
C € @y, so we are done.

The second claim is easier; we only need to show that +C; = ker(j*) since j* is a reflection
and all required adjoints exist. For C' € €, by Yoneda j*(C) = 0 iff for all C; € C; we
have Map(j*(C), C;) ~ Map(C, j.C1) = 0, which is equivalent to C' € 1+€;. O

Proposition 3.2.13. If C is a stable recollement of €y and €;, then C; = €; and
Co = 1€, (as always, up to completing under isomorphisms).

Proof. First of all, for Cy € Cy and C € €4, we have
Map@(C'o, Ol) = Mapel (Ll’ioo(), 01) = Mapel (0, 01) =0

which shows one inclusion of each identity.

Conversely, if C' € € such that Map(Cp, C) = 0 for all Cyy € €y, then applying Map(Cp, —)
to the counit map

Map(Co, C— ]*]*C) = (Map(C()a Ca C) - MaP(J*Z*Co,J*C)) =0

yields an isomorphism so by the Yoneda-Lemma i*(C' — j,5*C) is an isomorphism,
hence by joint conservativity it is enough to show j*C' — j*7,7*C is an isomorphism as
well, which is clear since j*j, = ide,.

Finally, if C' € € satisfies Mape(C, Cy) = 0 for all C; € Cy, then
Mapel (LlC, 01) = Mape(C, Cl) =0

so by the Yoneda-Lemma already L;C = 0. We then calculate Li(C — igLoC) = (0 —
0) and Lo(C — igLoC) = idp,, so by joint conservativity the unit map C' — igLoC' is an
isomorphism and C' € C,. n

Generally, morphism spaces in localizations are difficult to calculate, unless we are deal-
ing with a reflective localization which can be embedded into the original category.
Since we will make use of it later, let us still develop an explicit description in the case
of Verdier quotients (our arguments can however be adapted to general localizations, as
indicated in the respective references).
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Definition 3.2.14 ([Lur09a, [5.3.5.4], |[Lur09al, 5.1.6.8|). Let C be an arbitrary oo-
category. Its Ind-completion Ind(C) is defined as a the smallest fully subcategory of
PSh(C) that contains the essential image of the Yoneda embedding h : € < PSh(C)
(consisting of the representable presheaves) and is closed under filtered colimits. If
C admits finite colimits, then this agrees with the full subcategory on those functors
C? — § that preserve finite limits (in C°).

Similarly, the idempotent completion or Karoubi completion of € is the full subcategory
of PSh(C) spanned by retracts of representable presheaves. It agrees with the full subcat-
egory on the completely compact presheaves, i.e. those F' € PSh(€) such that Nat(F, —)
preserves (small) colimits in PSh(C).

Remark. The Ind-completion of a small co-category C is compactly generated (in particu-
lar presentable), as it is controlled by its small full subcategory C. In fact, an co-category
is compactly generated iff it admits colimits and is equivalent to the Ind-completion of
a small oo-category (its full subcategory on compact objects). More generally, an oo-
category C is presentable iff it admits colimits and there exists a regular cardinal x such
that it is equivalent to the generalized Ind-completion Ind, (D) of some small co-category,
compare |[Lur09al, 5.5.1.1].

Definition 3.2.15. Let ' : C — D be a functor between arbitrary oo-categories. Then,
its pseudo-left adjoint is the functor D — PSh(C) informally given by sending D
Mapg (F (=), D). Similarly, its pseudo-right adjoint is the functor D — Fun(C, 8) given
by D +— Mapq (D, F(—)).

If the pseudo-left adjoint of F' factors through Ind(€) C PSh(C), we call it the pro-left
adjoint of F'; and similarly for pro-right adjoints and the dual Pro-completion Pro(C) C
Fun(C,8) of €. Clearly, if it even factors through the essential image of the Yoneda
embedding € < PSh(C), this factorization is an ordinary left adjoint of F.

Proposition 3.2.16. Every functor F' : ¢ — D between oo-categories admits a
pseudo-left and a pseudo-right adjoint. Similarly, every exact functor between stable
oo-categories admits a pro-left and a pro-right adjoint.

Proof. The statement for pseudo-adjoint follows by definition. Since stable co-categories
admit finite (co)limits it remains to show that if /' is an exact functor between stable
oo-categories and D € D, the pseudo-left adjoint Map,,(F(—), D) preserves finite limits
in D, which is clear since it is a composition of left exact functors. The statement for
pseudo-right adjoints is dual. O

Proposition 3.2.17 ([Lur09a, 5.3.5.10]). Let € be an co-category, and h : € — Ind(C)
be the Yoneda-embedding into its Ind-completion. Then, for any oco-category D admit-
ting filtered colimits, precomposing with h induces an equivalence of categories

Fun™!(Ind(€), D) ~ Fun(C, D) (3.3)
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between the full subcategory of functors Ind(€) — D preserving filtered colimits and all
functors F' : € — D, where the inverse is given by Yoneda extension F' — Lan, F' =:
Ind(F).

Proof. This is an analogue of and the proof is similar: By definition, every element
of Ind(C) can be written as a filtered colimit of representable cosheaves, so a functor

Ind(C) — D preserving filtered colimits is determined by its value on the essential image
of the Yoneda embedding. O]

Proposition 3.2.18 (|[Lur(09al, 5.5.1.1], [Lurl?, 1.1.3.6]). If the co-category € has finite
colimits, then Ind(C) is compactly generated, in particular admits all limits and colimits.
If € is even a stable co-category, then Ind(C) is stable as well.

Corollary 3.2.19 (|Lur09a) 5.3.5.13|). For F': € — D a functor between co-category,
there is a canonical functor F* : Fun(D,8) — Fun(C?,8) between presheaf categories
given by precomposition with F, which is right adjoint to the Yoneda extension of
F. If € has finite colimits and those are preserved by F, this restricts to a functor
F* : Ind(D) — Ind(C) since the property of a presheaf preserving finite limits in C
is preserved. By construction, it is again right adjoint to Ind(F); in particular Ind(F')
preserves all, instead of just filtered, colimits. We obtain a restricted equivalence

Fun®'™ (Ind(€), D) ~ Fun'(C, D) (3.4)

between the full subcategories of functors that preserve colimits or finite colimits, re-
spectively.

Lemma 3.2.20. Let F' : ¢ — D be a functor between oo-categories. It induces two
functors between presheaf categories PSh(C) — PSh(D):
e The left Kan extension functor Lang
e The Yoneda extension Lany, (hp o F)
These functors agree.
Proof. The functor Lang is left adjoint to the precomposition functor F*. Similarly,

applying the nerve-realization paradigm [1.1.7], the Yoneda extension has a right adjoint
realization functor sending a presheaf S € Fun(D, 8) to |S| € Fun(C,8) with

|S(C) = Mapyg,p) (ho © F(C), S) = Nat(Mapy (=, F/(C)), 5) = S(F(C)) = (F*5)(C)

by the Yoneda Lemma, so | — | = F* and our functors must agree by uniqueness of
adjoints. ]
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Construction 3.2.21 (JCDH*20b, A.3.11 and below], [NSIS8, 1.3.5]). Let Gy = € N
C; be a Verdier sequence of stable oco-categories. Then, the exact composite functor
C — €; < Ind(C) can by the previous Corollary be extended to a colimit-preserving
functor Ind(5*) : Ind(€) — Ind(€;) with a right adjoint Ind(j). defined by precomposing
presheaves with j*, compare the above Lemma. Similarly for ., so the sequence

Ind(Cy) "% ma(e) "% md(e,) (3.5)

is a right split Verdier sequence, because
e Ind(j*) is a reflection, since its right adjoint Ind(j), is given by the precomposition
Fun (G/GO,SOP> — Fun(C, 8) with the localization j*, which by definition is fully
faithful. In particular,

We find that &/ C Ind(C) via the embedding Ind(j), o h.

e Ind(i,) is fully faithful since it agrees with Lan;, on the presheaf category, and the
left Kan extension along a fully faithful functor is so as well.

o It exhibits Ind(Cy) C Ind(C) as the kernel of Ind(j*): Any object of Ind(C) can be
written as a filtered colimit I = c,(c)lillgn hpky of representable presheaves for some
S

diagram p : K — €, and we must show that Ind(j*)(/) = cgli}gn hjepey = 0 iff
€

already I € Ind(Cp). The if direction is clear, for the only if we refer to the proof
of the second reference, as it uses background we do not want to develop.

Remark. The references show that further right adjoints Ind(i.) 4 Ind (7)™ 4 Ind(7) and
Ind(j*) 4 Ind(j). 4 Ind(j)~ exist, in particular the middle functors preserve colimits.

Proposition 3.2.22 ([NS18, Proof of 1.3.3]). As discussed above for any co-category D
with all colimits, the functor j* induces a left Kan extension functor

Lan; : Fun(C, D) — Fun (e/eo, @) (3.6)

that, since j* is exact, restricts to Ind(j*) between the Ind-categories if D = 8. We can
give the explicit formula

Lan;« F' (Cy) = colim F (coﬁb(C’o — é’l)> (3.7)

C()E@O/qu

for any presheaf F': € — D, where Cy is any object of € with j*él = (.

Remark. Since Gy has finite limits, the involved colimit is filtered because the formation
of limit lets us extend finite diagrams to cones.
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Proof. Denote the above colimit expression by L(F'), we want to show that the functor
L, which since a choice of lift is necessary is a priori defined on €, factors through e/(i’o
where it is left adjoint to the fully faithful (by definition of a localization) precomposition
functor J = — o j*. There is a canonical natural transformation (np : F — Lo J(F))p
induced by the compatible set of morphisms F'(C') — F(cofib(Cy — C')) arising from the
inclusion C' — cofib(Cy — C') = 011, C. We are finished if we can verify the conditions
in

If F' lives in the full subcategory Fun (e/eo, ’D) C Fun(C, D), then it must by definition

send morphism with (co)fiber in €y to isomorphisms. But C' — cofib(Cy — C) has
fiber Cy, so nr is an isomorphism, which proves one of the conditions. On the other
hand, L(F) always lies in this subcategory (in particular it factors through the Verdier
quotient, as claimed) since as a composition of exact functors it is exact, so it suffices
to show that for C} € €y, we have L(F')(C}) = 0. Indeed we calculate

colim F (cofib(Cy — Cp)) = F(cofib(idgs)) = 0

C()GGO /C()

since the colimit diagram has a terminal object. O]

Remark. The general formula for left Kan extensions also tells us that

Lan. F (C}) = li F 3.8
an;+ F'(C1) cee SO (©), (3.8)

but it is more difficult to use since this requires knowledge about morphisms « in C;.

Corollary 3.2.23 (|NS18| 1.3.3]). The mapping space between objects Cy,C] in € =
e/eo represented by él, C7 in C can be calculated as

Mape,, (C1,C7) = colim Mape(Cl, cofib(Cy — C')) (3.9)

Co€el, A
0&Cg e

Proof. Applying the last Proposition [3.2.22] we need to show that
Mape, (C,—) = Lan;. Mape(Cy, —) (3.10)

as functors e/e — 8, in other words Lan;. intertwines the respective (dual) Yoneda
embeddings. We apply the Yoneda Lemma in this functor category:

Nat(Lan;- Mape(Cy, —), F) 22 Nat(Mape(Cy, —), F o j*) = F(C}) (3.11)

for any F : e/eo — 8, so since Lan,- Mape(é’l, —) is uniquely determined by this prop-

erty, it can only depend on the class C; of C1. Our aim is to show that the factorization
op a
Cy € e/eo +— Lan;- Mape(Cy, —) € Fun (e'/@o, S)

agrees with the Yoneda embedding, which is immediate from the universal property in
Equation [3.11] O
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3.3 Poincaré-Verdier Sequences

Let us translate this into the context of Poincaré oo-categories, obtaining a long exact
sequence of L-groups.

Definition 3.3.1 (JCDHT20b, 1.1.5]). A Poincaré-Verdier sequence is a sequence of

Poincaré oo-categories and duality-preserving functors (€, ?) SN (D, ®) EN (€,¥) such
that the underlying sequence of stable co-categories is a Verdier sequence, and addition-
ally

e The canonical transformation ¢ = *® = ® o *°" that is part of the datum of a
hermitian functor is an isomorphism, and

e The canonical transformation ® = W o j%° exhibits ¥ as the left Kan extension
Lanj*,w .

It is called split, or Poincaré recollement, if the underlying Verdier sequence is split. In
this case, the second condition is equivalent to the composition ¢ o j, — Vo j*j, — ¥
being an equivalence, because j; -1 j* implies Lanj«op = — o j# 4 — o 7%,

Remark. In the non-split case, we can use the opposite version of [3.2.22| to rewrite

U(C}) = Lanj«or ®(C) = colim d(fib(i,Cy — C1)) (3.12)
(Co, a:ixCo—C1)€(C Ol/)op

for C; = j*C’l. This expression should be handled with much care: The left Kan
extension is explicitly along p°?, so we must work in the Pro-completion Ind(€C)? =
Pro(€)? to calculate it (note C° is still stable). The fiber in above expression is taken
in €, while the colimit is parametrized by arrows in (Cy¢, )% = (€7) ¢, -

Warning. Even though ® o j, ~ W in the split case, the functor j, is usually not
duality-preserving. If it were, this would mean

j» = (jy) = Do jy o DY = Dy ojy = j, (3.13)
so the adjunction j, - 7% - j. becomes two-sided.
Proposition 3.3.2 (|[Lurlll Lecture 8, Proposition 6]). Let (D, ®) be a Poincaré oo-

category, and C a stable subcategory. If C is closed under duality De, then

e The restriction ?|¢ automatically makes € into a Poincaré oco-category, and

e The left Kan extension Lanj- ¢ along the projection j* : D — D/e makes this
Verdier quotient into a Poincaré oco-category

so that (€, ®|e) = (D, P) — (€/D, Lan;« ®) becomes a Poincaré-Verdier sequence.
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Remark. In fact, quadratic functors can be restricted or left Kan extended along arbitrary
functors, as shown in [CDH"20a, Section 1.4]. We do not give a proof, since it mostly
consists of straightforward but not very enlightening calculations.

Corollary 3.3.3. If (C,?) SN (D, ®) 5 (€,V) is a split Poincaré-Verier sequence, then
the adjoint sequences

(&,0) 5 (D, ®) 5 (@, Lan-.r D)
(€, @04.) 5 (D,2) & (€,9)
are right and left split Poincaré-Verdier sequences.
Proof. By [3.2.10] they are Verdier sequences, and as explained in the definition of
Poincaré-Verdier sequences ¥ = ®oj, . Similar to the reasoning there, Lan;—.cp = (—0i%)

since both functors are left adjoint to (—o0i™°?) and we are finished by applying the last
Proposition. O

Definition 3.3.4. For F': (C,?) — (D, ®) : G any functor between stable co-categories
with dualities, let F' be its dual functor

F''=DyoFPoDP:C—D. (3.14)
Remark. We will denote (f,)' := fi and (f*)' := f' in the rest of the text.

Proposition 3.3.5. Let F': (C,?) — (D, ®) : G be an arbitrary functor between stable
oo-categories with dualities, and G a right adjoint to F. Then, G' is left adjoint to F".

Proof. We use the fact that Dy and D¢ are anti-autoequivalences and their own inverses,
in particular Dy 4 Dg” and Dy’ 4 Dg. For C € € and D € D,

Mapg(G'(D), C) = Mape(DoG” Dy (D), C) = Mape., (G Dy (D), D§F(C)) =
= Mape(Dy(C), GDy(D)) = Mapy (FDy(C), Dy (D)) =
= Mapy, (D, D<1>F0ngp(C)) = Mapy (D, F!(C)) u

Remark. Note that we have not actually used anything about Dy and Dg except for the
two adjunctions. Hence, our statement holds more generally.

Corollary 3.3.6. Let F' : (C,?) — (D,®) be a duality-preserving functor between
stable oco-categories with dualities. Then, F' admits a left adjoint iff it admits a right
adjoint.

Proof. In note that if F? o Dy = Dg o F since F' is duality-preserving, then
F'~ DFDeF > F. O
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Corollary 3.3.7. A Poincaré-Verdier sequence (C, ?) L (D, ®) EN (€, W) is split iff one
of the adjoints j.,7.,¢", i exists.

Proof. Since by assumption i, and j* are duality-preserving, combine the previous Corol-
lary with to construct the remaining adjoints. O]

Proposition 3.3.8. (9-Lemma) Given a commutative diagram of stable (Poincaré) oo-
categories of the form

i9 Jo
GO > @0 > 80
|
lif li? 1i€
. j* ¥
Vx
e > D > &
|
ljé l]% g
i i
Gl > Dl > 81

where the rows and the first two columns are (split) (Poincaré-)Verdier sequences. Fur-
ther, suppose that the any morphism f : C — Dy in D, with C € € and Dy € Dy,
can be factored as C — Cy — Dg for some Gy € Cy.Then, the dashed arrows de-
termined by functoriality of the Verdier quotient make the right column into a (split)
(Poincaré-) Verdier sequence. Similarly, given a commutative diagram

* O
*

Jo

(‘30 > Do > 80
I
i 2 e
+ . %

Tx J
e > D > &
I
176 lj;; lj;
+ 1 .

1 J
1 N Dl ! > 81

where the rows and the last two columns are (split) (Poincaré-)Verdier sequences and
assume that any morphism ¢g : Dy — C factors as Dy — Cy — C' for some Cy € C.
Then, the dashed arrows determined by functoriality of the kernel make the left column
into a (split) (Poincaré-)Verdier sequence.

Remark. As will become clear in the proof, we can exchange the directions of both
factorization conditions, i.e. in the first case it is sufficient if any morphism f : Dy — C'
factors through a Cy, € Cy. Since they arise in different ways in the proof, we have
already stated them in different directions. In fact, both factorization conditions follow
immediately if suitable splittings (i.e. adjoints) exist making the upper left square Beck-
Chevalley in either direction since we can then use those adjoints to factor morphisms;
and the first condition also follows if the upper right square is Beck-Chevalley for simpler
reasons.
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Remark. The factorization conditions in this theorem seem weird when comparing with
the analogous statement in abelian categories, but they are also present in isomorphism
theorems for triangulated categories — see [Orl04, 1.3] or [KS13, 1.6.10]. In our setting
the proof is however quite a bit more difficult, since it is harder to get a grip on the
morphism spaces. The places where this condition enters in the first claim are the fully
faithfulness of i¢ and the condition on the quadratic functor on &;. The rest of the result
actually still holds if we leave it out, and even more:

In the first diagram choose a representant Dy € Dy of Ey € ker(if), ie. ji(Do) = Ep.
Then, j*0i?(Dy) = i¢ Ey = 0, so that i®(Dy) must come from an element C' € € since it
becomes 0 When localizing (see But then i} OJG(C) = j3 0i.(C) = j5i2(Dy) = 0,
and since zi is fully faithful, jé(C’) =0, so C = i%(Cy) for a Cy € Cy. Tt is now clear
that 12 0 i9(Cy) = i%(Dy) so since i¥ is fully faithful, Dy = i%(Cy). But this means
Eg = jO (Co) = 0.

Hence, let a: Ey — E{ be a morphism in €, then « is an isomorphism iff fib(«) = 0 iff
i¢(fib(a)) = fibif(a) = 0 (as ¢ is exact) iff () is an isomorphism — this means that
i¢ is conservative. Without the factorization condition we are however not able to show
that it is fully faithful.

In the second claim, a similar diagram chase shows that while j; might without the
factorization not be a Verdier projection, it is still essentially surjective.

Remark. In the case of Verdier sequences, the first claim is a categorification of the third
isomorphism theorem: Among other points, it entails that

(D/ Do)/(g » > ~ (1)/ @>/(@%0> . (3.15)

0

Proof. We only prove the first claim, the second is similar. Let us begin with the
case of Verdier sequences. The dashed arrows exist and are exact functors since Verdier
quotients are cofibers in Cat:., and cofibers are functorial — alternatively, use the uni-

versal property of the localization as in [NS18| 1.3.3].

To show that ¢ is fully faithful, we need to check the following equivalence of mapping
spaces, using the formula from [3.2.23

!
Mapy, (45(Dy), jo(Dg)) = colim Map%(Do,coﬁb(z Co — Dy)) ~

Co€Co /py

~ Mapg (i¢5; Do, it 55 D)) = chhm Mapy, (7Y Dy, cofib(i,C' — i2 D}))

/iP D)

Since 2 is fully faithful and exact, all we need to show is that in the second colimit, if
sufﬁces to only regard those C' that lie in the essential image of i®. In other words, we
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claim that the inclusion Cy /p; — €/p, is right cofinal. Applying Quillen’s Theorem A
1.2.15, we need to show that for each (C' — i0Dj) € €ji0p, the simplicial set

Co.c//py = Co/py Xe, 9D, (G/z 904 )(C—nng{))/

is weakly contractible. We will show that it is cofiltered, in the sense that for any
diagram p : K — € ¢//p, with K a finite simplicial set, there exists an extension
p: K% — Co c//p,- If the reversed factorization condition holds, we can similarly show
that it is filtered.

Since Dy is stable, it admits finite limits so the diagram ¢ : K* — Dy induced by p
that sends the cone point to Dy, and the rest of K to the underlying objects in Cy of its
image under p admits a limit limq € Dy. Further, p induces a natural transformation
from the constant functor on C' to ¢ and thus a map f : C' — lim ¢, which we can factor
as C' — Cy — lim ¢ using the factorization condition. Unwinding our construction, Cj
as a cone point allows us to lift p to p. We pictorially summarize our argument in the
following diagram, where the right two columns describe the diagram g:

/l\

C > Cy > limg —— p(k') —— Dj

Next, let us show that ji is a Verdier projection. Regard € and Dy as full subcategories
of D, and denote by Wy, We, We, the classes of morphisms in D with fiber in Dy, C
or Gy respectively. We want to show that the composite maps l; : D — D; — &; and

lo :D—E— 8/80 satisfy the same universal property, namely they both localize D at
Wy, U We.

Let A be another stable co-category. Precomposition with Dy — &; exhibits Fun(&4, A)
as the full subcategory of Fun(D;, A) on the functors that send morphisms in We,
to isomorphisms. Therefore, precomposition with [; exhibits the former as the full
subcategory of Fun(D,A) on functors I that send Wp, to isomorphisms and, after
being factored through Dy, send We, to isomorphisms.

If F' already sends We to isomorphisms, the latter is automatic by commutativity of
the lower left square. Conversely, if the factorization of F' through D; sends We, to
isomorphisms, note that any f € We induces ji,(f) with fib(j5f) = jifib(f) € &
since Verdier localizations are exact (see and j¢ is the (co-)restriction of jj, to
the respective full subcategories; so f is finally sent to an isomorphism. Using a similar
argument for [5, we are finished.
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Next, let us show that if all involved sequences are split, the dotted sequence is so as
well. This amounts to constructing left and right adjoints to the dashed arrows, which is
straightforward by using commutativity of the right squares: For example, i¢oj} = j*oi?
means that i¢ = j* 047 o j% since j; o j9 = ide, because jO is fully faithful, so a left

adjoint is given by the composition jj o ip o ..

Finally, we want to show that if all involved sequences are Poincaré, then the dotted
sequence is as well. This amounts to showing that, for ? the quadratic functor of D,

(LangD 9) leg = Lan%oo (?]p,)

& & ~ &1 D1
Lang Lany, ¢ = Langy Lang' ?

The latter follows from transitivity of Kan Extensions and commutativity of the lower
right square; the former relies on equation to write, for Ey € &g with Ey = j*(Dy)
for some Dy € D:

Lan, 9(Ey) = colim 9(fib(Dy — C))
Do—ix(C)
Lan%OO(Eo) (Qp,) = colim Q(fib(Dy — Cy))

D0—>i2(00)
This follows by the same cofinality argument we had used to compare the mapping
spaces in the beginning. O

Now, for the main reason we went through all these definitions:

Theorem 3.3.9 ([CDH7T20b, 4.4.6]). Given a Poincaré-Verdier sequence (C,?) —
(D,®) — (&,V), the by functoriality of L for duality-preserving functors associated

sequence of L-spectra
L(C,?) — L(D,®) — L(E, V) (3.16)

is a fiber sequence of spectra. In particular, we obtain a long exact sequence of L-groups

c— L1(C,0) — Ly(D,®) — Ly(E, V) j

[—> Lo(C,?) — Lo(D, ) — Ly(E, V)
j

[—> L_1(C,Q) — L_4(D,®) — L_4(E, V) — ...

Construction 3.3.10 (JCDH™20b], 4.4.7). One can explicitly describe the value of the
boundary operator in this long exact sequence on an n-dimensional Poincaré object
(E,q) € L™(E,¥). For simplicity, choose n = 0 since other cases can be obtained by
shifting the quadratic functor.
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e First, since j* is essentially surjective, represent if as £ = j*D’ with D' € D.
e Apply equation to write

U(E) = colim P(fib(i,Cy — D)) .

(Co, Qs C()*)D/)E(@O D//)Op

Since ¢ is a point of this space, it must come from some ¢ € ®(fib(i*Cy — D')) =
®(D) with D := fib(i*C — D) € D.

e If the considered Poincaré-Verdier sequence is split, we might simply choose D =
J«F with ¢ the image of ¢ under the natural isomorphism ® o 5, = .

e While (D, q) is generally not a Poincaré object (even in the split case, j, is generally
not duality-preserving), ¢ induces a map G : D — DgD. The cofiber of this map
is self-dual up to a shift:

Da(cofib ;) = fib (Dq)(D % Dﬂ))) — fib(D2D — DyD) 2 cofib(D % DyD)[~1]

after noticing D¢y = p; composing with the biduality isomorphism, by its construc-
tion from ¢. Using some gymnastics for quadratic functors (related to algebraic
surgery/ the algebraic Thom-isomorphism as in [CDHT20b, Section 2.4]), one can
show that this self-duality is induced by a quadratic form g, € ®[(cofib ).

What the reference shows is that the boundary map L™(€,¥) — L"'(C,?) sends the
class [(E, q)] to the class represented by the Poincaré object (cofib gy, g.) we have just
constructed.

3.4 Orthogonal Decompositions

Proposition 3.4.1. Let € be an co-category that admits finite limits and is the recolle-
ment of a closed subcategory €y and an open subcategory C; via the reflections Ly and
L. Suppose that the same functors also exhibit € as a recollement of C; as closed, and €y
as open subcategory. Then, Ly and L; induce an equivalence of categories C ~ €y x C;.

Proof. We claim that the functor € — Cy x €; mapping C — (LoC, L1C) is an equiva-
lence with inverse (Cy, C1) — Cy x C; € €. The compositions of these functors map

(Cl,Cz) — (LO(CO X Cl),Ll(Co X Cl)) = (C(] X ok, %k X Cl) = (CQ,Cl) (317)
and C' +— LyC x LyC. The natural transformation « from C to LyC x L;C' given by the

unit maps yields an isomorphism when applying Ly or Ly, as LoC = LoLoC x LoL,C.
Since Ly and L; are jointly conservative, « is a natural isomorphism as well. O
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Remark. Under € ~ €y x €y, the inclusions iy, i; correspond to the functors Cy — (Cp, *)
and C — (x,C1).

Corollary 3.4.2. Let Gy e L Gy be a split Verdier sequence, so that the reversed

sequence €, -2 C AN Cp is also split Verdier. Then, ¢* and j* induce an equivalence
G~ eo X 61.

Proof. By |3.2.9] C is a stable recollement of Cy and €;, and similarly with the roles
reversed. Therefore, we can apply O]

Corollary 3.4.3. If €y C € is a reflective and coreflective stable subcategory of a stable
oo-category €, and +Cy and Cf coincide, then we can factor € ~ Gy x Ca.

Proof. By , we know € is a recollement of Gy and €j, in particular there are
reflections Ly : € — Cp and L; : € — Cg that are left exact and jointly conservative,
such that L;Cy = 0. We are finished if we can show Lo(Cg) = 0, since then € is also
a recollement of C3 and C with roles reversed, meaning we can apply . But this
follows by the Yoneda lemma since for each Cy € Gy and C; € Gé,

Mape, (LoCh, Co) = Mape(Ch, Co) = 0 (3.18)

because Cj = €y by assumption. O
We develop an analogous statement for split Poincaré-Verdier sequences.

Definition 3.4.4. For (C,?) and (&, ¥) two Poincaré co-categories, their product € x €
also admits the structure of a Poincaré oo-category using the smashed quadratic functor
AW CP? x EP — Sp defined as the composition

CP x &7 X g % 8p -2 8p . (3.19)
Proof. The associated polarization is
Bosw((C,E), (C",E") = Bo(C & C') @ By(E, E) (3.20)
which is clearly still bilinear, and represented by the exact duality functor
Doay (C, E) = (Dg(C), Dy(E)) (3.21)
satisfying biduality, since the individual duality functors do. Finally,
Agew(C, E) = fib (2(C) @ U(E) — (Be(C,C) @ By(E, E)")) 22 Ao(C) @ Ay(E)

is still exact, so we have checked everything. O
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Remark. This operation is both product and coproduct in Cat?_.

Proposition 3.4.5. If (C,?) SN (D, ®) N (E,¥) is a split Poincaré-Verdier sequence
such that the reversed sequence (&, ¥) 2% (D, @) N (€, ?) is also split Poincaré-Verdier,
then we can decompose

(D,®) ~ (Cx &,90 V) (3.22)

such that i,,:*, j,, 7° are the canonical embeddings into and projections out of this
product.

Proof. By , we know that on the underlying split Verdier sequences, (i*,7%) : D —
C x € is an equivalence exhibiting i,,7*, j,, 7* as the canonical maps. In particular, any
D € D is isomorphic to i,i*D @ j.j*D. We only need to show that (2@ W) o (i*, j*) = d,
then we are finished. But

(@@ W) o (i*,j*)(D) = Qo i* @ Vo j*(i,i*D & j,j* D) 2 9(i*D) & W(j*D) =
~ §(,i*D) & ©(j,j*D) & Bo(iri*D, j.j*D) = ®(i,i*D & j,.j*D) = ®(D)

where we use that j*i, = 0 and ¢*j, since both are the composites of Verdier sequences,
and Bg(i.i*D, j.j* D) = Map(i.i*D, Dgj.j* D) = Map(j*i.i*D, Dyj*D) = 0 since j, is
duality preserving. O]

Remark. Using we know that i, 4 ' and j, 4 j'; but given our assumption in
the last proposition that both directions are Poincaré-Verdier sequences, the functors
ix,1%, jx, 7° must be duality-preserving. Hence, iy := Dg 0 i, o D¢ = D32i, = 4, and
similarly for the others, so 7, 44" 44, and j, 4 5% - j, are double-sided adjoints. This
is not at all surprising, since by our proof they are just inclusions and projections into
a biproduct, which always satisfy this property.

3.5 P-slicings and P-recollements

The above discussion has only involved splitting Poincaré oo-categories into two compo-
nents. Classically, semiorthogonal decompositions of triangulated categories can however
consist of multiple subcategories. We translate this into our context since we could not
find a full discussion in the literature (some results can be extracted from [FLM15]), and
we will see a nice application ot this in [3.5.9]

Let us fix a parametrizing poset P, where P = {0 < 1} corresponds to the case of two
components.

Definition 3.5.1. A slicing of P is a decomposition P = P_ LI P, such that for every
p_ € P_, p, € Py, we have p_ < p,. The set O(P) of slicings of P is partially ordered
by setting (P_, P,) < (P., P}) iff P~ C P’ (and hence also P, 2 P). Also, it has a
minimal element ({), P) and a maximal element (P, ().
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Remark. In this case, P_ is downwards closed and P, is upwards closed.
Lemma 3.5.2. A slicing of P is the same thing as an order-preserving map P — [1].

Proof. Given a slicing (P_, P, ) of P, we can define a map f : P — [1] sending all of P_
to 0 and P, to 1. This is well-defined since P_, P, are disjoint and cover all of P. Also,
it is order preserving as we had assumed that p_ <p, forallp_ € P_ p, € P,.

Conversely, to any order-preserving map f : P — [1] we can associate a slicing

(f71({0}), f7H({1})) of P clearly satisfying f~'({0}) N f~'({1}) = f~'({0} N {1}) =0
and {0 U fr{1}) = f7Y[1]) = P, as well as p_ < p, as above since f is order-
preserving. [

Definition 3.5.3. Let € be an oo-category with finite limits. A P-slicing of C is a map
that associates to every slicing (P_, Py) € O(F) a pair of full subcategories €p_,Cp, C C
such that

e Cis a recollement of Cp_ and Cp,,
e to (0, P) and (P, ) we associate the trivial recollements {x}, C and €, {x},
e and if (P_, Py) < (P, P,), then Cp. C Cpr.
Remark. Again, of most interest is the case where C is stable. By [3.1.6] this implies that

Cp,,Cp_ are stable subcategories and all involved functors are exact. In this setting,
above notion was introduced in [FLMI5, Chapter 6].

Definition 3.5.4. A P-recollement of an oco-category € admitting finite limits consists
of a collection of full subcategories (C,),ep such that:

e The inclusions i, : €, < € admit left exact left adjoints L,, for all p € P.
e For C, € C,,C, € €, where p,q € P with p < ¢, the composition L,i, = 0 vanishes.

e The functors (L,),ep are jointly conservative.

Proposition 3.5.5. If P is finite, we may rephrase the last point by instead requiring
that the smallest full subcategory of C closed under finite limits and containing every €,
is C itself.

Proof. For the if direction, if there was a morphism o in C such that all L,a are
isomorphisms, but « itself is not, then L, fib(a) for all p. Let K denote the set of all
objects in € with this property, then the true full subcategory of € spanned by objects
that are not in C would violate above condition.

Conversely, if there were a true full subcategory € C € closed under finite limits and
containing all of the C,, and C' € C were not in C, then we map iteratively replace it by
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the finite limit cofib(C' — limyepi,L,C) which is in the kernel of all L, violating joint
conservativity. OJ

Theorem 3.5.6. For P a finite poset, the following pieces of data are equivalent:
e An oo-category € that admits all finite limits and is a P-recollement of (C,),ecp

e A functor F : P? — Gatiff into the non-full subcategory of Cat., spanned by
oo-categories that admit all finite limits, and left exact functors

e A P-slicing of an oco-category € admitting finite limits

Proof Sketch. (i) = (ii). If C is a P-recollement of (C,) with functors denoted as above,
and p < ¢, then we obtain a left exact functor L, oi, : ¢, — €,. Also, €, has all
finite limits, as it is a reflective subcategory of a category that has them. We may thus
assemble the required functor F' by F(p) = C, and F(q > p) = L, o i,.

(i7) = (i). Conversely, given such a functor F : P — Cat'®, let @ be its lax limit. In
other words, apply the Grothendieck construction to the underlying functor F': PP —
Cato to obtain a Cartesian fibration C' : M — P, and define € := Funp(P,M) as its
space of sections. We now claim that C is a recollement of the categories C, := F(p),
with reflections L, given by evaluating a section P — M at p, yielding an object of the

fiber M xp {p} = C,,.

We only sketch this, the full proof is analogous to [Lurl7, A.8.7]. The right adjoints
i, : €, — C are given by constructing sections that consist only of terminal and C-
Cartesian arrows, and the fact that they are fully faithful follows from the essential
uniqueness of Cartesian lifts. From this construction, it is clear that Lyi, = * for p < ¢;
and the fact that L, is left exact and € has finite limits follows from the fact that F'lands
in Cat’”. Finally, the L, are jointly conservative since if a is a natural transformation
between sections and L,(«) are isomorphisms, then « is pointwise an isomorphism and
therefore a natural isomorphism by [Lurl8al Tag 01DK].

(1) = (i1i). Given any P-slicing s : P — [1], our goal is to base-change the functor
F PP — Gatfij” along s. Informally, this should be done using a lax right Kan extension,
so that

€ = laxlim pop (F') = laxlimpjor laXRanEi]oo:(F) (3.23)

still decomposes C. Just as a right Kan extension along a Cartesian fibration is calcu-
lated by taking the colimit over the fibers by [Lurl8al, Tag 02ZM|, we might expect the
same formula to hold in the lax case, so we define F' : [1]7 — Cat'®" as the space of
local sections F’(0) := Funp(P_,M) on P_ = s *({0}), and similarly for P,. The re-
quired map Funp(Py, M) — Funp(P_, M) is then a limit over the suitable contravariant
transports. Concretely formalizing this proof is very heavy on combinatorics, we hope
the reader is simplified with the simpler special case in [4.6.1}

(i4i) = (7). To any p € P, we can associate two canonical P-slicings (P<,, P — P<,) and
(P-p, P — P.,). By definition, they differ only by the side of the slicing that p is on. If
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we denote by L= the left exact reflection onto C p., and similarly by L$ the reflection
onto Cp_p_,, define C), := Lé@p_p@ C C. This is a reflective subcategory with left exact
reflection L, := Lfor, and by definition for ¢ > p we have L,C, = 0. It remains to
show that together, the L, are jointly conservative, which is done by repeatedly slicing
P and reducing the statement to joint conservativity after localizing to P_ and P, , until

by finiteness of P we reach the case of [1] where the claim follows by assumption.  [J

Definition 3.5.7. A P-decomposition of a stable oo-category C consists of a collection
of stable subcategories (C,),ep such that:

e For C, € C,,C, € C, where p,q € P with p < ¢, the mapping space Mape(C,, C,)
is contractible.

e The smallest stable subcategory of € containing C, for every p € P is € itself.

Theorem 3.5.8. For P a finite poset, the following pieces of data are equivalent:
e A stable co-category C that is a P-decomposition of (C,),ecp
e A stable co-category C that is a P-recollement of (C,)yep

o A functor ' : P? — CatZ. into the non-full subcategory of Cat., spanned by
stable oo-categories and exact functors

e A P-slicing of a stable oo-category C

Proof. We had seen in Proposition that a recollement of two subcategories is stable
iff the two subcategories are stable. The first two data are hence equivalent by combining
[3.5.5) with the observation that if L,i, = 0 for p < ¢, then Map(C,,, Cy) =~ Map(L,i,C,) =
0 automatically, and the converse following from the Yoneda lemma.

The remaining equivalences are also immediate by combining the arguments of the men-
tioned proposition with the previous Theorem. In particular, note that the recollements
involved in the P-slicing in the last point are automatically stable. O]

Remark. We expect partial results to still hold for P a noetherian poset. For general P,
the correct definition is that of a functor P — Cat'®® or into Cat®” respectively, whence
we recover C as its lax limit. In particular, the notion of a P-recollement is generally
stronger than the notion of a P-slicing, as indicated in the following proposition.

Proposition 3.5.9 (J[HPT20, 5.16]). Let (X — P) be a stratified space in the sense of
[6, with P potentially infinite. For V a compactly generated oco-category, the hyperpull-
back functors (SA™P(X;V) — Shhyp(Xp;V))pep are jointly conservative. This implies
that in our terms, the full subcategories Sh"™?(X,;V) embedded into Sh"™P(X;V) by
pushforwards form a P-recollement. However, they already form a P-slicing under the
possibly weaker conditions of 3.1.5] e.g. if V is presentable and stable.
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Now that we have discussed the case of oo-categories with finite limits and stable oo-
categories, the latter generalizing the classical theory of semiorthogonal decomopositions
by taking the homotopy category, we turn to the Poincaré case.

Definition 3.5.10. Let (C,?) be a Poincaré oo-category. A Poincaré P-slicing of C
is a P-slicing of C such that for every slicing (P_, Py) of P, the induced sequence

*

(Cp_,%0e, ) SN €9 & (Cp,,2ep, ) is a split Poincaré-Verdier sequence. In other
words, 7, and j* must be duality-preserving.

Remark. We are unsure if this can be reformulated as a functor P? — Cat? ; a first

step would be to notice that the push-pull i*j,E =i~ j, E[1] = Dgi*j. Do E[1] is duality-
preserving up to a shift by the argument of [Ban07, 8.2.6].
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4 L-Groups of Simplicial Complexes
and PlL-spaces

While we have defined L-groups for arbitrary Poincaré co-categories, until now we mainly
considered algebraic examples, like the perfect derived oo-category or categories of mod-
ule spectra. Our goal however is to apply these consideration to (stratified) topological
spaces, a task that can get fairly difficult especially when the spaces involved are not
well-behaved. As a first step, let us therefore take a look at one of the simplest classes
of spaces, finite simplicial complexes, and then pass to compact PL spaces built from
them.

4.1 Simplicial Sheaves

In this section, we define simplicial sheaves on a simplicial complex, which will turn out
to be a special case of the constructible sheaves on stratified spaces we later consider.
Further, we write down a Verdier duality functor on them allowing us to define L-groups.
Let V be a stable co-category.

Definition 4.1.1. A simplicial complex K consists of a set of vertices K, and a partially
ordered set of simplices or faces denoted by Ji that is a collection of nonempty finite
subsets of K, ordered by inclusion. We require that

e For each v € K, we have {v} € Ik, and
e If o, 7 are nonempty finite subsets of K, such that ¢ C 7 and 7 € Jg, then o € Jk.

The dimension of a face 0 € Jk is defined as its cardinality minus 1. The dimension of
K is the maximum over the dimensions of all its faces. K is called finite if the poset Jx
is finite, which implies that K is also finite.

Definition 4.1.2. A map of simplicial compleres f : K — L is a map of underlying
sets f: Koy — Lg such that the image f(0) C Ly of a simplex o € Ik is again a simplex

in J;. One obtains a category of simplicial complexes.

A simplicial complex K should be regarded as special case of a simplicial set, where

e no ordering is fixed on the faces of an n-simplex,
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e the gluing of simplices is regular, i.e. all n-simplices of K are isomorphic to the
standard simplex A", and

e the intersection of two simplices is again a single simplex.

In particular, we can associate a simplicial set to any simplicial complex K (which is
unique after fixing an order on the vertices), with non-degenerate simplices precisely the
simplices of K. We use it to define e.g. the geometric realization | K| or the (barycentric)
subdivision sd(K), which agree with the usual definitions from topology.

Warning. We also associate a different simplicial set to K, namely the oo-category
obtained as the nerve of the partially ordered set of simplices Jx. This simplicial set
has one vertex for every simplex of K and one edge for every inclusion relation among
them; so it is the subdivision of the construction above. In particular, their geometric
realization are homotopy equivalent (even homeomorphic).

Definition 4.1.3. For K a simplicial complex and V an oo-category, a simplicial sheaf
on K is a functor Jx — 'V, where we regard the poset Jx as a (thin) oco-category using
the nerve construction. We write 8h*™(K;V) := Fun(Jg, V), and if V has a terminal
object * we denote by 825 (K ; V) its full subcategory on compactly supported simplicial
sheaves F', meaning that F'(0) = % € V for all but finitely many o € Jg.

Remark. If 'V is compactly generated, or presentable stable, then this is equivalent to
the oo-category of constructible sheaves on the stratified space |K| — Ik, as we show
in [6.2.13] More generally, if V itself is not presentable but a full subcategory of an
oo-category W satisfying these properties, we will see in that we may identify
Sh¥™P(I;V) with the full subcategory of SA’(|K|; W) on those sheaves with stalks in
V. This often happens for Poincaré co-categories, for example DP(R) C D(R).

Observation 4.1.4. If V possesses all (co)limits, the co-category Sh*"™(K;V) does so
as well. Also, every functor F': Jx — V agrees with the filtered colimit

F= colim ig 5 F 4.1
Hogr
K'CK finite

where ig/ i3 F is defined to agree with F on all simplipes in the sub-poset Jx C Ik,
and is zero otherwise. Thus, 8h2""?(K;V) generates Sh*""P(K;V) under colimits.

Example 4.1.5. For 7 € Jx and C' € V, denote by F,y : Jx — V the sheaf that sends
each face 0 C 7 to V, and all other simplices of K to 0. This is compactly supported on
the simplex 7 and its faces.

Example 4.1.6. Conversely, denote by F™" : Jx — 'V the sheaf that sends every o D 7
to V and all other simplices of K to 0. As in the last example, the transition maps are
either identities or zero maps.
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Example 4.1.7. Both examples above still make sense if we replace T by any subcomplex
L C K, yielding Fry and F&V.

Definition 4.1.8. A simplicial sheaf F' : Jx — V on a simplicial complex K is called
locally constant if for each 0,7 € I with ¢ C 7, the image F(oc C 1) : F(0) — F(7) is
an isomorphism. For every V' € 'V, we can define a locally constant sheaf V : K — V as
the constant functor with value V; let us call simplicial sheaves of this form constant.

Definition 4.1.9. Given a simplicial sheaf F': Jx — V on a simplicial complex K, its
global sections or simplicial cochain compler are defined as

['(F)=C*(F) := lim F(o) . (4.2)

o€lk

Dually, we define its simplicial chain complex C,(F) := col%m F(o).
oClk

Proposition 4.1.10. It V admits limits and colimits, the functors C, - (=) 4 C* form
an adjoint triple, by definition of limit and colimit:

Cu >
Sh¥™P(K;V) = Fun(Jg, V) < © %
c* >

Hence, the compositions C, o (=) 4 C* o (—) are adjoint functors V — 'V, also denoted
by C.(K;—) and C*(K; —). -

Remark. For V = D(R) the derived category of a ring or the category of chain complexes
Ch(R), the groups C*(K;R) and C.(K; R) agree with the usual simplicial (co)chain
complexes since homotopy (co)limits in the derived category of a Grothendieck abelian
category can be calculated using the bar construction as explained in More
generally, C, and C* calculate the simplicial (co)chain complexes with values in a local
system. We will in |5.3.11] and [6.3.8| apply the same construction for the (co)homology
of a topological space with values in a local system or constructible sheaf; one can also
obtain the simplicial (co)chain complexes of a (regular, locally finite) CW complex in

this manner using [6.2.12

Technical Remark. If we regard Sh*"™ (K ;8) as a (presheaf) co-topos, then (—) 4 C*
agrees with the global sections geometric morphism, and their composition is a left-exact
functor § — § called the shape of this topos. The last remark shows how this encodes
topological invariants of the simplicial complex K. We will observe something similar

for the topological setting in [5.1.10
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Definition 4.1.11. If K is a simplicial complex and ¢ € Ji a simplex, the open star of
o is the set of simplices in K that have a non-empty intersection with o, regarded as an
open subset of |K| by taking the union of their interiors. The star of o is the closure
of the open star under the operation of taking faces, so that it becomes a simplicial
complex itself (or a closed subset of |K|). The link of o consists of those simplices in
the star that do not intersect o.

Example 4.1.12. Usually, we are interested in the case where ¢ = {v}, so the star
of {v} is the closure of all simplices containing v as a vertex. If we for example let
v =0 € A", then its star is all of A"; its link consists of those simplices in A™ that do
not contain v, making up A'<"<" = An~l: and its open star is A" — Al<<n,

Example 4.1.13 ([Lurll, Lecture 18, Example 7]). Let us calculate the global sections
for the exemplary sheaves above:

C*(Fy) = lim Fy = lim V = Vi (4.3)
oclk

o€y,
where V7% is the mapping object defined by

Mapy (V' VE) = lim Mapy(V’, V) = Mapg(Jr, Mapy(V', V)) (4.4)

oclr,

for all V' € V. To calculate C*(F™"), let L be the subcomplex of K defined as the
complement of the open star of 7. The sequence

FT’V — FK,V :K—) FL,V (45)
of functors is a fiber and cofiber sequence, since this can be checked simplex-wise. Hence,
C*(F™Y) = fib(C*(Fry — Fry)) = fib(V'x — V) = yUxIn) (4.6)

and since the mapping objects are defined by mapping K, L into the Kan complex
Mapy(V’, V), they are invariant under weak homotopy by definition SO we can
contract the open star of 7 to a point z in the interior of 7, obtaining C*(F™") =
VUKLKIH=}) where we identify the topological spaces with their (singular) Kan com-
plexes.

From now on, let (V,?) be a Poincaré co-category. This allows us to equip SA*"(I;V)
with the tensor hermitian structure, making it into a Poincaré oo-category as well by
We can even twist the quadratic functor by a local system:

Definition 4.1.14. A spectrum X € 8p is called invertible if there is another spectrum
Y € 8psuch that X AY = S. This already implies that X = S™ for some n € Z. Denote
by 8p™ C 8p the full subcategory on invertible spectra.
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Definition 4.1.15. Given a simplicial complex K, a spherical fibration on K is a locally
constant sheaf y : I — Sp'™v.

From now on, we always assume that K is finite.

Proposition 4.1.16 ([Lurlll Lecture 21|). For (V,?) a hermitian oco-category, K a
simplicial complex and ¢ : Jx — 8p™ a spherical fibration, the category of simplicial
sheaves Sh™"P(K; V) equipped with the twisted Verdier duality functor

Rucc(F) i= colim () A 9(F () (4.7)

for any F': Jx — V is a hermitian oco-category. Its associated bilinear functor is

Bico(F,G) = colim ((0) A Bo(F(0), G(0) (4.8)
oclk
and if ¢ admits a duality functor Dg, we obtain an associated duality functor

Do(F (1)) for 7 D0

| (4.9)
0 otherwise

TEJK

Dy ¢(F)(o) = ((o) A Dk(o) = ((o) /\COlim{
where we denote the non-twisted tensor duality functor by Dxs =: Dg.

Remark. The (o) A — in this formula is the tensoring S$pi* @ V — V from [1.6.22]
determined by the universal property

Mapy(E AV, V') =~ Maps, (E, mapy(V, V")) . (4.10)

Since ((o) = X"S for some n € Z, this tensoring on objects simply acts as ((o) AV =
¥V, but a priori it is not clear that this is functorial in §p™.

Lemma 4.1.17. For E € $pi", and V a stable oo-category with V,V’ € V,

E A mapy(V, V') 2 mapy(V,EA V") (4.11)
Proof. Every finite spectrum can we written as a finite (co)limit over the sphere spec-
trum S = 385 (essentially by definition, compare [CDH"20al 4.1.2]), and regarded as

functors in E, both sides of the above equality preserve finite limits. We can therefore
reduce to £ =S, which is a unit for the smash product so the result is automatic. [J

Proof of|4.1.16. Note that all involved colimits are finite, so they exist in a stable co-
category. In the case where ( = S : Jx — 8p™ is the constant functor on S, this
Proposition is just a special case of Generally, x¢(0) = 0 is reduced,

2 ¢(F @ G) = colim((o) A (2(F(0)) ® 2(G(0)) & Be(F(0), G(0))) =
= colim (o) A (F()) & colim (o) A%(G(0)) & colim (o) A Be(F(0), G(0)) =
=% ¢(F) ® %k ¢(G) ® Br((F,G)
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exhibits Bg ¢(F,G) as the correct polarization, and

Br¢(F,G) = colim ((0) A mapy (F(0), DeG(0)) =

o€l

= colim mapy(F(0),((0) A DeG(0))

o€l

using the Lemma above. From there, we can follow the proof of 2.3.7 Further, Dg  is
exact since the smash product preserves colimits in both variables and we already know
Dk is exact, so By is bilinear and automatically symmetric as it arises as a polarization.
We calculate

A[g((F) = fib (9[(}((17) — BK’Q(F, F)hSQ) = COlimC(O’) VAN AQ(F(O’))

ok

since A preserves colimits, making it exact as well, so 2k ¢ is a non-degenerate quadratic
functor. O

Example 4.1.18 (|[Lurlll Lecture 19, Example 2|). Let V : Jx — V be the constant
sheaf on V € V. Its Verdier dual can be calculated as

D f D
o(V) fort Do — Dy lim

elg | 0 otherwise €K

i D)
DKK(U) = Colim{ {V orT_ oo

0 otherwise

= DoC*FoV = DoV IKHKI-{))

for x in the interior of o, using example 4.1.13

Theorem 4.1.19 (|Lurlll Lecture 19, Proposition 3]). If V is a Poincaré oco-category
and ¢ a spherical fibration on a finite simplicial complex K, then the hermitian oo-
category (8h™"P(K,V), %k ) is Poincaré as well.

We will need further preparations to prove the biduality statement included in this
theorem. Let us first examine the functoriality of our constructions.

Definition 4.1.20. For f : Jx — J; a map of simplicial sets as defined in we
define the pullback . '

fr:8h*MP(L; V) — Sh*™P(K;V) (4.12)
by precomposing G : I, — V with f, in the sense that f*G(7) := G(f(7)). In fact, this
even makes sense if f is just a map of posets.

Definition 4.1.21. As a precomposition functor f* has adjoints f, 4 f* - f, given by
left and right Kan extension along f, assuming that V has the required colimits or limits
(e.g. K is finite and V stable). We call f, = Rany : SA*™(K;V) — Sh™™P(L;V) the
pushforward along f, it is explicitly given by

(fF)(T):= (lim F(o). (4.13)

flo)2r
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Observation 4.1.22. If f : K — L is even a map of simplicial complexes and 7 € I,
then there exists a 0 € Jg with f(o) 2 7 iff there exists a o/ € Jx with f(o') = 7,
as we can choose o/ C o as a subset making the restricted map on vertices bijective.
Therefore, the set of o’ with f(o’) = 7 is a left cofinal subposet of the indexing poset of
the above limit, as either both are empty or each o there exists an appropriate face o’

We may then write

(£B)(r) = lim F(o). (4.14)

In particular, this implies that f*F exists if V admits finite limits (e.g. it is stable) and
the preimages f~1(7) are finite. We might call such maps of simplicial complexes proper.

Lemma 4.1.23. For f :Jx — I, g : I — Ty maps of posets, we have:

(gof)y=gsofr, (gof) =f"og", (g90f)=g.o0fs (4.15)

Also, if t: L — AY is the terminal map, then ¢, = C* and t, = C, under the identifica-
tion 8A*MP(A% V) = Fun(A° V) ~ V. In particular, C* o f, = C* and C, o f, = C..

Proof. This statement is clearly true for the precompositions. For the pushforwards,
this it is due to transitivity of Kan extensions. O

Technical Remark. In fact, the expression Fun(—,V) : PoSet™™ — Cat., sending maps
to the respective pullbacks is a functor on all finite posets, and classifies the coCartesian
fibration M — PoSet™ which is also Cartesian, and the Cartesian fibration MY —
PoSet™ which is also coCartesian. This yields the adjunction f, = f* 4 f. when
restricting to the non-full subcategory on (Jx, 7z, f) in PoSet™, and the previous Lemma
when restricting to the span of (Jx,Jr, Iy, f, g) and composing the (co)Cartesian lifts.

Proposition 4.1.24 (|[Lurll, Lecture 19|). For f : K — L a map of finite simplicial
complexes, ¢ : J;, — 8p™ a spherical fibration and V a Poincaré oo-category, the induced
pushforward functor

for (S (K3 V), 0 cop) — (SH™(L; V), Q) (4.16)

is duality-preserving in the sense that f, o Dg¢of = D¢ o fu.

Proof. By the Yoneda-Lemma, it suffices to show that for F': Jx — Vand G:Jp, — 'V,
map(G, Dp¢ fiF) = map(f*G, Dk cor F)

naturally in ' and G. But these are precisely the expressions for the associated bilinear
functors; we calculate

I

B (G, f.F) = colim ((7) A Be (G(T), lim F(U)) = colim ((7) A Be (G(71), F(0))

7€l flo)=7 T,f(o)=T

= colim ((f(0)) A Be (G(f(0)), F(7)) = Brcos (fG, F) .

o€lk
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Remark. A different proof can be found in [CDH"20a, 6.5.13, 6.6.1] relying on the
observation that the map (Jx),; — (J1)f(), induced by f is always right cofinal.

Lemma 4.1.25. The sheaves (F™V) cx vev generate Shiif”p(K; V) under cofibers, and
Sh*™P(K;V) under all colimits. Actually, for any F' € Sh™"P(K;V) we have

Mapg s oy (F™, F) = Mape(V, F(7)) (4.17)

If we regard the simplex 7 € Jx as a simplicial complex and let ¢, : 7 — K be the
canonical inclusion and V : 7 — 'V the constant simplicial sheaf on 7 with value V', we
can identify i, .,V = F™V.

Proof. Given a compactly supported simplicial sheaf F' on K, its support supp(F) is
a finite downwards-closed subset of Jx. If it is empty, then F = F7™0 and we are
finished, otherwise we proceed by induction on its cardinality and choose any maximal
70 € supp(F). The fiber I’ := fib(F — F™ (1)) has a smaller support supp(F) — {7},
and F = cofib(F™F(0) — [} 50 we are finished. We have already observed in that
the compactly supported sheaves generate all sheaves under filtered colimits, showing
the second claim.

The third claim follows either from the Yoneda-Lemma, as F™" is just the Yoneda-
embedding of 7 tensored with V', or by an explicit calculation. Then, the last claim
follows by applying the Yoneda-Lemma to the calculation

= Mapy(V, F(7)) 2 Mapgsimp ) (F7V, F)

since the limit diagram has an initial object. O

Proof of|4.1.19. By the previous proposition [4.1.16, we only need to show that Id = D%CC
is perfect. By its definition, Dg  commutes with colimits, so it suffices to show this on a

class of objects generating 8A*"™(K; V) under colimits. We use the sheaves F™" =i,V
for this purpose, and since pushforwards commute with Dg ¢ by [4.1.24] we can reduce to
the constant sheaf V on an n-simplex 7.

In 4.1.18 we have calculated DxV (o) = DoVA"A" ==} for z a point in the interior of
o. If o C 7 is a proper face, this homotopy cofiber is trivial; for ¢ = 7 it is homotopy
equivalent to DoV EP™"5" ™) ~ DoV5" = DeX 7"V = ¥ DoV Finally, we calculate

{DQ (C(o") NDgV (o) foro' Do

D%(7CK(O') = ((o) A colim

o' €Jr otherwise

= ((o) A colim

o'€dr otherwise

{Dg (C(a")YANE"DeV)  forT=0"Do0o

= (o) ACHo) ATV A colim

o'€lr otherwise

{DQE"OSO for 7 =o'
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using that Dy sends X" to X", and thus an invertible spectrum to its inverse. The
last colimit can be identified with X*°fib(|07| — |7|) = £*S", so we are left with
YTV AYS =V, as claimed. n

4.2 Combinatorial Sheaves on PL spaces

Definition 4.2.1. For K, L simplicial complexes, a homeomorphism r : |K| — |L|
exhibits K as a refinement of L if

e It embeds the realization of a simplex ¢ in K into the realization of some simplex
in L. This induces a map of partially ordered sets r : Jx — J;, sending o to the
smallest such 7 € J;.

e The realization of a simplex in L is the union of such embedded simplices from K.

We will often only specify the map of posets r : I — I, be aware that this is never a
map of simplicial complexes unless it is an isomorphism.

Definition 4.2.2. A piecewise linear space, or PL space in short, is a topological space
X together with a set T of locally finite triangulations such that

e if T € T, then the barycentric subdivision sd(7T’) is also in T, and
e any 1,7’ € T possess a common refinement 7" € 7.

The set T is partially ordered by refinement of triangulations. We refer to the literature
(e.g. [Lurll, Lecture 17]) for more information, and different characterizations. In
particular, a PL map between PL spaces is a map of simplicial complexes on some
triangulations of them, making PL spaces into a category.

Proposition 4.2.3 (|[Lurlll Lecture 17, Remark 7]). For X a PL space, the following
are equivalent:

e X is compact as a topological space
e X admits a finite triangulation

e Every triangulation of X is finite

Definition 4.2.4. An n-dimensional PL manifold is a PL space X that is locally iso-
morphic to R™ with its canonical PL structure, in the sense that any point x € X has an
open neighborhood that, together with its restricted PL structure, possesses mutually
inverse PL maps to and from R". Similarly, we define n-dimensional PL manifolds with
boundary.
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Proposition 4.2.5. A PL space X is an n-dimensional PL. manifold iff it possesses a
triangulation K such that for every vertex v € Ky, (the geometric realization of) its
link is homeomorphic to S"~!. This then automatically holds for every triangulation of
X, and even for the link of any simplex (not just vertices). In particular, (Whitehead)
triangulations of smooth manifolds yield PL manifolds, but triangulations of topological
manifolds may have non-spherical links.

Similarly, a PL space X is an n-dimensional PL. manifold with boundary iff for some
(or for every) triangulation K the link of every vertex (or simplex) v € Kj is either
homeomorphic to S®~! or D" !. The subcomplex spanned by all vertices with link
D" ! makes up the boundary of X.

Definition 4.2.6. For X a PL space with family of triangulations 7 and V an oo-
category, we define the oo-category of combinatorial sheaves on X with respect to T

Shem(X; V) = lim 8h*™(T'; V) = lim Fun(T, V) , (4.18)
TeT TeT
where the transition maps in this limit diagram are given by pushforward along refine-
ments. Similarly, we define the co-category of compactly supported combinatorial sheaves
as a colimit along pullbacks of refinements

ShE™ (X V) = colim ShE™P (T, V) . (4.19)

To be a bit more precise, denote by J : T — Cat., the functor from the poset of trian-
gulations of X into Cat,, that sends a triangulation 7" to the nerve of its poset I of
simplices, and a refinement r of triangulations to the underlying map on posets. Post-
composing with Fun(—,V) this induces a functor Fun(J*(—),V) : 7% — Cat., sending
T + Fun(Jp,V) = 8h*™(T;V) and r to the pullback r*. Sending r to r, instead, we
obtain a functor Fun(J,.(—),V) : T — Cat .

Note that r* preserves the property of being compactly supported, since every sim-
plex consists of finitely many refined simplices by [£.2.3] so we can restrict to a functor
Fun.(J*(—), V) sending T to the full subcategory on functors I — V that send all but
finitely many simplices to 0. Then, we define

Shc"mb(X;V) = li‘:IrnFun(J*(—),V), Shgomb(X;V) = colqim Fun.(3*(-),V). (4.20)

Technical Remark. To be even more precise, the coCartesian fibration M — TP classify-
ing Fun(J*(—), V) is also Cartesian, classifying a functor Fun(J,(—),V) whose application
to each refinement is right adjoint to the application of the first functor.

Remark. Compare this with the definition [1.5.24] of finite spectra as the sequential
colimit of finite pointed spaces with transitions maps given by the suspension func-
tor X, while general spectra were a sequential limit over pointed spaces with right
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adjoint transition map (2. A similar argument to the discussion there shows that
Sh¥™P(K;V) C 8h*™(K;V) is canonically embedded as a full subcategory. If X is
compact, both categories are equivalent since every triangulation of X is finite by [4.2.3
We will still mostly work with the limit definition, however as in the case of spectra the
construction of 8AS"™(K;V) seems more intuitive.

To define a Poincaré structure on the category of combinatorial sheaves on a compact
PL space with values in a Poincaré co-category (V,?), we need some structure theorems
about refinement maps between simplicial complexes.

Proposition 4.2.7 (|[Lurlll Lecture 19, Construction 1|). Let r : Jx — I be a re-
finement of simplicial complexes and ¢ : J;, — 8p'™ a spherical fibration. Then, the
quadratic functor @y, - agrees with the composition ?x ¢op 0 7.

Proof. We have to see that the following colimits agree, for F': L — V:

!
¢ = colim ((o") A R(F(0)) = O gop 07" (F) = colim (r(r)) A F(r(0)))
It suffices to show that the r : K — L is a right cofinal map of oo-categories, which
applying Quillen’s Theorem A is equivalent to the partially ordered set {o €
K |i(o) C 7} for each 7 € L being weakly contractible. But the geometric realization
of 7 is by assumption the union the union of the geometric realizations of the simplices
o in this set, i.e. the geometric realization of (the nerve of) this simplicial set. Since
|7| = |AF], this is always a contractible space. O

Corollary 4.2.8. This implies Be, (F, F') = By, (r*F,r*F") by construction of the
polarization, so
map(F, Dy F') = map(r*F, Dk co,r* F") (4.21)

and we have Dy - = r,Dg ¢or7™ by the Yoneda Lemma.

Proposition 4.2.9 ([Lurlll Lecture 19]). For r : Jx — I, a refinement of simplicial
complexes and ¢ : J;, — 8p™ a spherical fibration, the pullback r* is duality-preserving
in the sense that Dy ¢o,r™ = "Dy ¢.

Proof. Long but not very illuminating, see the reference. O

Proposition 4.2.10 (|Lurlll, Lecture 18, Proposition 8|). If r : I — I} is a refinement,
then the pullback functor r* is fully faithful.
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Proof. We show that the unit map Id = ¢,7* is an isomorphism. Explicitly for G : I, —
V, it can be expressed by

G(r) & i(lggT G(1) = i,.i"G(1) = Z‘(lai)rgT G(i(0)) (4.22)
where the left isomorphism follows because we take the limit of a constant functor over a
weakly contractible diagram, as the geometric realization of the poset of o with 7 C i(0)
by definition of a refinement makes up ||, which is contractible. If r was a map of
simplicial sets, we could apply the same cofinality argument as in to reduce to the
subdiagrams with i(0) = 7, where this transformation clearly is an isomorphism. For
refinements, the following Lemma applied to 7 regarded as a PL. manifold with boundary
supplies a similar result, finishing the proof. O

Lemma 4.2.11 (|[Lurlll Lecture 18, Lemma 9]). Let T be a simplicial complex where
the link of any vertex either looks like S"! or D" !, i.e. a triangulation of a PL n-
manifold with boundary. Also, let J7. be the sub-poset of Jr on those simplices 7 that
are not contained in the boundary, i.e. not every vertex of 7 has link D"~!. Then, the
inclusion J9. C Jp is left cofinal.

Proof. We work by induction on n, where the case n = 0 is trivial. For ¢ € Jp, we
need to show that P := {7 € J}. |0 C 7} weakly contractible. For ¢ € J9 this is trivial
as it makes up an initial element of this set, so assume o is in the boundary. Then, P
consists of those simplices in the open star of ¢ that are not contained in the boundary.
But simplices in the open star, excluding o itself, are in bijection with simplices in the
link, via the map 7 — 7 — o if we regard 7,0 C Ty. By [£.2.5] this link is a triangulation
of D" !, so we can identify P with the subset of those simplices in it that are not
contained in the boundary D" !. This is left cofinal by the inductive step, so it is
weakly contractible since D" is. O

Corollary 4.2.12. If r : Jx — Jp, is a refinement of simplicial complexes, the functors
C*or* and C* : Sh™"?(L; V) — V are naturally isomorphic, assuming that the respective
limits exist.

Proof. This is a special case of the last proposition 4.2.10} Let tx : Jx — A® and
tr, 1 IJp — A be terminal maps of simplicial sets, then

Cror*=tg,or=tp,or,or' =ty =C". O

Remark. We can not simply use a cofinality argument to show lim.¢; F(7) =
limyer F(r(0)), as it is not clear that r is left cofinal (while it was easy to verify that it

is right cofinal).

Similarly to this result, we know that C* or, = C* by 4.1.23| and even C*r, = C* by
[Lurlll Lecture 18, Proposition 11].
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Definition 4.2.13. Since we have seen in 4.1.23| that the global sections functor C* is
compatible with pushing forward along maps of posets, its value on any two triangu-
lations must agree as we can compare them on a common refinement, so it defines a
functor

C* SR (X V) = V. (4.23)

Formally, C* defines a natural transformation Fun(J,,V) = V of functors T — Cat,
and taking the limit on both sides yields a functor 8L (X;V) — limgV = V as T is
filtered an therefore weakly contractible.

Definition 4.2.14. A spherical fibration ¢ on a PL space (X, T) consists of

e A right cofinal subset T, C T, in the sense that every admissible triangulation of
X possesses a refinement in T

e A natural transformation from J* : T¥ — Cat,, to the constant functor on 8p™.
In other words, we need to choose spherical fibrations compatibly on a cofinal subset of

all triangulations of X.

Construction 4.2.15. For r : Jx — J; a refinement and ¢ : I, — 8p™ a spherical
fibration, we have seen in that 9, = Qcor 07 : L — V are naturally isomorphic.
Hence, given a spherical fibration ¢ on a cofinal set of triangulations T, for a PL space
X, we can glue these quadratic functor together to obtain a map Fun.(J.(—), V) = 8p
between functors T — Cal.,, which by definition is equivalent to a functor o

Qx.c 1 S (X; V)P — 8p (4.24)

out of the colimit. Similarly, by we know that the duality functors Dy . are com-
patible with pushforwards along refinements, so they glue to a functor

Dx ¢ : Sh™(X; V)P — Sh™(X; V) (4.25)

satisfying ]D)%QC = Id since this holds on all components by In fact, we can
check on components of the colimit all conditions that are necessary to exhibit ?x . as
a quadratic functor and 82" (X;V) as a Poincaré co-category. See below for a more
abstract argument.

Construction 4.2.16 ([Lurll, Lecture 20]). The isomorphism g ¢o0r* = 9/ ¢ inducey|
an adjoint morphism ?x ¢or — 97 07" that generally is not an isomorphism. Explicitly,
we obtain it as the composition

Uk corF' = colim ((7) ANQ(F(0)) — C(géiin(:(T) AQ ( lim F(O’)) = Qrc(roF) (4.26)

Te€Lr(o)=1 r(o)=r

'Note that we actually precompose Qx ¢or With (7*)°P, and (— o (r*)°P) 4 (— o (r.)°?) with (co)units
induced by precomposition with the original (co)units.
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which even works for arbitrary maps of posets instead of r. This means that r, becomes
a hermitian functor, which is even duality-preserving by [£.1.24 For any PL space
(X, T) with spherical fibration (¢, T;) with T, = T we thus obtain a (filtered) diagram
T — Cat?, of Poincaré oo-categories, which by [CDH™20a, Proposition 6.1.4] admits a
limit. Explicitly by [CDH¥20al, Remark 6.1.3], we need to form the limit SA“"*(X; V) of
the underlying oo-categories along the pushforwards r,, and equip it with the limit of the
quadratic functors pulled back to this limit cone: If we denote by 7 : Shcomb(X V) —
Sh¥™(T:V) the canonical projections, then

xc(F) = lTigtlrQT’CT omp(F) . (4.27)
Remark. The restriction to T, = T is necessary since otherwise, the limit over the

diagram T — Cat: need not yield combinatorial sheaf, as T, is right and not necessarily
left cofinal. We do not know how to fix this, unless of course X is compact.

Proposition 4.2.17. For (X,7T) a compact PL space with spherical fibration (¢, 7¢),
both functors 2x ¢ we have just constructed on 8h“"(X;V) = §h™(X;V) agree and
equip it with the structure of a Poincaré oo-category.

Proof. Since for r a refinement, both r, and r* are duality-preserving, the duality func-
tors agree by construction. The case of the quadratic functors follows from our con-
struction of the inclusion $h®™ (X;V) C 8h“™(X;V), where the left was defined as a
colimit over pullbacks and the right as a limit over the right adjoint pushforwards. Since
the comparison maps Qg ¢cor 07 = 91 ¢ and g cor — ¢ © 7 correspond to each other
under this adjunction r* - r,, they must induce the same functor on the colimit/ full
subcategory of the limit. O

By this theorem and 4.1.19 we can for any Poincaré co-category (V, ?) define L-spectra

o L(Sh*™(K;V),9k,) for any finite simplicial complex K and spherical fibration
C : jK — Spirwa

o L(Sh“™(X;V), ?x ) for any compact PL space X and spherical fibration ¢ on X.

We will study them, and related L-spectra, in the next sections.

4.3 Locally Constant Sheaves and their L-spectrum

Recall that we have defined a simplicial sheaf F' : Jx — V to be locally constant if for
any 0 C 7 in Jg, the image F'(oc C 7) is an isomorphism.

Proposition 4.3.1. If K, L are simplicial complexes and f : Jx — Jy, is a map of posets,
then the pullback of simplicial sheaves f* preserves locally constant sheaves.
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Proof. If F' is a locally constant sheaf on L and ¢ C 7 in Jg, then f*F(oc C 1) =
F(f(o) C f(7)) must also be an equivalence, so f*F' is indeed locally constant. O

Proposition 4.3.2. For r : Jp — Jpv a refinement, the pushforward r, : SK¥"(T;V) —
Sh™P(T"; V) restricts to the full subcategories of locally constant sheaves Sh'*(T;V) —
Sth(T ’.V) where it induces an equivalence of categories. Similarly for the precomposi-
tion 7* which induces the inverse to this equivalence, and for r.

Proof. As ry 4 r* - r,, it suffices to prove the claim for r* since on any full subcategory
that one adjoint is an equivalence on, the other is an equivalence as well by [Lurl8al
Tag 02EX]|. By the previous proposition, r* preserves locally constant sheaves since we
can factor r through the localization

7o IpWat] — I (W]

where Wy, W denote the classes of all morphisms in J7, I+ respectively. Precomposi-
tion with this map of simplicial sets agrees with r* on locally constant sheaves. It suffices
to show that 7 is an equivalence of categories, which as both sides are Kan complexes is
equivalent to 7 being a homotopy equivalence. Localizing at all morphisms is a form of
Quillen fibrant replacement, just as Sing | — |, so we can identify 7 with

Sing |r| : Sing |J7| — Sing [I7v| .

Since we assume r to be a refinement, this map on partially ordered sets is induced
by a homeomorphism r : |K| — |L|, and one can check that, since we know how
everything is glued together and simplices are contractible, |r| must be homotopic to
this homeomorphisms and hence is a homotopy equivalence itself (actually, it is even a
homeomorphism). Since Sing sends those to homotopy equivalences of Kan complexes,
we are finished. O]

Definition 4.3.3. For (X,T) a PL space and T any triangulation of it, we define the
oco-category of locally constant sheaves on X by Sh'(X;V) = 8h'(T;V). Since the
partially ordered set T is filtered, this is by the last Proposition independent of T up
to isomorphism since any two triangulations can be compared on a common refinement.
Taking a limit over all triangulations, we obtain a fully faithful subcategory

Sh'(X;V) C 8h™™(X; V) (4.28)

since fully faithful functors are closed under limits.

Remark. Alternatively, we could define 8h'°(X;V) := limpey SA*(T; V) since we know
this limit diagram is essentially constant, and 7 is filtered and hence weakly contractible.
We could also take a colimit.
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Proposition 4.3.4. If V has limits and colimits, the inclusion of locally constant into
all simplicial sheaves Sh'°(K;V) C 8h*™(K;V) has a left adjoint L;, and a right adjoint
Ry, and similarly for 8h'(X;V) C 8h“™(X; V).

Proof. As discussed above, the first inclusion agrees with the map Fun(Jx[W 1], V) —
Fun(Jg,V) induced by precomposing with the localization functor L : Jg — Jg[W ]
at all morphisms in Jg. Since V has limits and colimits, this precomposition has a left
adjoint ;. = Lanj, and right adjoint ;. = Ranp.

In the PL case, using 8h'(X;V) = limpeg SA'(T; V) we can form the limit

Ly :=lim Ly, : Sh*™(X;V) — Sh'(X; V)
TeT
which is still left adjoint to the inclusion, since adjunctions are preserved under (co)limits
of oo-categories. To see this, take the (co)limit of the respective units and counits and
notice that by functoriality, the triangle identities are still fulfilled. Similarly for R;.. [

Corollary 4.3.5. In particular, locally constant sheaves are closed under fibers, direct
sums and contain the zero sheaf, so they form a stable subcategory of V.

Proposition 4.3.6. On any simplicial complex K, there is an equivalence of categories
Sh'“(K;V) ~ Fun(Sing |K|,V) . (4.29)

In particular, any locally constant sheaf on a simplex K = A" is constant, as Sing |A"|
is contractible.

Proof. As in the last proof, 8h'(K;V) = Fun(Jx[W~1],V). But Jx[W~'] and Sing | K|
are both Quillen-replacements of Jg, since Ji is the subdivision of K regarded as a
simplicial set so they are weakly equivalent, meaning that |K| ~ |Jx|. Thus, J[W 1] ~
Sing | K| are homotopy equivalent Kan complex and therefore in particular categorically
equivalent. O]

Definition 4.3.7. A simplicial sheaf F': Jx — V is called balanced if for every locally
constant sheaf S, the mapping space Map(F, S) ~ A is contractible. Let us denote their
full subcategory by Sh°(K;V) C Sh*™P(I; V). If V admits colimits, this is equivalent
to L;.F = 0 since we can identify above mapping space with Map(L;.F,S) and apply
the Yoneda Lemma.

Definition 4.3.8. If r : Jx — J;, is a refinement and G a balanced sheaf on L, then
Map(r*F,S) = Map(F,r.S) = 0 since r, preserves locally constant sheaves. We thus
obtain a full subcategory of balanced sheaves 8h'*(X;V) C 8h“™(X;V) on any com-
pact PL space (X, T) by taking a colimit over pullbacks along refinements, consisting of
the kernel of L;, if V admits colimits.
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Remark. A similar argument shows that for any map of posets f : K — L, the functor
f+ preserves balanced sheaves.

Example 4.3.9. If K = A" is a simplex, then F € 8h*"?(K;V) is balanced iff its
simplicial chain complex C,F is trivial. This is because we have seen in that every
locally constant sheaf on V is constant, so F' is balanced iff for any V € V

Map(F,V) ~ Map(c%hm FV)~A°
K

which by the Yoneda-Lemma implies that the colimit C,F' = 0. A dual argument shows
that ' € Sh'°(K; V)" iff the global sections C*F' vanish.

Example 4.3.10. Let 7 C 7/ be two arbitrary simplicesin K, V € Vand F™V, F™" the
sheaves we defined in There is a canonical map F7 X — F7X acting on simplices
containing 7" as the identity and as zero otherwise, whose (co)fiber is a balanced sheaf.
To see this, let S be an arbitrary locally constant sheaf on K. Then,

Map(cofib(F™V — F™V) S) ~ fib (Map(FT’V, S) — Map(F™"", S))

which by [4.1.25|agrees with fib (Map(V, S(7) — Map(V, S(7')))) = 0 since this map is an
isomorphism by the assumption that S is locally constant. In fact, using that the F mV
generate Sh*"P(K;V) under colimits, we see that such cofibers generate all balanced
sheaves.

Proposition 4.3.11. Let V be stable and bicomplete, and K be a simplicial set. The
sequence of stable co-categories

SHHC(K; V) < K™ (K3 V) X5 Sh'(K; V) (4.30)

is a right split Verdier sequence, and similarly if we replace K by a PL space X. Dually,
the sequence ‘
Sh'(K; V) — Sh*™P(K;V) — Sh'“(K;V)* (4.31)

using the right orthogonal subcategory is a split Verdier sequence.

Proof. This is immediate from [3.2.12] and its proof, since we know about the existence
of adjoints by O]

Our goal is to refine this to a Poincaré-Verdier sequence, but the issue in doing this is
that Poincaré co-categories are usually not bicomplete. In many cases, we can however
embed them into a stable bicomplete co-category, denote this as i : V <— W. A natural
candidate is the Ind-completion Ind(V) which satisfies these properties by 3.2.18 In
fact, this is a universal candidate since by the functor i factors uniquely through
a colimit-preserving functor Ind(V) — W that is fully faithful if the essential image of
consists of compact objects by [Lur09al 5.3.5.11].
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Construction 4.3.12. Let V be a Poincaré oco-category that is embedded inside the
stable bicomplete oco-category W = Ind(V). For K a finite simplicial complex and
¢ : Jx — 8p™™ a spherical fibration, define the co-category of V-generated locally constant
sheaves as the Verdier quotient

c ShSimp K V sim
where the last inclusion follows from [3.2.211 Note that
ShHe(K; V) = ShH(K; W) N Sh*™P(K; V) (4.33)

since 8h'°(K; W) = Fun(Jx[W 1], Ind V) = Ind 8A*(K; V) so every locally constant sheaf
in W is a filtered colimit of locally constant sheaves in V, meaning that a simplicial sheaf
F that is orthogonal to the latter and also a compact object, is orthogonal to the former
class of sheaves.

According to [Lurlll Lecture 21, p.2], we can further identify the full subcategory
Sh'“(K; W)™) in 8h*"™(K; W) as the essential image of $h*™(I; V) under the functor
Li.. [We do however not understand his argument; while it is possible to show this
using our 9-Lemma [3.3.8] this seems highly non-trivial and we are not able to verify our
factorization condition.|

Theorem 4.3.13 ([Lurlll Lecture 22, Lemma 3]). In the situation described above, the
sequence

ShHE(K; V) —s ShE™P (K V) Lie, Shie(K; W)™ (4.34)

is a Poincaré-Verdier sequence, where we equip the middle with the quadratic functor
k., the left with its restriction and the right with its restriction from 8A*"?(K;'W).

Proof. We know that the middle entry is a Poincaré co-category by [£.1.19) and the
sequence is Verdier by definition. By it suffices to show that Sh™“(K; V) is closed
under duality, since the left Kan extension of Pk . agrees with the restriction from
Sh*"™(K; W) by our derivation of equation [3.12| from [3.2.21]

Given F° € Sh*'°(K;V), we have to show that for any S € Sh'°(K;V),

Map(Dy F°,S) ~ Map(DgF, (' A S) ~ A”

so since ( is locally constant, we may reduce to ( = S. Further, we know by that
the category of balanced sheaves is generated under colimits by the objects cofib(F7" —
FrV) = F7/™V for 1 C 7/ in I and V € V. In fact, for 7 C 7/ C 7", applying
Map(Dg(—),S) to the fiber sequence

FT"/T’,V FT”/T,V FT’/T,V

tells us that is suffices to prove our statement for its outer entries. Inductively, we
restrict to the case where 7' is an n-simplex and 7 a codimension-1-face.
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Denote by A7 the horn 07" — 7. We then calculate

DoV for 7' "D Y DoV, cr AT

oek |0 otherwise 0 otherwise

similarly to the proof of |4.1.19. We can pull this back from a coarser triangulation
where both 7/ and A7 are simplices, where this sheaf is described by F, A7 snpev- Lhis
is balanced, and r* preserves balanced sheaves as we have seen, so we are finished. [

Theorem 4.3.14. Let V,'W be as above and (X, T) be a compact PL space with spher-
ical fibration (¢, T¢). Define

c Shcomb X;: V c
SHE(X; W)V = (X )/ShllC(X;v) C Shi(X: W) (4.35)
which, as in the simplicial case, consists of the essential image of L;.. Then, the sequence
SHHE(X; V) — Sh™(X; V) 2% 8h'*(X; W)™ (4.36)

is a Poincaré-Verdier sequence, where we equip the middle with the quadratic functor
Qx.c, the left with its restriction and the right with its restriction from A< (X;W).

Proof. Tt is a Verdier sequence by definition, and since the quadratic functors are glued
together from compatible quadratic functors on components the rest can be checked on
triangulations and thus follows from the last proof. O

These sequences are not very useful unless we have some control over SA*(K; W)Y). If
we work with V = LMod? and W = Ind(V) = LModg over a ring spectrum R that is an
algebra over a commutative ring spectrum k (potentially k& = S), this can be achieved.
The proofs of the following statements are similar to the topological case, so we postpone
them until

Proposition 4.3.15 ([Lurlll Lecture 21]). For K a connected simplicial complex, there
is an equivalence of categories

8h'“(K;LModg) ~ LModse~qx|ar - (4.37)
Similarly for X a PL space, $h'(X; LMody) ~ LMods~qxz-

Proposition 4.3.16 (|[Lurlll Lecture 21, Theorem 2|). For K a connected simplicial
complex, there is an equivalence of categories

Sh'“(K; LModg) ™ ~ LMod.q 1/, (4.38)

where the (fp) in the exponents denotes LMod%—generated sheaves. Similarly for X a
PL space, Sh'*(X; LModg)™ ~ LMod®. .« -

If M is an invertible module over R, we can use the duality functors 9%,,9%, to induce
i Qe on K. Their left Kan extension to locally constant sheaves is described by
equipping left modules over X*°Q|K| A R with an involution combined from
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e the involution in M,
e the loop-reversing involution on 2.X,
e the non-triviality of (, e.g. the obstruction along a loop to orienting it.
See the mentioned later discussion for a more precise statement and proof, the only

difference in the latter is that we use F; as a generating set.

Corollary 4.3.17 ([Lurlll, Lecture 22, Proposition 6]). If we consider the case (V,?) =
(LModJ?, 9%) for connected X, we can rewrite

LU(X;R) =L (5}#0()(; LMod?), QK,<> ~L(E¥OQX AR, ¥ k) (4.39)

which we call the wvisible symmetric L-groups of X with coefficients in R. Similarly, we
can define the wisible quadratic L-groups L"9(X; R) of X. If R is connective, we may

apply [2.5.10[ to rewrite
LY(X; R) = LI(m(X*QX A R)) = LY(myR[m X]) . (4.40)

Though we suppress it, in both cases the involution must be kept in mind.

Remark. If we even assume that X is simply connected, we have LY(X; R) = LY(mR).
This is commonly exploited in algebraic topology for R = HZ or R = HQ, where we
obtain the signature and Arf invariant of the space X comparing with the respective

L-groups [2.4.11}

4.4 Assembly

Until now, we have defined several different Poincaré oo-categories of sheaves associated
to simplicial complexes and PL spaces, allowing us to calculate L-spectra fitting into a
fiber sequence

L(Sh*H(X;V)) — L(Sh*™(X;V)) — L(8h'(X; W)™) (4.41)

obtained by applying |3.3.9|to |4.3.14] We have also seen that the last L-spectrum agrees
with L(mR[m X]), i.e. it can be calculated from the group ring (myR)[m X] so it only
depends on the fundamental group of X. Our goal in this section will be to learn more
about the L-spectrum in the middle.

Construction 4.4.1. From [4.1.24] we know that given a map of simplicial complexes
f : K — L, the pushforward functor f, is duality preserving. Therefore, it induces a
map between L-spectra

fo 1 L(SA™™P(K; V), 0k cop) — L(SKT™(L; V), 9L ¢) (4.42)
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and we obtain a functor L(82*"(—; V), ?_) from the ordinary category of pairs of finite
simplicial complexes and spherical fibrations into Sp. If we set ( = S to be trivial, we
denote this functor by L(K,V,?).

Now, let us assume that our finite simplicial complexes are pointed. Noting L(A°, 'V, Q) =
L(V,?) we form the reduced L-groups

L (K,V,Q) := cofib (L(V,?) — L(K,V,?)) (4.43)

where the map is induced by the pointing of K.

Construction 4.4.2. Just as in the last construction, we can define a functor L(—,V,?)
from the ordinary category Poly of compact PL spaces and PL maps to spectra sending
X to the L-spectrum of 84*"?(X; V) with respect to ?x. On pointed PL spaces, we also
define a reduced version of this functor.

Remark. Let W denote the class of morphisms in Poly that are PL. homotopy equiva-
lences. Then, the oo-categorical localization Poly[W~!] agrees with the oo-category 8§
of finite spaces.

Theorem 4.4.3 (|[Lurlll Lecture 20]). The functor L(—,V,?) : Poly — 8p as well
as its reduced variant are invariant under PL homotopies, in particular they send the
morphism in W to isomorphisms. We obtain a functor

QeLed(— vV, 9): 8™ — 8 (4.44)

that is reduced and excisive, so that it defines a spectrum, which agrees with L(V,?).

Proof Sketch. Let f : X — Y be a PL map between compact PL spaces, which we rewrite
as f: T — S on triangulations. Potentially after further refinement, let h: T'x Al — S
be a PL homotopy from f to g. It suffices to show that for F € 8h*"™P(K; V) a Poincaré
object, the pushforwards f.F' and g.F' are bordant, since the same argument can then
also be applied to Poincaré objects in the p-construction. For this purpose, denote by
ig, i1 : K — K x A'! the inclusions at 0 and 1, and by p: K x A! — X the projection.
Since h, is duality-preserving, it in particular preserves Poincaré objects and bordisms,
so our goal is to show that 4o . F" and 7; . F' are bordant. But ¢, F" by definition agrees with
F on K x {0} and vanishes over 1, similarly for ¢, ,F. Clearly p*F supplies the wanted
bordism, as it agrees with F' over 0 and 1 so dividing out one of these pushforwards
yields the other.

The functor Q®L™(—,V,9) is reduced by definition, so we only need to show that it
sends pushout squares to pullback squares. If X = X' Iy, Y is a (homotopy) pushout
of finite pointed spaces, it suffices to show that

Led(X,V,9) LY, V,9)
Lred(X/j \77 Q) - Lred(yl7 \77 Q)
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where by construction both sides can be rewritten as
Led(X/ X'V, Q) =L (Y)Y, V,9)
which follows by homotopy invariance and the assumption X/X’ ~Y/Y".

By this analysis, the functor L*d(—, V,9) : 88 — 8p is itself reduced and excisive, so it
defines an object in the spectrification Sp(Sp) = Sp ® Sp = Sp as it is the unit of this
tensor product. Unwinding the definitions, under this equivalence IL(—, "V, ?) corresponds
to its infinite loop space

Qg;(L(—, V, Q) = ]Lred(SO7 \77 9) = L<A07 V? Q) = H"(va Q)

proving the last claim. One could have also shown that both functors agree on spheres
by [1.5.21] but this would be more complicated. O

Corollary 4.4.4. The spectra L™ (X,V,?) ~ X AL(V,?) are equivalent for any
pointed PL space X. In particular,

L(X,V,9) ~ X, AL(V,?). (4.45)

Theorem 4.4.5 ([WW93|, Theorem 1.1]). Given any functor F : 8 — 8p, there exists
a unique reduced functor F”% : 8 — 8p preserving pushout squares, equipped with a
natural transformation

A:F* — F (4.46)

such that Ao : F?(A%) — F(A®) is a homotopy invariance. In fact, this functor is
given by F?(X) = =X, A F(A%). Transformations A that arise in this way, and
the morphisms they consist of, are called assembly maps. The association F +— F%
is functorial, and even a reflection of Fun(8%", 8p) on the full subcategory on functors
preserving finite colimits.

In the same way, any functor F' : § — 8p can be uniquely approximated by a functor
F% . 8 — 8p preserve pullback squares and arbitrary wedge products (called strongly
excisive in the reference).

Proof. We translate the proof in the reference to our oo-categorical language. Since
8fin is generated by the point A? under finite colimits, and 8§ = Ind(8%") = PSh(AP) is
generated by the point under colimits, we have (combining [L.1.6|and [3.2.17))

Fun®™(8, D) ~ Fun' (8™, D) ~ Fun(A’, D) ~ D (447)

for any co-category D admitting colimits, in particular Sp. If we let j : {A%} < 8 be the
canonical inclusion, then under this identification, the approximation F” is constructed
as the counit F” := j_j*F — F where j, denotes the left Kan extension. In other words,
we evaluate F on the point and Yoneda-extend the result using Sp ~ Fun®i™(8, 8p).
This agrees with X — Y*°X, A F(A?), since both preserve colimits (by the abstract
definition of the smash product) and agree on the point. O
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Remark. This is again related to Goodwillie-Weiss-Calculus, in the sense of Any
functor F : 8™ — §p° can be approximated, either from the left or from the right, by
a unique n-excisive functor (see [2.1.2), just as any smooth function R” — R™ can be
approximated by its Taylor series. In fact, this holds for functors between much more
general oco-categories. In the case n = 1, the approximation from the left agrees with

F”% as defined above.

Theorem 4.4.6. The map L(SA*"(X;V),2x) — L(8h*™(X; V), 2x) induced by L
in 4.3.14] induces an assembly map

A:Y®X ALYV, Q) — L(Sh(X;V),9x) (4.48)

in the spirit of the last theorem. In particular, if (V,?) = (LModflg,QR) for a ring
spectrum R, we obtain

A:Y%X, ALS(R) —s L¥(S%QX A R)
A XX, ALY (moR) — LY(moR[m X])

where the second row agrees with Ranicki’s Assembly map from [Ran92].

Proof. This is immediate since the assembly of F' was always constructed as the wedge
product X*° X, A F(A?), and is unique. O

Proposition 4.4.7 (|[Lurlll Lecture 22, Proposition 7]). In the above situation, the
commutative square

X ALY (mR) —— X ALS(R)

! |

L(moR[m X]) —— L*(8h"(X; LModp))

where the horizontal maps are induced by the norm map is a pullback square in Sp.

4.5 Stratifications and Constructible Sheaves

For this section, let us fix a poset P and a stable co-category V.

Definition 4.5.1. A stratification on a simplicial complex K with stratification poset
P is an order-preserving map f : Jx — P. Denote by K, the preimage f~'({p}), by
K<, the preimage f~'({qg € P|q < p}), and similarly K>,.

Proposition 4.5.2. For each p € P, the poset K<, determines the simplices of a
simplicial subcomplex of K.
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Proof. Define the set of vertices (K<,)o := {v € Ko|f({v}) < p}, which can be used to
describe every simplex in K<, since {v} C 0 € K<, implies {v} € K<, as f is order-
preserving. For the same reason, 7 € K<, and o C 7 implies 0 € K<, so K<, is indeed
a simplicial complex. O

Warning. The subsets K, and K>, of Jx in general do not define simplicial subcomplexes.
This situation improves a bit if we instead define a stratification as a map Ko — P
labeling each vertex by a stratum, instead of all simplices, since we can then consider
the subcomplex spanned by the vertices in a fixed stratum. We can always reduce from
our definition to this more rigid situation by taking the barycentric subdivision.

Example 4.5.3.

e Every simplicial complex K admits the trivial stratification Jx — [0] sending
everything to 0, and the identity stratification Jx — Jx putting each simplex into
a different stratum. The former is the coarsest, the latter the finest stratification
on K, where we call Jx — P finer than Jx — (@) if we can factor the latter map
as Jg — P — @ for some order-preserving map P — Q.

e Every simplicial complex K admits the skeletal stratification (usually called skeletal
filtration) Jx — Nj sending every simplex to its dimension.

e Given a subcomplex K’ C K, we may stratify Jx — [1] sending simplices in K’ to
0, and everything else to 1. In fact, any [1]-stratification arises in this manner.

e Similarly, an Ny-stratification of a complex K can be thought of as a filtration by
a system of sub-complexes

KoCKoi CKopy CK3C---CK.

e As a special case of the last examples, we can stratify a triangulation of a man-
ifold with boundary by sending the interior to 1, and simplices contained in the
boundary to 0. This is also an instance of the intrinsic stratification of a PL space
we introduce below.

Definition 4.5.4. A simplicial sheaf ' : K — V on K is called constructible with
respect to the stratification f : K — P if for each p € P, the restriction F|g, : K, =V
is locally constant in the sense that for o C 7 any simplices of K, the map F(oc C 7) :
F(o) — F(7) is an isomorphism. Denote the full subcategory on constructible sheaves

by ShPH(K;V) C Sh*™P(K;V).

Definition 4.5.5. Let (X,T) be a PL space. A stratification on X over a poset P
consists of a right cofinal sub-poset Tp C T and, for any 7" € Tp, a map of posets
T — P compatible with refinements in J. In other words, we need to choose a natural
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transformation J|y, = P between functors Tp — Cats, which is by right cofinality
equivalent to a map out of the colimit

colimJ = colimJ — P .
T Tp

Example 4.5.6.

e The trivial stratification on X over [0] is induced by the terminal map 7" — [0] on
every triangulation 7.

e There is an ntrinsic stratification on X that, given any triangulation 7', sends
points with PL homeomorphic (i.e. isomorphic after further refinement) links to
the same stratum. In particular, any PL manifold with boundary is canonically
stratified over [1].

e Any stratification of X as a PL space determines a stratification of the underlying
topological space, in the sense of |6.1.2]

e A PL subspace X' C X is determined by a stratification of X by [1]. If T' € Ty is
any triangulation in the defining sub-poset of this stratification, then the preimage
of 0 € [1] under 7' — [1] is a triangulation of X’, and together these determine its
PL structure.

Proposition 4.5.7. For (X,T) a P-stratified PL space as above, any refinement r :
Jr — Jp in Tp induces an equivalence of categories

Sh®(T;V) ~ Sh™(T"; V) (4.49)

so that these categories agree or all 7' € Tp since for any two, we can choose a common
refinement. We thus define
Sh (X ; V) := 8h™(T; V) = colim Sh(T; V) = lim Sh®(T; V) (4.50)
TeTp TeTp

since Tp C Tp is cofinal and both are filtered, hence weakly contractible so the (co)limit
of a constant diagram agrees with its constant value.

Proof. Both Jr,Jp are by definition equipped with maps to P that factor through the
localizations J7[W 5], I+ [W5'], where Wp respectively denotes the class of morphisms
determined by containment relations between simplices in the same stratum. As in[4.3.2]
it suffices to show that the functor 7 induced by r in the diagram

Jr(Wp'] : r I [Wp']

~

P
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is an equivalence of co-categories. The proof there shows that this map is a weak equiva-
lence, but since the above localizations are not Kan complexes, we are not finished. One
way to proceed is to use the stratified homotopy theory we introduce in[6.2} Oun stratified
realizations, 7 : |Jp[W5t]| =~ |I7|p — [I|p = |I[Wp]|p is (as it is a refinement, and
compatible with the stratifications) a stratified homeomorphism so by [DW21l, Corollary
4.22|, the original map in 7 is a weak equivalence in 8p, i.e. a categorical equivalence. [

Proposition 4.5.8. If V admits all limits and colimits, the inclusion Sh(K;V) C
Sh™™(K; V) has a left adjoint L.y and a right adjoint Ryy. Similarly for a stratified PL
space X, the inclusion 8h™'(X; V) C 8h*™"(X;V) has a left and a right adjoint.

Proof. This is completely analogous to Denote by Wp the class of morphisms
o C 7in K such that f(o) = f(7). Then, we can identify the above inclusion with the
embedding

Fun(K[W;'],V) C Fun(K, V)

induced by the universal property of a localization.This is explicitly given by precom-
posing with the localization functor L : K — K[W;'], so it possesses left and right
adjoints Lan; and Rany, since V is bicomplete. The PL case again follows from the fact
that adjunctions are preserved under (co)limits. [

Definition 4.5.9. A simplicial sheaf ' : K — 'V is called constructibly balanced if for
any constructible sheaf S, the mapping space Map(F,S) = A® is contractible. If V

admits colimits, this is again equivalent Le,(F) = 0 by the Yoneda Lemma. Denote the
full subcategory on constructibly balanced sheaves by SA'(K, V) C Sh*™ (K, V).

Proposition 4.5.10. For K a P-stratified simplicial complex and V a bicomplete stable
oo-category, the sequence

Sthbl(K;v) SN ShSimp(K;V) ﬂ Sthl(K;V) (4.51)
is a right split Verdier sequence and the sequence
ShU(K5V) s ShY™P(K; V) — Sh (K V)* (4.52)

is split Verdier. Similarly if we replace K by a P-stratified PL space.

This follows precisely as in the locally constant case. We obtain a commutative diagram
of stable co-categories, where the the rows are right split Verdier sequences:

Sh™(K; V) —— Sh™™P(K;V) — Sh(K;V)

J | |

ShHe(K;V) —— Sh¥™P(K;V) —— Shi“(K;V)

122



Definition 4.5.11. For K a P-stratified simplicial complex, V a stable co-category and
W := Ind(V), we define the oo-category of V-generated constructible sheaves on K with
values in W as the Verdier quotient

Sh (1 W) () o= SR V)/Sh“bl(K; v) € S W) (453)

where the last inclusion follows analogously to the locally constant case. Its essential

image again consists of precisely those constructible sheaves of the form L., F' for some
F € 8h™™ (K, W).

Theorem 4.5.12. If K is a finite simplicial complex, (V,?) a Poincaré oo-category
with W = Ind(V) and we equip S (K;V) and Sh(K; W)™) with the respective
restrictions of the quadratic functor ?g, the following is a Poincaré-Verdier sequence:

ShJ_cbl<K; V) N Shsimp(K; V) ﬂ Sthl(K; W)(V) (454)

Similarly, passing to a (co)limit over all triangulations on a compact PL space, the
sequence

Sthbl(X; V) SN Shcomb(X; V) Lﬂ Sthl(X; W)(V) (455)

is Poincaré-Verdier as well.

Proof. Analogous to the proof of [£.3.13] The only difference is that we now must show
that Sh™(K; V) is closed under duality, so we have to find a suitable generating set for
it. With little effort if becomes evident that the sheaves F™/™V still work, given that we
restrict to 7 C 7/ lying in the same stratum. O

Remark. While we have not introduced a spherical fibration for this theorem, the result
is still true if we add one. If we want to apply the L-groups constructed in this manner
to stratified surgery, that is however not the right way to go: Spherical fibration should
be spherical, because the link of a point in a PL manifold is a sphere. This is no longer
true for PL pseudomanifolds, and the right approach is to use the dualizing complex
wy instead, which is indeed constructible by We will elaborate on this in the
topological case.

To summarize the last sections, given a compact PL space X or a finite simplicial
complex K equipped with a spherical fibration { we have constructed the following
commutative diagram of L-groups, where the labels A denote assembly maps, the rows
are fiber sequences and all quadratic functors are induced by Q}Iw, X
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L7 (Shg™(X; R)) — L7 (SA™(X; R)) —— L (Sh™(X; R)()

fp fp

| H |

L7 (8hyl*(X; R)) — L7 (Sh{7™(X; R)) —2— L7 (SA'*(X; R)(™)

fp fp

| lg

2o X, ANLI(mgR) —2— L4(moR[m X])

We use the shorthands Sh(X; R) := Sh(X;LModg) and Shg(X; R) := Sh(X, LMod®)
denoting that our sheaves have finitely presented stalks (regarded as sheaves on a topo-
logical space via the exodromy correspondence . The second row can be regarded
as a special case of the first row for the coarsest stratification on X, in fact any finer or
coarser stratification of X can be added as a row into this commutative diagram. A simi-
lar diagram can be drawn for symmetric L-groups or in fact for any Poincaré co-category;
only the last row generally does not work. An immediate question arising during in-
spection of above diagram is whether the constructible analogues L (Sthl(X ; R)) of the
quadratic L-groups of locally constant sheaves can be expressed in a similar, calculable
way. We turn to this in the next section.

4.6 Decomposition into Strata

Let s : P — [1] a slicing of a partially ordered set P, and fix a P-stratified simplicial
complex K and a stable oco-category V. The composition K — P — [1] divides the set
of simplices in K into two disjoint classes. Let us denote by K, C K to sub-poset of
simplices in the preimage of 1, and K_ := (so f)"!({0}) similarly. We have seen that
K_ C K forms a subcomplex.

Proposition 4.6.1. The precomposition functors %, j* with the inclusions 7 : K_ —
K,j: K, — K possess right adjoints i, j. exhibiting Sh*"?(K;V) as a recollement of
Fun(K_,V) and Fun(K,,V). In other words, the sequence

Fun(K_, V) < 8™ (K; V) L5 Fun(K,,V) (4.56)
is split Verdier sequence.

Proof. It suffices to show that 8h*"?(K;V) is a recollement of these full subcategories.
Since K_ is downward closed, the left Kan extension functor applied to F': K, — V

jiF(k.)= colim F(ky) =0 (4.57)

k’+ €K+,k+ <k_

vanishes on simplices of K _, and similarly the right Kan extension i,G of G €
Fun(K_,V) vanishes on simplices of K. In particular, they both exist, and are fully
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faithful since 4, j are fully faithful. Further, it is immediate to check Fun(K,,V) =
Fun(K_,V)* since the C direction is clear by definition of a zero object, and the D
direction follows by restricting a functor to K, and applying the Yoneda Lemma. We
can apply since the remaining adjunctions are induced as in [3.2.7] O

Corollary 4.6.2. The recollements of the form (Fun(K_, V), Fun(K,V)) for any slicing
of P form a P-slicing of Sh™"P(K; V).

This is a special case of an even stronger result:

Proposition 4.6.3. Precomposing with the inclusions i, : K, = f~'({p}) — K for all
p € P yields restriction functors

ir - 8h*P(K; V) — Fun(K,, V) (4.58)
possessing fully faithful right adjoints 7, , = Ran;,. These functors exhibit Sh¥"P(K;V)
as a P-decomposition of Fun(K,, V) for all p € P.

The previous result follow from this by postcomposing the respective stratification with
the slicing P — [1] to obtain a [1]-stratified simplicial set.

Proof Sketch. We could do essentially the same calculation as in the last proof, but we
rather use it as an opportunity to informally show off lax right Kan extensions. By their
transitivity, the diagram

K— Catl

[
f laxRany V
_—

P

|

AO

commutes, where CatS. is the oco-category of stable oco-categories and exact functors,
V : K — CatZ is the constant functor with value V, and the lowest arrow classifies
Fun(K,V) = Fun(laxcolimg A% V) = laxlimg V, as the lax right Kan extension along
the terminal functor obtains the lax limit. It then remains to calculate that the functor
P — CatZl sends p to Fun(K,, V). O

A similar result holds for constructible sheaves:

Proposition 4.6.4. The above sequence reduces to a split Verdier sequence
Sh (K _; V) — Sh(K;V) — Sh (K ; V) (4.59)

where Sthl(K+,V) denotes the functors K, — V that send morphisms in K, that are
constant over P to isomorphisms, and similarly for K _.
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Proof. Since there are still no morphisms from K_[W5'] to K [Wp"], this follows from
a proof analogous to [4.6.1 O

Theorem 4.6.5. Fix a P-stratified simplicial complex K, a bicomplete stable oo-
category W and a slicing (P_, P,) of P with inverse images K_, K, C K. Then, there
is a square diagram

Sh"(K_; W) —— Sh(K_; W) —— Sh(K_;'W)

! | |

Sh"(K; W) —— Sh(K; W) —— Sh™(K; W)

| | !

ShH (K ;W) —— Sh(K ;W) —— Sh™(K,; W)

where all rows are right split and columns are split Verdier sequences. In particular, the
vertical sequences induce P-slicings of Sh (K; W), Sh(K; W) and Sh™(K; W).

Proof. We have just checked that the middle and right vertical sequences are split
Verdier, and the horizontal sequences are right split Verdier by [£.5.10] We are finished
if we can apply the 9-Lemma to deduce that the first sequence is split Verdier; the
fact that the horizontal sequences are only right split is no problem as can be checked
by going through its proof or applying [Lurl8al, Tag 02EX].

In other words, we need to show the factorization condition: Any morphism of sheaves
F° — G with F constructibly balanced and G supported on K_ factors through a G°
that is both. Clearly, defining G° := i,i*F € im(i,) as the restriction of F to K_,
sending everything else to 0, works since i* = i, implies that composing i,i*F — G°
with the unit map F — i,i*F yields the adjoint map i*F — i*G° meaning that this
is actually a factorization. Further, ¢*F is constructibly balanced on K_ because for
S € ShP(K_;W),
Map(i*F, S) = Map(F,i,S) ~ A°

is contractible as 7,S is clearly still constructible. O

Theorem 4.6.6. For a finite P-stratified simplicial complex K with spherical fibration
¢, a Poincaré oo-category V with W = Ind(V) and a slicing (P, P;) of P with inverse
images K_, K, C K, the above diagram restricts to
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Sh"(K_; V) —— Sh¥™P(K_;V) —— Sh® (K ; W)™)

|

Sh™¥(K;V) —— Sh™™(K;V) —— Sh(K; W)™

| J l

Sh (K ; V) —— Sh¥™P(K,;V) —— ShH(K_; W)™

where all rows and columns are Poincaré-Verdier sequences with respect to Verdier
duality ?f suitably restricted from SA™"P (K, W).

Proof. We know that the horizontal sequences are right split Poincaré-Verdier by 4.3.13]
The left and middle vertical sequences are split Verdier since they are restricted from
the respective sequences in the last proof of [£.6.5] and all adjoint functors preserve the
full subcategory of sheaves in 'V since they only involve finite limits. We have also seen
there that the factorization condition of the 9-Lemma [3.3.8|is fulfilled, so we are finished
if we can show that the left and middle vertical sequences are Poincaré-Verdier.

The functors i, and j* restrict to constructibly balanced sheaves by so by the
definition of the respective quadratic functors as the correct restrictions all we need to
show is that i, and j* are duality-preserving. For i, this follows from while for
7% it is a tedious computation we omit. O

Remark. We even suspect that the columns are all split, but were not able to show this
for the last column.

The right vertical sequence can be used to calculate L¢(8h (K; V)U?)) in many special
cases; we return to this in [6.5] Let us mention that this theorem still holds if we
introduce a spherical fibration, or switch to symmetric L-theory. Also, everything works
out similarly in the PL setting:

Theorem 4.6.7. All results of this section still hold if we replace the (finite) P-stratified
simplicial complex K with a P-stratified compact PL space.

Proof. As in the locally constant case, everything can be checked on components of the
respective colimit over the cofinal subset Tp of triangulations. O]
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5 L-Groups of Manifolds

After this extensive discussion of the piecewise linear case, let us generalize some of our
results to good topological spaces, in particular topological manifolds and CW com-
plexes. We begin with a discussion of Verdier duality and the six-functor formalism
for co-sheaves, following [VoI21| and [Lurl7]. An important technical tool is also the
monodromy correspondence, which we use to construct some of the functors involved in
the split Verdier sequences of interest. We further discuss the characterization of locally
constant sheaves of R-modules as modules over QX A R that was teased in the last
section.

5.1 Verdier Duality

Definition 5.1.1. A topological space X is called locally compact if for every z € X
and every open subset x € U C X, there exists a compact neighborhood xr € K C U.
Note that as a neighborhood, K must contain an open neighborhood of z.

Proposition 5.1.2. Given a topological space X, define another topological space X
called its one-point compactification with underlying set X U {oc}, and U C X open
iff either

e 00 ¢ U and U C X open, or
e 0 €U and Xt — U C X compact.

If X is locally compact Hausdorff, then X is also locally compact Hausdorff.

Definition 5.1.3. Let V be a pointed co-category that admits all limits and colimits,
X be a Hausdorff space, and F be a V-valued sheaf on X. Then, given a closed subset
A C X, denote by I'y(X, F') := F(X) X p(x—a) 0 the space of sections of I supported in
A. Using this, we define the space of compactly supported sections on an open U C X
as

L.(U,F):= colim I'(X, F) . (5.1)

KCU cpt

This induces a covariant functor I'.(—, F') : Open(X) — V.
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Theorem 5.1.4 (|[Lurl?, 5.5.5.1]). Given a stable oco-category V with all limits and
colimits, a locally compact Hausdorff space X and a sheaf F' € Sh(X;V), the functor
F, :=T.—,F) is a V-valued cosheaf on X. In fact, F' — F, induces a contravariant

equivalence of categories
Sh(X; V)% ~ 8h(X;VP), (5.2)

where the inverse is again given by taking the cosheaf of compactly supported sections,
regarding a cosheaf as a V°P-valued sheaf.

Proof Sketch. Since X is locally compact Hausdorff, a sheaf F' on X is determined by its
values on all compact subsets K. To be more precise, let K (X) be the partially ordered
set of compact subsets in X regarded as an oo-category, then a functor F': K(X)® — 'V
is called a K-sheaf if

e F(() =0 is final,

e For any K, K' € K(X), we can write F(K UK') = F(K) Npkngy F(K') via the
maps induced by functoriality of F',

e We have FI(K) = ([?((_)llglrélF (K') where the colimit ranges over compact K’ containing

an open neighborhood of K.

Let us denote the full subcategory of Fun(K (X),V) on K-sheaves by Shy (X; V), then
[Lurl?, 5.5.5.3] shows that the canonical map Sh(X;V) — Shx(X;V) sending F
(K — 'k (X, F)) is an equivalence.

The main idea of the proof is now to exploit a sort of duality between compact subsets
and complements of compact subsets (note the role that the latter play in the one-point
compactification). To this purpose, we define a set M as a subset of {0 < 1 < 2} x P(X),
where P(X) is the power set, on those pairs (i, S) where

e For i = 0, the subset S C X is compact
e For i = 2, the subset X — S C X is compact

and order M by defining (¢,5) < (j,T) if either i < jand S CT,ori=0and j = 2. In
particular, My := M x5 {0} = K(X) and M, = K(X)°. Now, the main technical work
done in [Lurl?, 5.5.5.7] lies in showing that the following are equivalent, for F': M — C
a functor:

e The restriction F'|yy, is a K-cosheaf (a K-sheaf with values in V), F'|,;, = 0 and
F agrees with the left Kan extension of F'|yun, where MoU M, := M x5 {0 < 1}

e The restriction F|y, is a K-sheaf, |y, = 0 and F agrees with the right Kan
extension of F|J\/[1U]Wg
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This proves the theorem, since the first class of functors is determined by the value on
Fyg, which is an arbitrary K-cosheaf, while the second class is determined by the value
on Fy, which is an arbitrary K-sheaf. The right (and similarly, left) Kan extension
translating between them can be written out as

F(0, K) = Ranjy oy, F(0, K) = i
( ) M1UM> ( ) (4, L)€(M1UM2)(0, K/

{S(X — L), fori=2 53)

0,fori=1

for S: My = K(X) — V an arbitrary K-sheaf, which contains the left cofinal subdia-
gram

J(1 g ——— » F(1,K)=0

‘ l

F(2,0) = S(X) — F(2,K) = S(X — K)

by Quillen’s Theorem A (each of the appearing slice categories admits an initial object,
so they are weakly contractible). This agrees with S.(K) = ' (X, S) as claimed. [

Now, let V be a bicomplete stable co-category and D : VP — V be functor such that
D°P 4 D, i.e. there is an isomorphism in X, Y € V

Mapy (X, DY) ~ Mapy (Y, DX) (5.4)

natural in X, Y. In particular, D sends colimits in V to limits in V. For example, these
conditions are satisfied if

e D is a duality functor, for example in a Poincaré co-category;

e we additionally require V to be symmetric monoidal closed with unit 1y, and set
DX := Hom(X,1y) ; (5.5)

e or if V = LModg where R is a ring spectrum, M an invertible module over R, and
DX := Hompg(X, M). Note that this is not included in the first case, since we do
not restrict to perfect modules.

Definition 5.1.5. Using the fact that D : V? — V preserves limits, we see that post-
composing above equivalence of categories with D preserves the sheaf condition, yielding
a functor

D : Sh(X;V)? — Sh(X;V), F s (U s DI (U, F))) (5.6)

which we will call the Verdier duality functor associated to D. If D is an equivalence of
categories, then I is as well.

Lemma 5.1.6. Equivalently, D = Do (—), = (—). 0 D.
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Proof. Given F' € Sh(X;V) and U € Open(X), we can write

KCU cpt

DF,(U) =D (chlljngtrK(U, F)) =~ colim D (F(U) X pr—) 0) =

~ ; op — ()op

—;?&I}E%t (DPF(U) X porpw—x) 0) = (D?PF)(U) .
Note that D°PF'(X) for example is regarded as an object of VP, so the colimit is actually
a limit in V. O

Lemma 5.1.7. D? 4D is true as well. In particular if D is an equivalence with inverse
D°P  the same holds for D.

Proof. As we have seen (—). is an equivalence with inverse also given by (—)% (acting
on cosheaves), (—)% 4 (—).. Since adjoints compose, D?? = (Do (—).)%? = Do (—)% 4
(=)eo D ~ Do (—).=D. The second statement is clear since we know that D is also
an equivalence in this case, so D°? 4 D implies that D is its inverse. O

Proposition 5.1.8. Given a continuous map f : X — Y of locally compact Hausdorff
spaces, we obtain (apart from the usual direct and inverse image functors) an adjunction

fi: 8h(X;V) &= Sh(Y;V) : f'. The exceptional direct and inverse image functors

fi 4 f' are defined to fill the respective commutative square in

!

f
Sh(X;V) —— S Sh(Y;V)

l(—)c | l(—)c
(f7)er
Sh(X;Voryor s————— Sh(Y;VP)P
(fe)P

where f,, f* denote direct and inverse image of cosheaves (viewed as V°P-valued sheaves).
In other words for F' € Sh(X;V),G € Sh(Y,V),

IF = (f.F)?, [G:=(fG)¥ (5.7)

Equivalently, we could also write fi = Df,D and f' = Df*D.

Proof. Since (—). is an equivalence, this follows with an analogous argument as in m
— be aware that contravariance of the duality functor exchanges the roles of left and right
adjoint. The second claim holds because D commutes with (—). by [5.1.6f it commutes

with f, as this is just a precomposition, and since f, o D = D o f, the left adjoints
Do f* = f* o D also agree. [

Remark. In particular, T'.(U, fF) = T.(f~1(U), F).
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Let us compare the theory we have developed with classical Verdier duality.

Theorem 5.1.9 (|Lurl8bl 2.1.2.2]). Let R be an ordinary ring and X any topological
space, then there is a canonical equivalence of categories

Sh™P(X;LModyg) ~ Sh™P(X; D(R)) ~ D(Sh(X; R-Mod)) (5.8)

where the first equivalence is by the stable Dold-Kan correspondence and the
right side is the derived oo-category of the Grothendieck abelian category of ordinary
sheaves of ordinary R-modules over X. Explicitly, this equivalence sends a complex F
or ordinary sheaves to the derived sections RI'(—, F') : Open(X)®” — D(R).

Let us identify F with its image RT(—, F) in 8h"(X; D(R)). By construction, the
global sections functor I'(F') = RT'(X, F') so its homology groups are sheaf cohomology.
For the same reason, f,F' = RI'(—, F o f~!) agrees with the derived direct image Rf.,
so as its adjoint f* agrees with L f*.

Observation 5.1.10. The composition I',I'* : LModgr — 8h(X; R) — LModg, possibly
replacing the middle term with hypercomplete sheaves, is by construction a left exact
functor called the shape of Sh(X; R). Similarly for sheaves with other coefficients, in par-
ticular for 8-valued sheaves one obtains a pro-space. In our case, I',I'"(R) = RI'(X, R)
calculates the sheaf cohomology of the constant sheaf on R, which is an interesting
topological invariant of X.

For A C X a closed subset, ['4(U, F') = fib(F(U) — F(U — A)) yields sheaf cohomology
with support in A since on resolutions, the fiber is quasi-isomorphic to the kernel. A
similar argument via resolutions shows that F.(U) = RI.(U, F) calculates (sheaf) co-
homology with compact support, so D agrees with the ordinary Verdier duality functor
and fi, f' agree with the associated functors Rfi, f' on derived categories of sheaves. In
the next section, we will also see how ID can also be expressed in terms of the dualizing
complex wy.

Note that in our setting, we do not talk about resolutions at all to define these functors,
allowing us to get rid of extra conditions in many classical theorems that require the
existence of (finite) resolutions. In particular, this includes the biduality theorems we
discuss in the next sections.

5.2 Six-Functor Formalism and Biduality

Let us for simplicity restrict to the case of V = LModg over a ring spectrum R that
is an algebra over a commutative ring spectrum k, with duality given by D(P) :=
Hompg (P, R). We also omit the op on our D as it is always clear from context, and
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denote Sh(X,LMod(R)) by Sh(X; R) since we will use it a lot. We still fix X to be
locally compact Hausdorff, as first goal will be to introduce tensor product and internal
Hom that together with f., f*, fi, f' form a six-operator formalism.

Definition 5.2.1. Let XY be topological spaces and R a commutative ring spectrum,
then the relative tensor product ®pz : Modg ® Modr — Modg of R-modules induces a
functor

X :8h(X;R) x 8h(Y;R) — Sh(X x Y; R) (5.9)

sending F, G to the sheaf FIX G(U x V) = F(U) ®g F(V) on elementary opens in
the product. Similarly for R an arbitrary ring spectrum, or sheaves with values in
appropriate bimodules.

To see that this is indeed a sheaf, one uses presentability of LModg to write Sh(X; R) ~
Sh(X) ® LModg which, regarding ® as a functor € ® € — C since it preservers colimits
in both variables, allows us to reduce to the following Lemma.

Lemma 5.2.2. For XY topological spaces, there is a canonical functor
X :8h(X) x 8h(Y) = Sh(X xY) (5.10)

sending F, G to FRIG(U x V) = F(U) x F(V) extended from the product basis to all
opens. In fact, if either X or Y is locally compact, this functor induces an equivalence

of categories
Sh(X xXY)~8h(X)®S8h(Y) . (5.11)

Proof. The functor F'X G is indeed a sheaf since the product x : 8 x & — 8 preserves
limits involved in the descent condition. The stronger statement follows by combining
|[Lur09al 7.3.1.11] and [Lur094, [7.3.3.9]. O

Remark. Our definition of ®g is, by the Yoneda Lemma, equivalent to construction
[VoI21], 2.2.5]. For more information on the six-functor formalism, in particular for V
that are not necessarily presentable, we refer to the discussion there.

Definition 5.2.3. For X any topological space and A : X — X x X the diagonal map,
we similarly define the tensor product of sheaves as the composition

®p :Sh(X;R) ® Sh(X;R) ~ Sh(X) ® S$h(X) ® LModg ® LMody —%

N (5.12)
— Sh(X x X) ® LModg =5 8h(X; R)

or in other words, F' ®p G := A*(F X G). Similarly for sheaves over appropriate
bimodules.
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Proposition 5.2.4. For R a commutative ring spectrum, the tensor product we have
defined equips 8h(X; R) with a symmetric monoidal structure, with unit the constant
sheaf R = T"*(R).

Definition 5.2.5. By construction, for a fixed sheaf F' € 8h(X;R) the functor
— ®pg F preserves colimits, so by the adjoint functor theorem it admits a right adjoint
Hompy(F, —) being itself a contravariant functor in F'. We obtain a functor

Homp(—, =) : Sh(X; R)” x 8h(X; R) — Sh(X; R) (5.13)

that preserves limits in the right, and colimits in 8A(X; R) in the left argument. Also,
since — ®g R is the identity functor, Hom(R, —) = Id as well. A similar construction
works for sheaves over appropriate bimodules.

Proposition 5.2.6 ([Vol21, 2.31, 6.12]). For f : X — Y a continuous map between
locally compact Hausdorff spaces, F' € Sh(X;V) and G,G" € 8h(Y;V), the following
formulae hold:

f(G)er (G2 f(GaG) (5.14)
fF @r G~ fi( F®r [*G) (5.15)

Theorem 5.2.7 (Classical Verdier Duality). For X, Y locally compact Hausdorff spaces,
f: X — Y a continuous map, R a commutative ring spectrum and F' € 8h(X; R),G €
Sh(Y; R), there are natural isomorphisms

f.Hom(f*G, F) & Hom(F, £.G) (5.16)
f.Hom(F, f'G) = Hom(f,F, G) (5.17)

Proof. Let E € 8h(Y'; R), for the second claim by the Yoneda-Lemma it suffices to show

Map(E, f.Homp(F, f'G)) = Map(f*E 5 F, f'G) =
= Map(E @g fiF,G) = Map(E, Hom(fF, G))

This follows from the projection formula fi(f'E®g F) = E®pg fiF above. Similarly, the
first claim follows from the first formula above. O]

Definition 5.2.8. Regard R as a left module over itself, and write R for the constant
sheaf on R. Also, let ¢t : X — % be the canonical map into the terminal topological
space. Then, the dualizing sheaf on X is defined as the Verdier dual

wy =R, =2DR=Dt'R=tDR=1tR (5.18)

where we identify R with its image under 8h(x; R) ~ LModp.
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Example 5.2.9. If X is an n-dimensional topological manifold, we have wx = Or[—n]
where Or is the orientation sheaf. In particular, wx is locally constant.

Proof. See [Vol21l 6.18(i)]. In fact, the classical proof using the Poincaré-Lemma as in
[Ban07, Proposition 3.5.1] can be transported to the co-setting without problems. [

Proposition 5.2.10. For F' € Sh(X; R), the Verdier duality functor can be rewritten
as
DF = Hom(F,wx) . (5.19)

Proof. Using that D? 4D by [5.1.7] we find

DF = Hom(R,DF) = Hom(F,DR) = Hom(F,wx) . O

Definition 5.2.11. A sheaf F' € Sh(X; R) on a locally compact Hausdorff space X has
e perfect stalks, if for each x € X the stalk 2*F' is a perfect R-module.
o perfect costalks, if for each € X the costalk z'F is a perfect R-module.

Similarly for the finitely presented case. Note that we identify x with the associated
map x : x — X.

Theorem 5.2.12. For X any topological space, the co-category Sh(X; R) is presentable
stable, in particular it has all limits and colimits. If X is locally compact Hausdorff, the
full subcategory Shhvp (X; R) on hypersheaves with perfect stalks and costalks equipped

perf
with the quadratic functor

9?{(F) = mapR@)kR(F ®r F, WX>hS2 (5.20)

or its pendant 9% is a Poincaré oo-category, with duality functor given by Verdier duality.
The same holds when restricting to finitely presented stalks.

Proof. For the first claim, 8h(X;R) = Sh(X) ® LModg by [1.3.17] since the latter is
presentable, and since it is also stable the result will be presentable stable as well. The
calculation of the duality functor from ?° is entirely analogous to [2.1.30 in particular:

Bos, (F, G) = Bos (F,G) = mappg, p(F @ G,wx)
Dy (F) = Dys (F) = Homp(F,wy) = DF

We already know that Des is exact, also it preserves the property of having presentable
(or finitely presented) stalks and costalks since for z : {x} — X a point,

*DF =1%o (~).0 DF = (=).0a'DF = Dz'F (5.21)
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and vice versa, using that D preserves colimits. Finally, if /' is hypercomplete, then DF
as well since by we know D is a right adjoint, and those preserve hypercomplete
objects by the proof of [Lur09al 6.5.2.13].

It remains to show that the canonical biduality transformation Id — DI is an equiva-
lence. In fact, it is enough to see that for each F € Sh"™7, (X; R) the morphism F' — DDF

perf

is an isomorphism on stalks, since by it must then be oco-connected, but DDFE is
hypercomplete so it is already an isomorphism. We calculate

#*DDF = 2*D(—),D(=)oF = 2*DD(~)o(~)oF & DDz*F = ¢*F (5.22)
using again that D and (—), commute by that D preserves colimits and that z*F

is perfect. O

Remark. This both generalizes [KS13| 3.4.3] and looks a lot more natural.

Technical Remark. It would be interesting to know whether this result carries over to
oo-categories V without a symmetric monoidal structure, where we cannot use a tensor
product or wy. The appropriate bilinear functor in this case would be the end

By (F, Q) = nat(F,DG) = / o maps(F(U). DG (U) = / L BF0),G)

but it does not seem obvious how to obtain a quadratic functor from this.

Finally, we will discuss several examples where Verdier duality and the associated func-
tors are particularly simple:

Proposition 5.2.13. If f : X — Y is a proper map, in the sense that the preimage
fYK) for K CY compact is still compact, then f; & f,.

Proof. Since in the proof of we have seen that, given we are working with locally
compact Hausdorff spaces, a sheaf is determined by its value on compact subsets, we

may reduce to showing that for F' € Sh(X;V) and K € K(Y), the values f.F(K) =
F(f~Y(K)) & f,F(K) are isomorphic, naturally in F' and K. Since (—), is an equivalence
with inverse (—)., we may as well show (f.F).(K) = f.F.(K). This amounts to

*

(F.F)(K) = Tk (V. (. F)0) D (V. Fo f4) = b(F(X) - F(X — f(K))
FE(K) = F(f 1K) & Tyor s (X, F) = Sb(F(X) = F(X — f (X — K)))

where at (x) we use that if K’ C X is compact, then I'g/ (X, F,) = I': (X, F') by extensive
colimit arguments, compare [Lur09al Section 7.3.4]. ]
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Lemma 5.2.14. Let X be a topological space, and j : U < X an open subset. Then,
the functors j : Open(U) — Open(X) that views an open subset of U as an open subset
of X is left adjoint to the functor j~! : Open(X) — Open(U) that sends W C X to
wWnUcCuU.

Proof. Since the involved categories are posets, all we need to understand is that for
VeUand W e X, we have j(V)=V CWif VCWNU. O

Proposition 5.2.15. If j : U — X is an open subspace, and i : Z = X — U — X its
closed complement, then 4, and j* commute with (=), so that i~ = i', j, = j, by [3.3.5|
We can thus restate |3.1.5] as saying that

—i* 2
Sh(Z;V) i — Sh(X;V) i —— Sh(U;V)
— — J=

is a split Verdier sequence, for V presentable stable or compactly generated.

Proof. First, note that U, Z are again locally compact and Hausdorff. The only non-
trivial part in verifying this is the local compactness of Z, but for x € U C Z open we
have U = V N Z with V C X open, so there is a K C X compact and a U’ C X open
withz e UUCK CV. ButthenzeU' NZ C KNZ and KN Z is a closed subset of
K, so it is a compact neighborhood of z inside U as desired.

The map 7 is proper since a closed subset of a compact set is again compact, so by
the previous Proposition iy = (—=)c 01x 0 (=) = i, proving this case. For j*
we use the fact that the adjunction from induces an adjoint quadruple Lanjo, =
(—0j) 4 (—o(j71)?) 4 Ran(j-1)er between the presheaf categories Fun(Open(U)%, V)
and Fun(Open(X)°, V), which follows from uniqueness of adjoints and the fact that for
a pair of adjoint functors, the associated precomposition functors are also adjoint (but
with right and left adjoint exchanged).

This tells us that for F' € Sh(X; R) and an open V' C U, the pullback sheaf j*F (V) =
F(V) since the left adjoint to (— o j7!) on presheaves is (— o j°’), and this functor
preserves sheaves by a short calculation or applying the covering lifting property [1.3.13]
With this observation, (—). o j* = j* o (=), can be calculated from the very definition
of (—)e. O

Lemma 5.2.16. In the situation above, for F, I’ € Sh(Z; R) we have

G F @p i F' = j(F @5 G) (5.23)
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Proof. Using the second projection formula from [5.2.6] we may write
WF @p ) F" = 5i(F @rj ) F'), (5.24)

but 7*j; = Id by the last Proposition, as j* is a coreflection right adjoint to 7. O
Lemma 5.2.17. In the situation above, we have i"wyxy = wz and j*wx = wy.
Proof. Let tz,tx,ty be the terminal maps from Z, X, U; then we may write using the
last proposition

iTwx = ityR=1t,R=wy, jwux=jtyR=1,R O

Theorem 5.2.18. If X is a locally compact Hausdorff space, U C X an open subset
and Z = X — U its closed complement, then the sequence

(ShMP(Z: R),9%) - (Sh™P (X R), Q%) L (SK™A(U; R), Q%) (5.25)

perf perf perf

is a split Poincaré-Verdier sequence, with adjoints as indicated above. Similarly if we
work with 97, 9% and ?7.

Proof. Since LModpg is compactly generated, this is a stable recollement by and
hence a split Verdier sequence by The previous proposition shows that i, and j*
are duality-preserving, so it suffices to show that % o, = 9% and 9% o ji = ;. The
symmetric case is analogous.

For the first claim, let F' € 8h(Z; R) and write

Qg(OZ*(F) = mapR®kR(i*F®Ri*F, WX)th = mapR®kR(F®RF, i_wX)h52 = QqZ(F) (526)
using the previous Lemma [5.2.17] Similarly, for G € S8h(U; R) we have

% 0i(F) = mapgg, r()1F @rjtF, wx )hs, = Mappe, r(FORE, j"wx )ns, = G (F) (5.27)
using the same Lemma and j|F ®g jiF' = j)(F ®@g F) by [5.2.16] O

5.3 Locally Constant Sheaves

Let X be a topological space and V a presentable co-category.

Definition 5.3.1. A sheaf I’ € Sh(X;V) is called constant if it lies in the essential image
of the functor I'* : V — Sh(X;V) that is left adjoint to the global sections functor T',.
Explicitly, this means that F' is (isomorphic to) the sheafification of a constant presheaf,
a presheaf that sends every open in X to a fixed object V € V.

Similarly, a hyperconstant hypersheaf is a (hyper-)sheaf in the essential image of the

composition I’y := (=)"P o I'*.
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Definition 5.3.2. A sheaf F' € Sh(X;V) is called locally constant if there is an open
cover (1; : U; — X)) of X such that for each i, the restriction F|y, := ([ F is locally
constant. Denote the full subcategory on locally constant sheaves by Shlc(X V).

Similarly, a hypersheaf F'is called locally hyperconstant if there exists an open cover
(t;: Uy = X) such that the hyperpullbacks (¢} F)"™? are hyperconstant. Denote the full
subcategory on them by Sh™P¢(X; V).

Remark. These definitions are a special case of [Lurl7, A.1.12|.

Warning. Being a locally constant hypersheaf is not equivalent to being locally constant
and a hypersheaf.

Proposition 5.3.3. If V is additionally a stable oo-category, then $h'“(X;V) and
ShMPle(X: V) are stable as well.

Proof. We know from that Sh(X;V) itself is stable, so by it suffices to show
that the full subcategory on locally constant sheaves is closed under finite limits. But
given any finite diagram F : K — 8h'°(X;V) we may choose an open cover (U;) of X that
is closed under intersections such that on each U, all F'(k)|y, with & € K are constant.
Since pullbacks are left exact, we may calculate our finite limit inside the category of
(hyper-)constant sheaves on each (U;) individually and glue the results together. Hence,
without loss of generally, we may reduce to (hyper-)constant sheaves.

But the left adjoint to the global sections functor I'* : V — Sh(X;V) sending V' to the
associated constant sheaf is left exact, as is the hypercompletion functor (=)™, so we
are finished since V being stable has finite limits. O]

In the classical setting, a well-known result from covering theory can be applied to
determine the category of ordinary locally constant sheaves on a good space:

Theorem 5.3.4. Let X be a locally path-connected, semi-locally simply connected,
path connected topological space and denote by Cov(X) the category of coverings on it
and deck transformations, by Shlc(X ) the category of locally constant 1-sheaves of sets
on X (also called local systems), and by m(X)-Set the category of sets with an action
of the fundamental group. Then, the following correspondence holds:

Cov(X) ~ Sh*(X) ~ m (X)-Set ~ Fun(m<;(X), Set) (5.28)

For X not path-connected, the category m(X)-Set is not equivalent to the rest since it
depends on a choice of base point, but the remaining equivalences still hold. Also, we
can replace the category of sets with any presentable 1-category.
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Proof Sketch. The first equivalence is induced by constructing the éspace étalé of a
locally constant sheaf, which is always a covering, and inversely taking the sheaf of
sections of a covering. The last equivalence is also easy to understand, since for X
path-connected, the groupoid m<;(X) is also connected. It is therefore equivalent to the
one-object category associated to the group m(X), and functors from it into Set are
specified by the image of this object, together with an induced 71 (X )-action.

Finally, we explain how to associate a monodromy representation m : m<1(X) — Set to
any locally constant sheaf F'; the converse uses the existence of a universal covering. To
each point © € X, we associate the stalk m(x) := 2*F; so for each path v : [0,1] — X
from x to a point y € X, we need to find a transport map m(y) : z*F — y*F that
is compatible with composition and homotopy invariant. We will mere explain how to
construct m(vy)(s,) for a fixed s, € x*F.

Choose connected open subsets (U;) in X that cover v([0, 1]) such that F'|y, is a constant
sheaf for each ¢ € I. Since [0, 1] is compact, we can reduce to a finite number Uy, ..., Uy
of them such that x € Uy and y € Uy, see the picture. Note that F|y, is even a constant
presheaf since U; is connected, so we can canonically identify all stalks in U;. This allows
us to iteratively transport s, through all of the finitely many U; until we reach Uy and
a germ m(vy)(s,) € F,. O

Figure 5.1: Parallel transport from = to y by covering the path with small open sets

Lurie has proven a similar characterization [Lurl7, A.4.19] for co-sheaves, which we state
in a slightly generalized version that follows as a special case of [PT22, Theorem 5.17].
The presence of higher homotopies in the context on oco-categories imposes higher local
connectivity requirements on our space:

Definition 5.3.5. A topological space X is called locally weakly contractible if for every
x € X, there exists a neighborhood U > z such that Sing(U) is homotopy equivalent to
A° (or equivalently, 7, (U) = 0 for all n).
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Example 5.3.6. Every topological manifold is locally weakly contractible.

Theorem 5.3.7 (Monodromy equivalence). For X a locally weakly contractible space
and V a presentable oco-category, there is an equivalence of categories between locally
constant hypersheaves and representations of its homotopy type:

Sh™Ple(X; V) ~ Fun(Sing(X), V) (5.29)

As indicated in the discussion above, the functor Sing(X) — 'V associated to a sheaf F'
sends x € X to the stalk 2*F € V. If we assume that X is either

e paracompact Hausdorff of finite covering dimension, so that all sheaves on it are
hypercomplete by and additionally locally weakly contractible; or

e locally of singular shape in the sense of [Lurl7, A.4.15|, which is a difficult property
but holds in particular for topological manifolds and CW complexes,

then the hypercompleteness condition is not necessary and we obtain an equivalence

Sh'“(X;V) ~ Fun(Sing(X),V) . (5.30)

Remark. Since every Kan complex is the homotopy colimit of its points, we can rewrite
this as
8h'(X) = Fun(colim#, V) ~ lim V. (5.31)

Sing(X) Sing(X)

These monodromy equivalences can be interpreted as saying that the category Set acts
as a classifying space for covering maps, and the oco-category of spaces § acts as a
classifying space for locally constant oco-sheaves (i.e. local co-systems). We refer to
[Zet23], Section B.5| for a more extensive exposition, connecting this theorem to other
Riemann-Hilbert-like correspondences throughout mathematics.

Corollary 5.3.8. If X is locally weakly contractible, then since we assume 'V is pre-
sentable, Sh™P!(X,V) is presentable as well. Similarly, if V is compactly generated
or an oo-topos, then 8h"™P!¢(X:V) has the same property. Under the mentioned extra
conditions, this statement translates to Sh'(X; V).

Proof. All of these properties are preserved if we replace V by Fun(Sing(X), V) as long
as Sing(X) is small. O

Corollary 5.3.9. The inclusion i, : SK"™P!(X; V) < Sh™P(X;V) has a left adjoint L,
and a right adjoint Rj.
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Proof. Since the involved categories are presentable as we have just seen, by the Adjoint-
Functor-Theorem it suffices to show that locally constant sheaves are closed under
limits and colimits. For colimits, this is [Lurl7, A.1.16] and due to the fact that IT'*
being a left adjoints commutes with colimits; and for finite (co)limits it follows from our
argument in [5.3.3] For general limits, we will see this in [6.3.6] O

Corollary 5.3.10. A continuous map f : X — Y of locally weakly contractible topolog-
ical spaces induces an adjoint triple on co-categories os locally constant sheaves, where
f* is given by the usual inverse image:

ShMPI(X; V) +— 7 —— ShMPI(X; V)
—fe—

Remark. Compare this with the case of general sheaves, where there usually are only
two functors f, and f*.

Proof. The monodromy equivalence tells us that 8h'°(X;V) = Fun(Sing(X),V)
and similarly for Y, so the map Sing(f) : Sing(X) — Sing(Y") induces an adjoint triple
on categories of locally constant sheaves via precomposition, left and right Kan extension
(which exist since 'V is presentable). It remains to show that under the above equivalence,
precomposition with Sing(f) corresponds to the pullback of sheaves.

Recall from that for F' a locally constant sheaf on X, the image of x € X under
the monodromy representation of F' is the stalk z*F. But pullbacks of sheaves preserve
stalks, so our claim is true on vertices of Sing(X). On edges and higher simplices, we
would need to show that the pullback preserves (higher) parallel transports — instead of
doing this explicitly, we refer to the abstract argument of [PT22, 6.8]. O

Remark. Pre- and postcomposing pullback and pushforward for general sheaves with the
adjoint triple from , we see that fff = R0 f, oy

Remark. To gain some intuition for these adjoints, consider the classical case. The
functor f* : Sh'“(Y") — Sh*(X) sends a locally constant sheaf with monodromy repre-
sentation M € m(Y)-Set to the restriction of scalars m(X) — 7 (Y) — Aut(M); and

‘e, fl¢ send a representation N of 71(X) to the induced representation Ind:ig())(N) or

coinduced representation Colnd’! E?)(N ) of T (Y).

Corollary 5.3.11. For z € X a point classified by the map x : * — X, and fort : X — x
the terminal map, we obtain adjunctions
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alf — Co —
V — o —— SHP(X V) — () — V
zle ——

cr —

where (=) = t* and T' = C* = t!° agree with the terminal geometric morphism on
sheaves, and C, := t'¢. As the names suggest, C and C* in the case V = D(R) for R
an ordinary ring calculate the complexes of singular (co)chains with values in a local
system.

Proof. The adjunctions are a special case of 5.3.10, In particular, this tells us that t,
agrees with the pushforward of sheaves along the terminal map, which calculates sheaf
cohomology. In the case of V = D(R), the (co)limits
C*F= lim F, C,F=colimF
Sing(X) Sing(X)
where we identify F with its monodromy representation can be calculated explic-
itly from the Cech complex construction in ‘1.5.18|, yielding precisely the singular
(co)chain complex with boundary maps twisted by parallel transport along F. For defi-

niteness, consider the constant sheaf R[0] with monodromy representation the constant
functor R[0] : Sing(X) — D(R), then

C.(R[0]) = colim Roj=|--—- @ rR—> P R
mjea Sing(X)n e:|Al|—=X vi|A0| =X
using the general bar construction. O

Remark. Using conjugating the adjoint triple fi* 4 f* 4 f!¢ with Verdier duality
induces an adjoint triple fl¢ - f' fﬁf,. In particular for the terminal map, we obtain
functors C' - (=) - C) where C' calculates compactly supported cohomology by the

discussion after [5.1.9] and C) is Borel-Moore-Homology.

5.4 Monodromy

In the case of V = LModpg for R a ring spectrum, there is a more refined version of the
monodromy correspondence we have discussed in the last section.

Definition 5.4.1. A generator of a stable co-category € is an element X € € such that
for any Y € @, if Mape(X,Y) ~ A is contractible, then already Y = 0.

Proposition 5.4.2. If X is a non-empty connected locally weakly contractible topo-
logical space, and z € X a base point, then xlﬁ(R) is a compact generator of
ShMPle(X:LModg), where we regard R as a left module over itself in the canonical
way.
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Proof. Since X is locally weakly contractible, if is in particular locally path connected
(since mo vanishes on a neighborhood of each point), so connectedness implies path
connectedness.

For F € 8h'(X;LModg) be arbitrary, we can write

MapShlc(X;Ll\/lodR)(xl—E(R)7 F) = Mapyyjoq, (R, 2" (F)) = 2" F .

If we assume that this mapping space is contractible, then since X is connected, there
exists and isomorphism 2*F ~ y*F ~ A for any y € X induced by parallel transport
(to be precise, this follows from the monodromy correspondence). Hence, F' must al-
ready agree with the terminal sheaf as it admits a canonical map into it which induces
isomorphisms on stalks, and both sheaves are hypercomplete.

Finally, R is a compact object of LModg and xﬂf preserves compact objects since it has
a left adjoint x* that preserves colimits, as it is admits a left adjoint z!¢ itself. Therefore
xﬂfR is compact. O

Theorem 5.4.3 (|[PT22, Theorem 6.26]). For (X, z) a pointed, connected and locally
weakly connected topological space, denote by 3*°Q(X) the associative ring spectrum
given as the suspension spectrum of its loop space and define the associative ring spec-
trum R’ := X*°Q(X) A R. Then, there is a canonical equivalence of categories

8h'*(X;LModg) ~ LModg . (5.32)
Proof. Since LModpg is a presentable stable co-category, combining the last proposition

with the Schwede-Shipley recognition criterion we find that it is equivalent
to LMOdend(xlf(R)y so it remains to calculate this endomorphism ring spectrum:

end(2!s(R)) = map(a(R), 2%(R)) ~ map(R, 2"2'(R)) ~ «"R
The pullback square in &

Sing(QX) —L— A”

I lf

A" —=—— Sing(X)
implies that Sing QX ~ {2} Xging(x) Sing(X)/,, so we can calculate

2* 2% R = Lani"8X) R(z) = colim R=R®QX =RAX*QX

{I} X Sing(X) Slng(X)/z

using how the tensoring in spaces or spectra is defined. O
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If we want to use this theorem to calculate L-groups, we need to find a way to restrict to
finitely presented R-modules. This involves generalizing the monodromy correspondence
to this non-presentable case.

Proposition 5.4.4. Let V be a small stable co-category, and X a locally weakly con-
tractible space. Then, locally constant hypersheaves in Ind(V) whose stalks all lie in 'V
are characterized by their monodromy representation:

ShYP(X; Ind(V)) ~ Fun(Sing(X), V) (5.33)

Proof. Since Ind(V) is compactly presented, the monodromy correspondence im-
plies SA™P!( X Ind(V)) ~ Fun(Sing(X), Ind(V)), so it suffices to show that such a sheaf
F has stalks in V iff for all x € X, the value of its monodromy representation lies in
V C Ind(V). But we know that this value is just *F, so we are finished. O

Lemma 5.4.5. If F, )/ denotes the skyscraper sheaf at x € X with value M € LModg
and X is locally weakly contractible, then

LicFy oy 2 atM . (5.34)

Similarly if 7 : U C X is a weakly contractible open subset with trivial shape containing
x, then for the sheaf Fy; 5 := j1M with support in U,

LicFyy =2 2M . (5.35)

Proof. For any locally constant hypersheaf S on X,
Map(LieFy a1, S) = Map(Fy, S) = Map(M, z*S) ~ Map(z'¢ M, S)

hold by applying the appropriate adjunctions, so the result follows from the Yoneda
Lemma. Similarly,

Map(L;.Fyr, S) >~ Map(jiM, S) ~ Map(M, S|y) = Map(M,I'.S|y)

which, since U is weakly contractible and S|y therefore constant, agrees with the (trivial)
shape of U applied to the stalk x*.S, so the result follows as in the other calculation. [

Definition 5.4.6. As in the PL case, we define a hypersheaf F' € Sh"™P(X;V) to be
balanced if for any S € SK™P!°(X; V), the mapping space Map(F, S) is contractible, and
denote their full subcategory by Sh"P'(X; V). If V = LModp, this is again equivalent
to Li.F' = 0. Define 8h7'*(X; R) := 8h™'“(X; R) N Sh}¥’(X; R) as the full subcategory
of balanced sheaves that have finitely presented stalks and costalks.
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Proposition 5.4.7. If the underlying space X is a topological manifold or CW complex
(for us always locally finite), then a locally constant sheaf F € 8h'°(X; R) has finitely
presented (or perfect) costalks iff it has finitely presented (or perfect) stalks. In fact, we
show in that this is true more generally, but we will for simplicity restrict to the
case of topological manifolds in what follows.

Definition 5.4.8. As for PL sheaves, we define

. ShWP(X: R
Shhpr (X’ R)(fp) = fp ( ’ )/Sh}_;yp,lc(X; R) (536)

which as usual agrees with the full subcategory of SA"¥P“(X; R) on sheaves of the form
Li.F with F € 8h}"(X; R).

Theorem 5.4.9. Let X be a topological manifold. Under the equivalence in the
full subcategories
Shiple( X R)UP) ~ LMod®. o o (5.37)

are identified. The quadratic functor on the right induced by (twisted) Verdier duality
D = Dy o (—). is associated to the invertible module ¥*°QX A R whose involution
consists of

e the involution in M,
e the loop-reversing involution on Q2.X,

e the non-orientability of the orientation sheaf wx along the respective loop adding
an extra sign.

Proof Sketch. We only prove the first part, the involution can be obtained by carefully
going through the proof of [5.4.3] compare [Lurlll Lecture 22|. The sheaves Fy g from
for U charts of X generate 8hy,(X; R) since charts form a basic, so since we can
identify 8h'°(X; R)UP) C 8A'(X;R) with the essential image of this category under
L., it suffices to show that smallest stable subcategory of it spanned by the compact
generator fo agrees with the smallest stable subcategory containing all L;.Fy; g, which
is immediate by the mentioned Lemma. O]

Remark. Tf we want to prove this theorem in the PL case or on a simplicial complex, we
use the sheaves I’V as generators.

Corollary 5.4.10. If M is a connected topological manifold, then
L9(Sh'(M; R)9)) ~ LI(S®QM A R) ~ LI(moR[m M) (5.38)

just as in the PL case. If M is not connected but consists of finitely many connected
components, it is easy to see that the category of locally constant sheaves orthogonally
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decomposes into the categories of sheaves on the individual components, and this is
compatibly with Verdier-duality in the sense of Therefore, the total L-group splits
as a direct sum.

Warning. This result does not hold if we replace the term "finitely presented" by "per-
fect", even in the PL case. There usually is only a fully faithful inclusion

Shlc

perf

(X; R)UP) C LMod¥™ . (5.39)

Compare the examples in [PT22] 6.30].

5.5 Visible L-Groups

It is time to piece together the developments of the last sections. Let X be a topological
manifold.

Proposition 5.5.1. The left adjoint L;. of the inclusion of 8A'(X;LModg) into
Sh(X;LModg) induces a right split Verdier sequence

ShH(X; R) —— Sh(X; R) —2=» Sh'“(X; R)
and the inclusion itself induces a split Verdier sequence
ShI(X; R) —— Sh(X; R) —=s Sh'“(X; R)*.

Proof. As for the PL analogue [4.3.11] this is just an application of [3.2.12]since we know
about all required adjoints. O

Theorem 5.5.2. The Verdier sequence above reduces to a Poincaré-Verdier sequence
Shj;;c(X, R) (SN Shfp<X§ R) & Shlc(X; R)(fp)

where all categories are equipped with the respective restrictions of the Verdier duality
functor on ShA(X; R). In particular, we obtain a fiber sequence L-spectra

LY(Shy(X; R)) = LU(8hysy(X; R)) — LUSK(X; R)VP) . (5.40)

Proof. This sequence is Verdier by definition, so by we only need to show that
Sh#C(X;R) is closed under duality. But since it is the intersection of Sh*(X; R)
and S8hy,(X; R) which are both closed under duality, since locally constant sheaves are

because the dualizing complex of a topological manifold is locally constant, we are
finished. [
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Remark. The perfect case is less interesting because 5.4 makes calculations difficult, and
even if they were possible we would obtain projective L-groups instead of the L-groups
of finitely presented modules we are usually interested in.

Let us define the wvisible quadratic L-groups
LY(X; R) = Ly(moR[m1 X]) = L (ShY,(X; R), %) (5.41)

of X, and L?*(X; R) := Ln(Shlpr(X; R),?%) the wisible symmetric L-groups. We suspect
that the map L(8hs,(X; R),?%) — L(Shl]fp(X; R),9%) induced by L;. is generally not
an assembly map, see
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6 L-groups of Stratified Spaces

In the PL setting all of our results generalized without too many problems to the strat-
ified case, and things work out similarly well in the topological world. After developing
some of the technical tools, in particular stratified homotopy theory following [DW21]
and [Hail8| and the exodromy correspondence following [PT22], we restrict Verdier du-
ality to constructible sheaves making use of the main result in [VoI22| allowing us to
define L-groups of constructible sheaves. After showing how these are actually calcu-
lable in some examples, we conclude this work by comparing our constructions in the
different settings we have considered.

6.1 Notions of Stratifications

Definition 6.1.1. Let (P, <) be a poset. We can equip it with the Alezandrov topology,
where

e Open subsets are precisely the upwards closed subsets
e Closed subsets are precisely the downwards closed subsets
e Locally closed subsets are precisely the intervals
In particular for p € P, the set P>, = {¢ € P|q > p} is open, P, is closed and {p} is

locally closed.

Definition 6.1.2. A P-stratified space, usually called filtered space, is a topological
space X equipped with a continuous map f : X — P, where P carries the Alexandrov
topology. The locally closed subspaces X, = f~!(p) are called strata of X, and the
closed subspaces X<, = f~1(P<,) are called closed strata.

Example 6.1.3. An (N, <)-stratified space is a topological space X, together with a
filtration (J,.y Xi = X by closed subspaces X; with X; C X for i < j.

Definition 6.1.4. A map of stratified spaces g : (X — P) — (Y — Q) consists of a
continuous map X — Y and an order-preserving map P — () (equivalently, continuous
with respect to the Alexandrov-topology) such that the following square commutes:
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|

N —
Q=

—

We obtain a category Top, sy, and we will call the isomorphisms stratified homeomor-
phisms. Also, restricting to a fixed poset P and continuous morphisms that cover the
identity map on P, we obtain a category Topp.

Definition 6.1.5. An open embedding f: (X — P) — (Y — Q) of stratified spaces is
a map of stratified spaces that induces an open embedding f : X — Y of topological
spaces, as well as open embeddings f, : X}, < Y}, for each p € P.

Definition 6.1.6. For f : X — P a stratified space, define its open cone

X x[0,00)

CX) = St (6.1)

and equip it with its natural stratification by P<:= PU{—oc} that sends [(z,t)] — f(x)
for t > 0, and the collapsed cone point to —oo.

Definition 6.1.7. A stratified space f : X — P is called conically stratified if for any
p € P and any point x € X, there exists a neighborhood x € U with f(U) = P>, such
that the space U with its restricted stratification U — P>, is stratified homeomorphic
to a space of the form Y x C(L). Here, Y should be a (trivially stratified) topological
space and L a P -stratified space so that we can identity P>, = P5,,.

Being conically stratified implies many useful statements about the (stratified) homotopy
type of a space, as we will see later. To capture this definition in a few words, it says
that our space should locally look like a cone. There is a similar, even more refined
notion we will often use, that mirrors the definition of a topological manifold:

Definition 6.1.8. An n-basic is inductively defined to be a stratified space of the form
R’ x C(L), where i > 0 and its link Z is a compact topologically stratified space of
dimension (n —i — 1), inductively defined below. To start this induction, the only (—1)-
dimensional topologically stratified space is ) — (), and there are no basics of negative
dimension.

Definition 6.1.9. A topologically stratified space of dimension n, also called C'-stratified
space, is a paracompact Hausdorff space that is locally stratified homeomorphic an n-
basic, in the sense of [5.1.7 We denote the category of them, together with stratified
maps, as Stratgo; and if we take only stratified open embeddings of as morphisms, as

Snglgo. Finally, we denote the category of n-basics with stratified open embeddings as
morphisms by BSCSO.
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Technical Remark (JAFTI14l 6.2.2]). Since every space in Snglgo can be glued from n-
basics, we can obtain an embedding Snglgo — fPSh(Bsch). In fact, open coverings
constitute a Grothendieck pretopology on Bscgo, and the functors of points of topologi-
cally stratified spaces are sheaves over it (but not every sheaf is of this form).

Example 6.1.10. It follows that the only 0-basic is C(#) — @) = x — *, and the only
1-basics are R, C(x — %) = (R>g — {0 < 1}) and generally C({1,...,k} — %) =
RZO X{o0} - X{o0} R>:0 — k.

Example 6.1.11.

Since forming a cone always adds an element to the stratification poset, topologi-
cally stratified spaces (X — P) with P = % must locally look like R?, so they are
precisely topological manifolds. Similarly, one can see that strata of topologically
stratified spaces are always topological manifolds.

Topologically stratified spaces of dimension 0 are disjoint unions of points (with
the trivial stratification), and in dimension 1 we obtain undirected graphs stratified
over {0 < 1} by sending vertices to 0 and edges to 1.

Let N C M be an embedded submanifold, and let us stratify M by {0 < 1} by
sending N to 0 and M\N to 1. This is a topological stratification; an important
special case are knots S' — R3.

Irreducible complex varieties of pure dimension, with their analytic topology, have
a natural topological stratification with only even-dimensional strata.

1 1 1
The pinched torus S x S/{O} « g1 and the double cone S' X R/sl x {0} are
topologically stratified of dimension 2; both consist of a singular stratum (the
quotient point, with link S x S' in both cases) of dimension 0 and a regular
stratum.

The suspension ST? = ggﬁ?@i of the torus is a topologically stratified space of

dimension 3 with two singular points.

The topological n-simplex |A"| = {(xo, ..., z,) € [0,1]"|zg+ -+ +z, = 1} pos-
sesses a natural {0 < --- < n}-stratification, sending (xy,...,z,) to the maximal
i with z; # 0. For example, |A!| consists of the O-stratum {(1,0,0)} and the
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l-stratum given by the remaining half-open line. Alternatively, |A”| can also be
stratified differently by considering it as a manifold with corners.

e Stratifications that are not topological include for example most CW-complexes
(stratified by their skeleta); and {1|n € N} U {0} C R stratified by sending
everything to 1 € {0 < 1}, except for 0 +— 0.

Example 6.1.12. Topological n-Manifolds with corners, i.e. spaces that are locally
homeomorphic to R"*xR% , for 0 < i < n, are topologically stratified over {0 < --- < n}
if we send every corner to its dimension i (i.e. the interior to n, the boundary to n — 1,
and so on). This follows from the fact that topologically stratified spaces are closed
under forming products.

Definition 6.1.13. A topologically stratified space is called a topological pseudomanifold
if its top-dimensional stratum is dense, and there is no stratum of codimension 1. This
allows, for example, the introduction of an orientation class.

Let us capture the most important flavors of stratified spaces in a diagram, where arrows
denote an extension in generality. Note that the variants of smooth stratified spaces are
always equipped with extra data like an atlas, so the respective arrows are not fully
faithful. Conically smooth spaces are slightly non-standard; they were introduced in
[AFT14] as a stratified generalization of smooth manifolds that adapts very well to the
stratified homotopy theory we develop in the next section.

stratified spaces «+—— topologically stratified <—— topological pseudomanifolds

— 1

Thom-Mather conically smooth

J

Whitney < > complex varieties

6.2 Exit-Paths

The (weak) homotopy type of a topological space X is described by its singular simplicial
set, or fundamental oo-groupoid, Sing(X) that we defined in In fact, good
topological spaces and oo-groupoids are more or less the same thing according to the
homotopy hypothesis.

We want to find a similar simplicial model for the stratified homotopy type of a stratified
space (X — P). Since a stratification equips X with a sense of ordering, or direction,
we would expect that this model has non-invertible edges, ie. it should not be a Kan
complex. In fact, there is a correspondence (akin to the homotopy hypothesis) between
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oo-categories and so-called directed spaces, which we could regard stratified spaces as a
special case of. We will however take a different approach.

Remember that vertices of Sing(X) are points of X, edges are paths, 2-simplices are
homotopies and so on. What we would expect for stratified spaces is that vertices of
their model Sing” (X) should still be points of X, but edges should be paths that "move
in the direction of the stratification". Let us formalize this:

Definition 6.2.1. We introduce a functor rgra; : A — Top, ., that sends [n] to
(JA"[ — [n]) with the natural stratification of [6.1.11} Using the fact that Top, s, has
all colimits, and the nerve-realization paradigm [I.1.7] we obtain an adjunction

T <— ‘_|strat S t
op sSe
/AIEX Singstrat 5

We call the simplicial set Sing™™(X) with n-vertices determined by
Sing™"™*(X),, := Homryy, . ((|1A"] = [n]), (X — P)) (6.2)

the exit-path category of X.

To be more explicit,
e Vertices of Sing®™*'(X) are points in X,

e For vertices z,y € X, edges between them in Sing®®(X) are paths |A!| — X
that cover an order-preserving map [1] — P, i.e. exit-paths in X that start in a
lower stratum and immediately exit into a higher stratum in which they stay,

e 2-simplices are homotopies between exit-paths that, following the stratification of
AZ?, increase in the stratification of X,

e Higher simplices are higher homotopies compatible with the stratifications.

In particular, for p < p’ < p” in P and exit-paths v : © — y starting in X, and exiting
into X/, 7' : y — z starting in X, and exiting into X, and v" : x — z starting in X,
and exiting into X/, a 2-simplex starting at y and 7’ and ending at 4" is a homotopy
between the concatenation +' *~ and ~” that, apart from beginning and end, completely
lies in X,

Warning. Be aware that Sing®*'(X) generally does not have to be an oo-category,
despite the name. The reason is that paths 7 and ~ as above don’t necessarily need
to have a composite, i.e. a third path 7" equipped with a 2-simplex as above. The
condition that the homotopy needs to lie in X,» may be to strong.

This construction resolves half of our problem — we can use Sing®**(X) as a simplicial
model for X — P. What special properties does this simplicial set possess?
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Construction 6.2.2 ([DW21], 2.9]). For P a poset, regard it as a thin category and de-
note by N (P) € sSet its nerve, which is an co-category with no non-trivial isomorphisms.
There is a canonical continuous map from the geometric realization pp : |[N(P)| — P:
For every non-degenerate simplex of N(P) corresponding to a strictly order-preserving

morphism [n] — P, ie. a chain (pg < --- < p,) € P, we map the associated simplex
{(zo,...,xn) €10,1]"| > x; =1} to P via
op(xo,...,xy) :=max{i € {0,...n}|t; #0}}. (6.3)

In particular, | N(P)| is naturally stratified over P and for P = [n], this agrees with the
stratification in

Remark. 1t is a nice exercise to show that this is a well-defined continuous map, un-
derstand the stratification in more examples, and to describe the adjoint map N(P) —

Sing(P).

Observation 6.2.3. Postcomposing with, and pulling back along the map ¢p induces
an adjunction between slice categories:

< ppo—

Top,p Top v (p))

=Xxp|N(P)| ——

Definition 6.2.4. Given a simplicial set (K — N(P)) € sSet,p equipped with a map
to the nerve of P, we can form the geometric realization (|K| — [N(P)|) € Topnp)-
Together with ¢p o — this yields a composition

|- ppo—
SSGt/N(P) TOp/|N(P)| TOp/P
Sing” —Xp|N(P)|

where both functors admit right adjoints. The right adjoint Sing” of the geometric
realization (which we identify with the composition of both right adjoints) is constructed
as the pullback

Sing”(X) —— Sing(X)

| /

N(P) —— Sing(P) .

Remark. Both of these statements follow from standard theorems on the interaction of
adjoints and slice categories, and pasting in the latter case.
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Proposition 6.2.5. For (f : X — P) € Top,p, the constructions Sing™™"(X — P) =

Sing”(X) are naturally isomorphic. Similarly, for (K — P) € sSet/p, the underlying
topological spaces of | K |sat and |K — P|p agree.

Proof. While this can be deduced from abstract nonsense, for the first case this is clear
by construction of Sing”: The pullback in sSet = Fun(A, Set) is computed pointwise,
so Sing”’ (X) consists of precisely those simplices o of Sing(X) that lie over a simplex of
N(P), meaning that they can only go in the direction the edges in N(P) point towards,
i.e. upwards in the stratification.

For the geometric realizations, note that both of them as well as the slice projections
sSet/p — sSet, Top,p — Top preserve colimits, so it is enough to show this on A™ — P.
But the underlying space of both realizations by definition is just |A”| in this case. [

Remark. We have thus learned that the exit-path category Sing™™*'(X) ~ Sing”(X) is
equipped with a canonical map to P, and how to calculate the stratified realization.

Theorem 6.2.6 (|[Lurl?, A.6.4]). If (X — P) is a conically stratified space, the exit
path category Sing”(X) € sSet is a quasicategory.

Definition 6.2.7. A functor F': € — D between oo-categories is called conservative if
it reflects isomorphisms. This means that if f is a morphism in € such that F(f) is an
isomorphism in D, then f is an isomorphism.

Definition 6.2.8. For P a poset, the oo-category Sp of abstract stratified homotopy types
over P is the full subcategory of the slice category Cato./v(py on conservative functors.

Proposition 6.2.9. For (X — P) € Top,p, the natural map Sing”(X) — N(P) is
conservative. In particular, if (X — P) is conical, Sing”(X) € 8p.

Proof. Since P is a poset, the only isomorphisms in N(P) are the identities. Therefore,
all we need to check is that for each p € P, the fiber Sing”(X) xn(p) {p} is an oo-
groupoid. From the definition of Sing”(X), we see that morphisms in this fiber are
paths in X that stay entirely in X,,, without any conditions from the stratification. This
means that they are invertible, as we may trace the path in the opposite direction. [

Remark. In fact, the same argument applied to higher simplices in Sing” (X) shows that
Sing” (X) X n(py {p} ~ Sing(X,), see also [Lurl7, A.7.5].

Proposition 6.2.10 ([Hail8, 1.1.9]). A morphism f: K — L in 8p is an isomorphism
iff

e it induces homotopy equivalences of strata K, ~ L, for every p € P, and
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e it induces homotopy equivalences between links for all p < ¢ in P:

Mapg, ({p < ¢}, K) ~ Maps, ({p < ¢}, L) (6.4)

After this technical discussion, let us develop some examples. Recall that we always
assume CW complexes are locally finite.

Definition 6.2.11. A CW complex X is called regular iff the inclusions ¢ : D™ — X
of n-cells into X are homeomorphisms onto their image. For arbitrary CW complexes,
this is only true in the interior of D", and being regular means that this gluing has to
be "non-degenerate" along the boundary ¢y : "1 — sk, _1(X) as well.

Proposition 6.2.12. If X is a regular CW complex and we denote by Jx the set of
cells in X, then

e Jy carries a natural partial order,

e There is a canonical stratification X — Jx sending each point to the unique cell
that contains it in its interior (unless the point is a O-cell itself, in which case it is
sent to this 0-cell),

e This stratification is conical (here, we need X to be locally finite),

e The exit-path category Sing’* (X) — Jx is equivalent to the identity map, i.e.
Sing™ (X) ~ Jx as oo-categories.

Proof. First, note that a regular CW complex X is in particular normal. This means
the set of cells Jx carries a partial order where e; < ey iff, equivalently,

® ¢, is contained in the closure e5,
LS| N 6_2 7& (Z)a

by [T'T'18, 3.1]. This yields a conical stratification on X by [T'T18 1.7] and a remark
in [Lej21l Section 4.2]. To show that the map Sing’(X) — Jx is an equivalence, we
proceed by showing it is essentially surjective and fully faithful.

Essentially surjective: In the proof of [6.2.9) we saw that the fiber of this map over a cell
is just the singular simplicial set of the open cell itself (or, in dimension 0, a point), in
particular contractible and non-empty.

Fully faithful: Let e; and ey be cells in X, and = € e, y € €. If 1 £ eq, the mapping
space Mapg;,,s(x)(,y) is also empty since there can’t be a path v : [0,1] — X from z
to y that lies over the arrow e; — ey in S, as it would have to somehow jump from e,
to ey even though e; Ne; = (), violating continuity.

If e; < ey, s0 e; lies in the boundary of ey, we need to show that Mapg;,,ox (X)(:p,y)
is contractible. As in the proof of [Lurl7, A.6.10], we can identify this with Sing(P, )
with P, , the space of paths v : [0,1] = X from x to y such that v((0,1]) C e;. This
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only works because we know the stratification is conical so Sing’* (X) is an co-category.
However ([0, 1]) C &3, the image of the gluing map D™ — X of ey, which by regularity
is a homeomorphism onto its image.

Thus, we can identify P,, with the space of maps v : [0,1] — R" such that v(0) = ¢/
for some fixed 3 with |y/| = 1 that corresponds to y, v(1) = 2/, and |y(¢)| < 1 for all
0 <t < 1. This can clearly be contracted to the linear path, since the open unit ball is
convex. [

Corollary 6.2.13. If K is a simplicial complex and we stratify its geometric realization
| K| by the poset Jx of simplices, the exit-path category Sing’® (|K|) — g is equivalent
to the identity Jx — Jk.

Proof. By definition of a simplicial complex and its geometric realization, | K| is a regular
CW-complex with poset of cells Jg. n

Example 6.2.14.

e For a trivially stratiﬁoed space X — AP the exit-path category agrees with the
homotopy type Sing™ (X) = Sing(X).

e Using the same argument as in [6.2.12, one shows Sing!! (Rsg) =~ Al

strat

e As a right adjoint, Sing commutes with products.

e By [AFRI5 3.3.12], if r : (X — P) — (X — Q) is a refinement, i.e. a map of
stratified spaces determined by the identity on X and an order-preserving surjec-
tion P — @, then the induced functor Sing” (X) — Sing?(X) is a localization (loc.
cit. only works in the conically smooth case, but this should hold more generally).

e For D" — [1] stratified as a manifold with boundary, choose the triangulation A™.
Then,
Sing!!! D" ~ (Sing™ A™)[W 1 ~ P({1,...,n})[W] (6.5)

where W is the class of face inclusions in A™ that do not involve the interior, and
P denotes the power set ordered by inclusion.

e By [AFTT4, 6.1.4], Sing”(C(X)) ~ Sing”(X)? in the conically smooth case. In
particular, the exit-path category of a basic is

Sing”" (R" x C(L)) ~ Sing®’ R’ x Sing”"(C(L)) ~ (Sing” (L))* . (6.6)

e By [Vol22], the exit-path category of a compact conically smooth stratified space
is equivalent to a finite oco-category.
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6.3 Constructible Sheaves

Recall that on a topological space X, we have defined special classes of sheaves with
values in a presentable co-category V that locally do not change. If I'* : 'V — Sh(X,V)
denotes the left adjoint of the global sections functor, sheaves of the form I'*(V') for any
V €V were called constant. Also, if there is an open cover (U;);c; of X such that F
is constant for every i, we called F' locally constant.

U;

Definition 6.3.1. For X — P a stratified space, we call a sheaf F' € 8h(X,V) con-
structible if for each p € P, the restriction F'|x, to the respective pure stratum is locally

constant. The full subcategory on constructible sheaves will be denoted by A (X;V)
when the stratification is clear from the context.

Similarly, we define constructible hypersheaves as hypersheaves F' € Sh"/P (X;V) whose
restrictions to strata are locally constant hypersheaves after hypercompleting them. In

other words, for each p € P there must exist an open cover (Ui(p ))ie 1, of X, such that all

hyp hyp
((lep)hyp\mm) = (F\Um) (6.7)
can be written as (D*V,?))" for some V") € V.

Warning. As in the locally constant case, be aware that being a constructible hypersheaf
is not equivalent to being constructible and hypercomplete.

Definition 6.3.2. A partially ordered set P is called noetherian if it satisfies the as-
cending chain condition, i.e. there exists no infinite chain of elements pg < p; < ps < ...
in P. Equivalently, any subset of P has a maximum.

There are some useful criteria to check whether a given sheaf is locally constant or
constructible. In the following, assume that either

e Vis presentable stable or the tensor product of a compactly generated oo-category
and an oo-topos, and P is noetherian, or

e V is compactly generated.

We will call this the joint conservativity assumption.

Theorem 6.3.3 (|[PT22] 5.22). Let X — P be a conically stratified space and 'V satisfy
the joint conservativity assumption. Then, for a sheaf F' € Sh(X;V), the following are
equivalent:

e [ is a constructible hypersheaf
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e For all open subsets U C V' C X such that the induced map Sing” (U) — Sing” (V)
is an equivalence, the restriction F'(V) — F(U) is also an equivalence

e For each conical neighborhood Z x C(Y') in X, any open subsets U’ C V' C Z
such that U,V are weakly contractible, and all 0 < € < ¢, application ot F to the
inclusions

UxCY)CVxC(Y)
ZxC(Y)CZxCu(Y)

yields isomorphisms. Here, C'..(Y") denotes the open subset of the cone where the
real parameter is < e.

Remark. If X is topologically stratified, every sheaf is hypercomplete by so this
becomes a characterization of constructible sheaves.

Remark. In the cases of conically smooth stratified spaces and topological manifolds,
one can give a more refined characterization. If V is a presentable oo-category and
F € 8h(M;V) on a topological manifold M, then F' is locally constant iff it sends
inclusions of charts into each other to isomorphisms. This follows from the monodromy
correspondence 5.3.7 combined with the fact [Lurl7, 5.4.5.2] that Sing(M) ~ {R"} X a,
(Mfd,,) /ar, with Mfd,, the co-category of topological n-manifolds with morphism spaces
given by the spaces of open embeddings Emb(M, N) equipped with the compact-open
topology. We only need V to be presentable in this case, since the criterion on V in
[PT22] 5.17] is satisfied because M only has a single stratum.

Our next goal is to generalize the monodromy correspondence to constructible
sheaves on stratified spaces. Since the abstract homotopy type of a stratified space
is described by its exit-path category, which is (on conically stratified spaces) an oo-
category and not a Kan complex like Sing(X ), we expect that there is some directionality
involved in the notion of parallel transport that classifies a constructible sheaf. In the
classical setting, remember how the monodromy correspondence between locally constant
sheaves and representations of the fundamental groupoid was proven by using the local
constancy to transport germs along paths inside small open subsets.

Now, suppose we are given an exit path 7 : [0,1] — X such that z := 7(0) € X; and
7((0,1]) € X,, as well as a constructible 1-sheaf F' € Sh*”/(X) and a germ s € z*F.
By definition of the stalk, there is a small open neighborhood Uy around y such that s
stems from a section of F'(Up), meaning that we can parallel transport s from y to any
point in this neighborhood, in particular to some (€) with € > 0. From here on, we can
work with F'|y, which is locally constant and parallel transport further until we reach
(1) =: y, as indicated by the blue open sets in the picture below.

If our path however starts at y and ends in the lower stratum X; at z, we might run into
a problem as shown by the red sets. Since we can only parallel transport a germ inside
of open sets where the respective sheaf is constant, we might never reach X; as there
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Figure 6.1: Parallel transport is only possible from lower to higher strata

does not have to be an open neighborhood around z where F|x_, is constant. We realize
that constructible sheaves can only be transported along exit paths, an idea leading us
to the exodromy correspondence:

Theorem 6.3.4 (Topological Exodromy, [Lurl?, A.9.3| and [PT22]).

Let (X — P) be a conically stratified such that any stratum X, is locally weakly
contractible, and V satisfy the joint conservativity condition, then constructible hyper-
sheaves are specified by their exodromy representation:

Shhyp,cbl (X, V) ~ FUH(SngP(X>, ’\7) . (68)

The functor Sing”(X) — V associated to a sheaf F sends z € X to the stalk 2*F. In
case all sheaves on X are hypercomplete (e.g. X is paracompact Hausdorff of finite
covering dimension), the hyp can of course be dropped.

We may instead require that (X — P) is a paracompact Hausdorff conically stratified
space that is locally of singular shape, P satisfies the ascending chain condition and V
the joint conservativity condition, then we can characterize constructible sheaves by

Sh*'(X; V) ~ Fun(Sing” (X), V) . (6.9)

Remark. The term exodromy stems from applications of this concept to study étale
sheaves in algebraic geometry, see [BGHI18|. However, the original (topological) state-
ment for ordinary constructible sheaves is due to unpublished work by MacPherson.
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Technical Remark. We may rewrite this in analogy with as

Sh(X;V) =~ Fun(laxcolimA®, V) ~ laxlim V . (6.10)

Sing? (X) Sing? (X)

Proposition 6.3.5. Let V be a small stable co-category, and (X — P) satisfy the
conditions for the exodromy correspondence. Then, constructible hypersheaves in Ind(V)
whose stalks all lie in 'V are characterized by their exodromy representation in V:

ShP( X Ind(V)) ~ Fun(Sing” (X), V) (6.11)

Proof. Since the exodromy representation of a sheaf F' sends a point x € X to the stalk
F,, we can apply it to Ind(V) and restrict to the above full subcategories. In particular,
Ind(V) is by definition compactly generated so we do not always need to assume that P
is noetherian. ]

This allows us to extend several statements that we have used for locally constant sheaves
to constructible sheaves. Let (X — P), (Y — P) be stratified spaces and V an oo-
category such that the conditions of the exodromy correspondence are satisfied on both of
them. Depending on which situation we work with, the hypercompleteness assumptions
in the following discussion may be dropped.

Proposition 6.3.6 ([PT22, 5.20]). The full subcategory $h"»“”(X;V) on constructible
hypersheaves in 8h"?(X;V) is closed under limits and colimits. Using the Adjoint
Functor Theorem, we obtain an adjoint triple:
< Loy —
ShMP (X V) e SRMP(X; V)
< Rep ——

Proof. By the exodromy correspondence and our conditions on V, both categories are
presentable, so the Adjoint Functor Theorem can indeed be applied. Constructible
hypersheaves are closed under colimits since locally constant sheaves are by [5.3.9] and
the pullback functors to the strata preserve colimits. The case of limits follows from the
construction of the exodromy correspondence: By the given reference, there is a fully
faithful functor \I/’)‘(y’; : Fun(Sing” (X), V) — 8h™P(X;V) that admits a right adjoint and
restricts to the exodromy correspondence. O

Proposition 6.3.7 (|[PT22, 6.13]). Let f: (X — P) — (Y — P) be a map of stratified
spaces. This induces an adjoint triple

. ibl N
ShMwPebl (X V)« pe SR X V)
;:bl —
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Proof. As in the case of locally constant hypersheaves, all we have to show is that
precomposing the exodromy correspondence with f agrees with the pullback by f on
sheaves. This is difficult and we can not develop the necessary background, see 6.7 and
6.8 in loc. cit. O]

Example 6.3.8. As in the locally constant case, for x € X a point and ¢ : X — * the
terminal map, we obtain functors

alf — Cr —>
Vo —— SN (X V) ¢ () — V
ale — o —

including variations of singular (co)homology replacing local systems by constructible
sheaves. In fact, it agrees with sheaf cohomology by [Vol22, 3.16].

6.4 Verdier Duality for Constructible Sheaves

The goal of this section is to show that Verdier duality restricts to the full subcategory
of constructible (hyper)sheaves in good cases. Assume throughout this section that
(X — P) is a topologically stratified space.

Proposition 6.4.1 ([Vol22, 4.1]). If (X — P) is a topologically stratified space, then
wx 1s constructible.

Proposition 6.4.2. Let x € X and F' € Sh(X; R) a sheaf, and assume that there exists
a basic neighborhood R? x C(L) around z such that the exit-path category Sing” (L) is
a finite oo-category (i.e. Joyal-equivalent to a simplicial set consisting of finitely many
non-degenerate simplices). Then, the stalk x*F is finitely presented (or perfect) iff the
costalk z'F is.

Remark. This condition is satisfied at all points for topological manifolds with corners,
(locally finite) regular CW complexes, and for conically smooth stratified spaces by
[VoI22l, 2.13]; we will refer to such spaces as having exit-finite links. In particular, it is
true for Whitney stratified spaces and complex varieties.

Proof. This argument is due to the proof of [Vol22, 4.2]. Let U = X — {z} which is
open since X is Hausdorff, and 5 : U — X, then we obtain a fiber sequence z,2*F —
F — 5,5 F by and applying the exact (since right adjoint) global sections functor
I yields another fiber sequence

o' F =T1(X,2,2'F) — T'(X,F) — (U, j*F) (6.12)
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exhibiting o' 2 fib(F(X) — F(U)) as the relative cohomology of I at x.

Now, use the fact that X is topologically stratified to choose a basic B = R x C(L)
around z. Since X = U Up_(,y B and by the sheaf condition, the diagram

F(X) —— F(U)

| l

F(B) —— F(B - {x})

is a pullback square, so the above fiber is isomorphic to x' = fib(F(B) — F(B — {z})).
But just as in the case of manifolds, 2*F = I'(B) as indicated in [VolI22 3.5], so all
we have to show is that F/(B — {z}) is finitely presented as it measures the difference
between fiber and cofiber. Use the fact from that global sections of a constructible
sheaf can be calculated as a limit over its exodromy representation, then it suffices to
show that Sing”(X) is finite (replacing by a Joyal-equivalent simplicial set does not
change the limit). By the Seifert-van-Kampen theorem for exit-path categories |[Lurl’,
A.7.1], the diagram

Sing” ((R™ — {0}) x Rog x L) — Sing” (R" x Ry x L)

| |

Sing” (R" — {0}) x C(L)) ———— Sing” (B — {z})

is a pushout square, so it suffices to show the other involved exit-path categories are
finite. But the exit-path category is compatible with cones and products, and Sing” (L)
is finite by assumption. O

Theorem 6.4.3 (Verdier duality for constructible sheaves, [Vol22, 4.2]). If X is a topo-
logically stratified space with exit-finite links, then the Verdier-duality functor D restricts
to an equivalence

D : Shn(X; R)” ~ ShH(X; R) (6.13)

on constructible sheaves with finitely presented stalks (and costalks, by the last propo-
sition). We could also have chosen perfect stalks; in fact the argument even works in an
arbitrary closed symmetric monoidal stable bicomplete oco-category as indicated in the
reference.

Proof Sketch. First, we show that F' +— F restricts to constructible (co)sheaves. If F' is
locally constant, then by passing to an open cover, we may assume it is actually constant
so F' = t*M for some M € LModg and ¢t : X — % the terminal morphism. But then
F.=(=)eot*M, =t'M = t*M @ 'R = M ® wy, using [VoI21, 6.16], is constructible
as wy is. The general case for F' locally constant follows by passing to basics, we leave
it to the reference. By the last proposition, the stalk 2*F, = (). 0 2*F, = 2'F of F,
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is finitely presented iff the stalk of F'is, so (—). in fact induces an equivalence between
Shin(X; R) and coShir(X; R).

Since Verdier duality is given by the composition (—). o Dg, it suffices to show that
Dpg induces a similar equivalence between sheaves and cosheaves. But on exodromy
representations, Dy acts by postcomposition since z*(DgF') = Dgx*F on stalks. Since
Dy itself is an equivalence on perfect, in particular finitely presented modules, we are
finished. O

Definition 6.4.4. Again, we define a category Sh™?(X;R) of constructibly balanced
sheaves as the left orthogonal to the full subcategory Sthl(X, R) C 8h(X; R). Equiva-
lently, it is the kernel of L.;. We also define

Shi (X3 R) := Sh**(X; R) N 8hy,(X; R) (6.14)

as the subcategory on those sheaves with finitely presented stalks.

Theorem 6.4.5. Let (X — P) be a topologically stratified space, then the inclusion of
the full subcategory of constructibly balanced sheaves and the left adjoint L from [6.3.6]
form a right split Verdier sequence

ShH(X; R) — Sh(X; R) % Sh™(X; R) , (6.15)
adjoint to the split Verdier sequence
Sh*'(X; R) < Sh(X;R) — Sh*"(X; R) . (6.16)

Proof. As always, this follows from [3.2.12|since we know about the involved adjoints. [

Definition 6.4.6. Define the stable oo-category of finitely presented constructible
sheaves as the Verdier quotient

Sthl(X;R)(fp — Shfp(X R)/ShJ‘Cbl(X;R) . (6.17)

As usual, this is the full subcategory of Sthl(X; R) spanned by sheaves of the form L F
for F' € 8hy,(X; R).

Theorem 6.4.7. Let (X — P) be a topologically stratified space, then there is a
Poincaré-Verdier sequence

(Shys™(X; R),98) = (Shyp(X; R), 20) — (8A™H(X; R)UP), 9F) . (6.18)

and similarly for symmetric L-theory, where all quadratic functors are restricted from
Verdier-duality on 8h(X; R).
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Proof. As in the previous sections, we only need to show that the left subcategory is
closed under duality. This however follows from the proof of [6.4.3] O

Corollary 6.4.8. The split Poincaré-Verdier sequence above induces a fiber sequence
of spectra

LY(8h " (X; R), D) — LY(8hsy(X; R), D) — LI(SA™(X; R)UP), D) (6.19)

and similarly for symmetric L-theory. We obtain a long exact sequence of L-groups:

N L‘{(Sh]%;bl(X;R),D) — LY(8hp(X; R),D) — LI(SA(X; R)UP) D) 7

L Li(8h7" (X5 R), D) — L§(8hysy(X; R), D) — L(Sh™(X; R)UP), D) 7

L Lil(Sh;;bl(X;R),D) = L% (8hp(X; R),D) - L%, (SAP(X; R)UP D) — ...

Proof. Combine [6.4.7] with [3.3.9] O

6.5 L-Groups of Constructible Sheaves

Lemma 6.5.1. For (f : X — P) a filtered space, and (P_, P, ) aslicing of P, the inverse
images X_ := f~1(P_) and X, := f~1(P,) are a decomposition of X into a closed and
an open subset.

Proof. By definition of a slicing, P_ is downward and P, upward closed and P_.UP, = P.
Thus, X_U X, = f~}(P_UP,) = X and by definition of the Alexandrow topology on
P, the subset P_ is closed and P, is open, so their inverses under a continuous function
are so as well. ]

Theorem 6.5.2. Let (X — P) be a topologically stratified space, and (P_, P, ) a slicing
of P with inverse images X_, X, C X. Then, there is a square diagram

Sh*(X_;R) —— Sh(X_;R) — Sh™(X_; R)

| | |

Sh*®(X;R) —— Sh(X;R) —— Sh(X:R)

! | !

Sh®(X,; R) —— Sh(X; R) —— Sh™(X,;R)
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where all rows are right split and columns are split Verdier sequences. In fact, this holds
for any V satisfying the conditions of

Proof. The middle column is a split Verdier sequence since LModp is presentable stable,
see [3.1.5] Also, by the rows are split Verdier sequences. Hence, we are finished if
we can show that the right column is split Verdier, applying the 9-lemma [3.3.8] The fac-
torization condition we need for this Lemma follows as in by pulling a constructibly
balanced sheaf back to X _, since this preserves the property of being constructibly bal-
anced as pushforward along a closed immersion preserves constructibility as we now
show.

Write 7 : X_ — X and 5 : X, — X for the respective inclusions; we need to show
that 7,,7%,¢", 7, preserve constructible sheaves, since their restrictions are in this case
still pairwise adjoint, and respectively fully faithful or jointly conservative and left exact
(since the full subcategory of constructible sheaves is closed under limits). For the
pullback functors ¢* and j* this is clear: With F € Sthl(X;V) and i, : X, — X
the inclusions of strata, the restrictions F'|x, = % F are all locally constant. But then,
(1" F)|x, = (ip|*~)**F = i}, F for p € P_ are locally constant so that i*F' is constructible,
and similarly for j*F.

Now, let G € Sh™ (X : V), G_ € Sh™(X_;V) and p € P; we need to show that inje Gy
and % i,G_ are locally constant for each p € P.

e If p € P, the inclusion i, = joi,|*+ factors through j, so using j*i, = 0 on sheaves
we see that i%i,G_ is the constant zero sheaf. Also, iG = i,|"5*j.Gy = ip[*G
is locally constant by definition of G, using j7*j, = Id.

e If p € P_, factoring i, = ioi,|x_, the case of G_ follows analogously to the case of
G above. It remains to show that i,|*i*j,.G is locally constant, which is tricky
without further preparations.

See [PT22l 6.35, 6.37] for a full and abstract proof. O

Remark. As follows from the reference given at the end of the proof, this result holds more
generally if X is locally weakly contractible, working with constructible hypersheaves
instead.

Corollary 6.5.3. The family of decompositions (Sh"™P(X_;V),8h"P(X;V)) of
Sh"™P(X;V) for (P_, P,) any slicing of P form a (stable) P-slicing, which for finite
P is equivalent to other decomposition data of this stable co-category over P by [3.5.8]
Similarly for SA"P*L(X; V) and Sh™P*'(X;V). For V compactly generated, one can
get a stronger statement in the case of infinite P using

Theorem 6.5.4. Let (X — P) be a topologically stratified space and (P_, P,) a slicing
of P with inverse images X_, X, C X. Then, one obtains a square diagram
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Shi"(X_; R) — Shyy(X_; R) —— SA™(X_; R)UP)

| | |

Shi(X; R) — Shyy(X; R) —— 8h™(X; R)UP)

| | !

Shi (X4 R) —— Shyy(Xy; R) —— 8h™(Xy; R)UP)

where all rows and columns are Poincaré-Verdier sequences with respect to Verdier
duality restricted from 8h(X; R).

Proof. All rows are Poincaré-Verdier sequences by [6.4.7] so using the 9-Lemma [3.3.8] it
suffices to show that the first two columns are Poincaré-Verdier, since the factorization
condition can be verified by restricting a sheaf to X_ asin[4.6.5] For the middle sequence,
this is the statement of The left sequence fully faithfully embeds into it and the
left sequence of [6.5.2] in fact it is their intersection, and its quadratic functor is restricted
from both. Unwinding the definitions, as in this shows our claim. O

Corollary 6.5.5. The pairs (Sh?/(X_; R)/?, Sh* (X ; R)/?) associated to any slicing
(P_, P,) of P form a Poincaré P-slicing of $h”'(X; R)U/P). Similarly, we obtain Poincaré
P-slicings for Sh]%;bl(X; R) and 8hy,(X; R). In particular, on L-spectra

LY(8h™(X; R)UP); D) = fib (LY(Sh™ (X 4; R)Y?); D) — LI(SA™(X_; R)UP; D)[1])
(6.20)
where the map is following [3.3.10] constructed by pushing a Verdier self-dual sheaf F

forward from X, to X, and forming the cofiber cofib(F — DF") which by assumption
vanishes on X, yielding a Verdier self-dual sheaf on X _ with a different shift.

Let us apply this to a few examples.

Example 6.5.6. For M a topological manifold equipped with the trivial stratification,
Sh'(M; R)IP) ~ She(M; R)UP) (6.21)

as there is only a single stratum (note that the finiteness conditions are defined in the
same way). In particular, the L-groups with respect to Verdier duality agree as well,
which means that if M is connected,

L9(8h (M; R)P) D) ~ L(mo R[m M]) (6.22)

as discussed in Similarly for manifolds with several connected components.
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Generally, the L-groups of constructible sheaves also depend on the L-groups of the
fundamental groups of the strata, but they can be glued together in a non-trivial way
since the above Poincaré-Verdier sequences need not be orthogonal.

Example 6.5.7. Let M — [1] be a topological manifold with boundary equipped with
its canonical stratification, and let the interior M and the boundary OM be connected.
Then, there is a Poincaré-Verdier sequence

SK(OM; R)UP) — Sh(M: R)YP) — Sh'°(M; R)UP) (6.23)
inducing a fiber sequence of L-spectra

LI (o R[m OM]) — LI(Sh(M; R)YP); D) — L4(moR[m M]) . (6.24)

o

Using 7 (M) ~ m1(M) we can calculate the L-group of constructible sheaves as the fiber
L4 (Sh®(M; R)UP): D) = fib (L (o Ry M]) — L9(moR[m 0M])[1]) (6.25)

of the map described in [3.3.10} After we have lifted a locally constant sheaf from the
interior to all of M, which is automatic in above formula because the fundamental groups
agree, we take the cofiber of the canonical map into its Verdier dual, which leaves us with
a sheaf that is pushed forward from the boundary, where it is locally constant. We do not
know how this construction is related to the push-pull i*j, that, as discussed in [Ban(7,
8.2], also sends self-dual sheaves to self-dual sheaves up to a shift — we doubt they are
the same, since informally speaking we are thinking about Verdier-duality (related to
the tensor hermitian structure), while the bordism theory of self-dual sheaves is about
Poincaré-Lefschetz type dualities (related to the cotensor hermitian structure). Again,
a generalization to multiple connected components of interior or boundary is evident.

Example 6.5.8. A similar calculation can be carried out for finite simplicial complexes
and finite regular CW complexes — alternatively, one can also use the results from Section
[4.6]that can be adapted without change the CW case using our knowledge about the exit-
path category from Explicitly, can build a finite simplicial complex K by starting
with its O-simplices, and iteratively gluing higher simplices to it that are maximal in the
stratification of the simplicial complex we have built up to that point. At every step, we
apply the fiber sequence of L-groups to the slicing where the added simplex makes
up the open part. While we do not know enough about the boundary map we glue along
to give a general result, this procedure can in principle be used to find LI(SA? (K; R)\/P))
starting from LI(R).

Remark. While we were not able to show it, we suspect that for a topologically stratified
space without strata of odd codimension (for example a complex variety), the fiber
sequence of spectra in [6.5.5] splits, exhibiting

LI(8h™(X; R)VP)) = 5 @D LU(mo R[m1 X)) (6.26)

peEP veV,
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where V), parametrizes the connected components X,,, of X,,. In other words, the total
L-group of constructible sheaves splits into the L-groups of locally constant sheaves on
the individual strata, glued together in a trivial way. Compare the discussion in [SW20)].

6.6 Conclusion

Let us compare our results in the topological case to the large diagram we had obtained
for a compact PL space, or a simplicial complex, in

L? (8h1 " (X5 R)) —— L7 (8h{™(X; R)) —— L7 (Sh(X; R)UP)

| | |

L9 (8h7(X; R)) — L7 (Sh{2™(X; R)) —2— L7 (8h'(X; R)UP)

E lg

2o X, ANLI(moR) —2— LI(myR[r1 X))

On a topological manifold, we had in derived the sequence of L-groups:
LY(8hy°(X; R)) — LY(8hys,(X; R)) — LI(SK'(X; R)VP)) (6.27)

In we obtained the following fiber sequence of L-groups on a topologically stratified
space:
LY(Shys"(X; R)) < LI(8hy,(X; R)) — LUSh(X; R)UP)) (6.28)

We can not join the first two sequences together like this, since Verdier duality on a
topologically stratified space will generally not preserve the class of locally constant
sheaves. In fact, this only works in the latter case because of the somewhat naive way
we have incorporated Verdier duality in the combinatorial setting without using the
dualizing sheaf.

In the topological case, LI(Sh'(X; R)P)) was still identified with the L-groups of the
group ring LI(moR[m X]). However, we suspect that LI(8hys,(X; R)) does not satisfy
excision, since the co-category of all sheaves is too big and acted on by arbitrary homeo-
morphisms of X, which is also a fairly big group. In particular, the map between them,
while inducing an equivalence on the point, is probably not an assembly map; but for
trivial reasons the assembly map for the L-groups of the group ring factors over this
map.

Our decomposition results for L-groups bear great similarity to the decomposition of
Browder-Quinn L-groups in [Wei94], p. 129 for the PL case and loc. cit. p. 134 for the

169



topological case (compare [AP17, Section 7.1| for a more extensive discussion). For X
the minimal stratum in a Whitney-stratified space X, there is a fiber sequence

LA9(X — Xyrel 9) — LP9(X) — L(Z[r X)) (6.29)

that allows us to inductively calculated the Browder-Quinn L-spectrum of X from the
strata and the relative groups on the right where X is removed, assuming that we
understand the boundary map which is given by a form of transfer to a collar of Xj.
This sounds somewhat similar to our fiber sequence

L4(ShY(X_; R)UP): D) — LI(Sh(X; R)YP: D) — LIUSh* (X, ; R)UP: D) (6.30)

and description of the involved map in Note however that the open and closed
stratum have changed sides, which is very peculiar. Of course, both groups agree on
topological manifolds as they specialize to L?(moR[m; X]) in that case.
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